主成分分析法介绍(高等教育)

合集下载

19.主成分分析法

19.主成分分析法

19.主成分分析法一、方法介绍 基本思路:主成分分析就是设法将原来指标重新组合成一组新的互相无关的几个综合指标来代替原来指标,同时根据实际需要从中可取几个较少的综合指标尽可能多地反映原来指标的信息。

这种将多个指标化为少数互相无关的综合指标的统计方法叫做主成分分析或称主分量分析。

主成分分析的基本思想就是,设法将原来众多具有一定相关性的指标(比如P 个指标),重新组合成一组新的相互无关的综合指标来代替原来指标。

最经典的方法就是用F 1的方差来表达,即 V ar (F 1)越大,表示F 1包含的信息越多。

理论模型:设有n 个样品,每个样品观测p 项指标(变量):X 1,X 2,...,Xp ,得到原始数据资料阵:()111121,,....p P n np x x X X X X x x ⎛⎫⎪== ⎪ ⎪⎝⎭(1)其中,123.....i ii i x x X x ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭i=1,...,p用数据矩阵X 的p 个向量(即p 个指标向量)X 1,...,Xp 作线形组合(即综合指标向量)为:11112121212122221122p P p P P P P pP P F a X a X a X F a X a X a X F a X a X a X =+++⎧⎫⎪⎪=+++⎪⎪⎨⎬⎪⎪⎪⎪=+++⎩⎭(2)简写成1122i i i pi P F a X a X a X =+++ i=1,...,p (3)(注意:Xi 是n 维向量,所以Fi 也是n 维向量。

) 上述方程要求:121i i pi a a a ++= i=1,...,p (4)且系数a ij 由下列原则决定:(1)F i 与F j (i ≠j ,i ,j=1,…,p )不相关;(2)F 1是X 1,...,Xp 的一切线性组合(系数满足上述方程组)中方差最大的,F 2是与F 1不相关的X 1,...,Xp 的一切线性组合中方差最大的,…,F p 是与其他都不相关的X 1,...,Xp 的一切线性组合中方差最大的。

主成分分析方法

主成分分析方法

主成分分析方法主成分分析(Principal Component Analysis,PCA)是一种常用的数据降维技术,它通过线性变换将原始数据映射到一个新的坐标系中,以便更好地揭示数据的内在结构。

在实际应用中,主成分分析方法被广泛应用于数据压缩、特征提取、模式识别等领域。

本文将介绍主成分分析的基本原理、数学推导以及实际应用。

1. 基本原理。

主成分分析的基本思想是将高维数据映射到低维空间中,同时尽可能保留原始数据的信息。

假设我们有一个包含n个样本和m个特征的数据集X,其中每一行代表一个样本,每一列代表一个特征。

我们的目标是找到一个线性变换,将原始数据映射到k维空间中(k < m),使得映射后的数据能够最大程度地保留原始数据的信息。

2. 数学推导。

设我们的线性变换矩阵为W,映射后的数据集为Z,即Z = XW。

我们的目标是找到一个合适的W,使得映射后的数据集Z的协方差矩阵达到最大。

通过对协方差矩阵进行特征值分解,我们可以得到最大的k个特征值对应的特征向量,这些特征向量构成了我们的主成分。

3. 实际应用。

主成分分析方法在实际应用中具有广泛的应用价值。

首先,它可以用于数据压缩,将高维数据映射到低维空间中,从而节省存储空间和计算资源。

其次,主成分分析可以用于特征提取,提取最能代表原始数据的特征,从而降低数据维度并提高模型的泛化能力。

此外,主成分分析还可以用于模式识别,通过对数据进行降维和去噪,提高数据的分类和聚类效果。

总结。

主成分分析是一种重要的数据分析方法,它通过线性变换将高维数据映射到低维空间中,以便更好地揭示数据的内在结构。

在实际应用中,主成分分析方法具有广泛的应用价值,可以用于数据压缩、特征提取、模式识别等领域。

希望本文对主成分分析方法有所帮助,谢谢阅读!。

主成分分析法及其应用

主成分分析法及其应用

主成分分析法及其应用一、本文概述主成分分析法(Principal Component Analysis,简称PCA)是一种广泛应用于数据降维和特征提取的统计方法。

它通过正交变换将原始数据集中的多个变量转换为少数几个互不相关的主成分,这些主成分能够最大程度地保留原始数据集中的信息。

本文旨在全面介绍主成分分析法的基本原理、实现步骤以及在各个领域中的应用案例。

我们将详细阐述主成分分析法的数学基础和算法流程,包括协方差矩阵、特征值、特征向量等关键概念的计算方法。

然后,我们将通过实例演示如何使用主成分分析法进行数据降维和特征提取,以及如何通过可视化工具展示降维后的数据效果。

我们将探讨主成分分析法在机器学习、图像处理、生物信息学、社会科学等多个领域中的实际应用,展示其在数据分析和处理中的重要价值和潜力。

二、主成分分析法的基本原理主成分分析法(Principal Component Analysis,简称PCA)是一种在多个变量中找出主要影响因素,并通过降维技术把多个变量转化为少数几个互不相关的综合变量的统计方法。

这种方法在保持数据信息损失最小的原则下,通过正交变换将原始数据转化为一个新的坐标系统,使得在这个新的坐标系统中,任何数据的最大方差都投影在第一主成分上,第二大的方差都投影在第二主成分上,以此类推。

变量降维:在多数情况下,原始数据集中可能存在多个变量,这些变量之间可能存在相关性。

主成分分析通过构造新的变量(即主成分),这些新变量是原始变量的线性组合,并且新变量之间互不相关,从而将原始的高维数据空间降维到低维空间,实现数据的简化。

方差最大化:主成分分析的另一个重要原理是方差最大化。

这意味着,第一个主成分将捕获数据中的最大方差,第二个主成分捕获第二大方差,以此类推。

通过这种方式,主成分分析能够识别出数据中的主要变化方向和模式。

数据解释性:主成分分析生成的主成分是对原始数据的线性变换,因此,每个主成分都可以被解释为原始变量的某种组合。

主成分分析法介绍.doc

主成分分析法介绍.doc

主成分分析方法我们进行系统分析评估或医学上因子分析等时,多变量问题是经常会遇到的。

变量太多,无疑会增加分析问题的难度与复杂性,而且在许多实际问题中,多个变量之间是具有一定的相关关系的。

因此,我们就会很自然地想到,能否在各个变量之间相关关系研究的基础上,用较少的新变量代替原来较多的变量,而且使这些较少的新变量尽可能多地保留原来较多的变量所反映的信息事实上,这种想法是可以实现的,本节拟介绍的主成分分析方法就是综合处理这种问题的一种强有力的方法。

第一节主成分分析方法的原理主成分分析是把原来多个变量化为少数几个综合指标的一种统计分析方法,从数学角度来看,这是一种降维处理技术。

假定有 n 样本,每个样本共有 p 个变量描述,这样就构成了一个 n×p阶的数据矩阵:x 11 x12 ...x1 px 21 x22 ...x2 pX... ... ... ⋯⋯⋯⋯(1) ...xn1 x n 2 ... x np如何从这么多变量的数据中抓住事物的内在规律性呢要解决这一问题, 自然要在 p 维空间中加以考察, 这是比较麻烦的。

为了克服这一困难, 就需要进行降维处理, 即用较少的几个综合指标来代替原来较多的变量指标, 而且使这些较少的综合指标既能尽量多地反映原来较多指标所反映的信息, 同时它们之间又是彼此独立的。

那么,这些综合指标(即新变量 )应如何选取呢显然,其最简单的形式就是取原来变量指标的线性组合, 适当调整组合系数,使新的变量指标之间相互独立且代表性最好。

如果记原来的变量指标为x 1, x 2, xp ,它们的综合指标 —— 新变量指标为 z 1 , z 2 , z m ( m ≤p)。

则z 1 l 11x 1 l 12 x 2 l 1 p x pz 2l 21x1l 22x2l 2 pxp (2)z m l m1x 1 l m2 x 2l mp x p在( 2)式中,系数 l ij 由下列原则来决定:( 1)z i与 z j ( i ≠j;i ,j=1,2, , m)相互无关;( 2)z 1 是 x 1,x 2,⋯,x p 的一切线性组合中方差最大者;z 2 是与 z 1 不相关的 x 1, x 2,⋯,x p 的所有线性组合中方差最大者; ;z m 是与 z 1,z 2,⋯⋯z m-1 都不相关的 x 1,x 2, ⋯, x p 的所有线性组合中方差最大者。

主成分分析法介绍

主成分分析法介绍

主成分分析法介绍PCA的基本思想是找到一个正交变换,将原始数据从原始的坐标系中旋转到一个新的坐标系中。

这个新的坐标系是由原始坐标系的主成分构成的,主成分是原始数据内在的重要特征。

通过将数据映射到这个新的坐标系中,可以最大程度地保留原始数据的信息。

具体地说,PCA的算法包括以下几个步骤:1.数据标准化:将原始数据中的每个变量进行标准化处理,使得每个变量具有零均值和单位标准差。

这是因为PCA是基于数据的协方差矩阵计算的,如果不进行标准化,那么协方差矩阵的计算会受到不同变量单位的影响。

2.计算协方差矩阵:对标准化后的数据计算协方差矩阵。

协方差矩阵的计算是为了衡量不同变量之间的相关性。

3.计算特征值和特征向量:对协方差矩阵进行特征值分解,得到特征值和特征向量。

特征值表示每个主成分所解释的方差的大小,特征向量表示主成分的方向。

4.选择主成分:根据特征值的大小,选择前几个特征值对应的特征向量作为主成分。

选择的主成分应该能够解释大部分(一般取80%-95%)的方差。

5.得到降维后的数据:将原始数据投影到选取的主成分上,得到降维后的数据。

PCA的优点包括:能够通过主成分解释数据的大部分方差,减少数据维度,从而降低计算复杂度;能够消除数据的相关性,提取出数据中的无关变量,提高模型的简洁性和可解释性;能够提取出数据的主要特征,便于后续的数据分析和建模。

然而,PCA也有一些限制和注意事项:1.PCA是一种无监督学习方法,不考虑样本的类别信息,可能会损失一些重要的类别信息。

2.PCA是一种线性变换方法,对于非线性的数据结构可能不适用。

在处理非线性数据时,可以考虑使用核PCA等非线性降维方法。

3.在选择主成分时,需要根据特征值的大小进行选择。

然而,特征值通常是按照从大到小的顺序排列的,因此特征值较小的主成分可能只解释了数据的很少一部分方差,但也可能包含了一些重要的信息。

因此,在选择主成分时,需要权衡解释方差和保留信息之间的平衡。

主成分分析法介绍

主成分分析法介绍

主成分分析方法我们进行系统分析评估或医学上因子分析等时,多变量问题是经常会遇到的。

变量太多,无疑会增加分析问题的难度与复杂性,而且在许多实际问题中,多个变量之间是具有一定的相关关系的。

因此,我们就会很自然地想到,能否在各个变量之间相关关系研究的基础上,用较少的新变量代替原来较多的变量,而且使这些较少的新变量尽可能多地保留原来较多的变量所反映的信息事实上,这种想法是可以实现的,本节拟介绍的主成分分析方法就是综合处理这种问题的一种强有力的方法。

第一节 主成分分析方法的原理主成分分析是把原来多个变量化为少数几个综合指标的一种统计分析方法,从数学角度来看,这是一种降维处理技术。

假定有n 样本,每个样本共有p 个变量描述,这样就构成了一个n×p 阶的数据矩阵:111212122212.....................p p n n np x x x x x x X x x x ⎛⎫⎪⎪= ⎪ ⎪⎪⎝⎭ (1)如何从这么多变量的数据中抓住事物的内在规律性呢要解决这一问题,自然要在p 维空间中加以考察,这是比较麻烦的。

为了克服这一困难,就需要进行降维处理,即用较少的几个综合指标来代替原来较多的变量指标,而且使这些较少的综合指标既能尽量多地反映原来较多指标所反映的信息,同时它们之间又是彼此独立的。

那么,这些综合指标(即新变量)应如何选取呢显然,其最简单的形式就是取原来变量指标的线性组合,适当调整组合系数,使新的变量指标之间相互独立且代表性最好。

如果记原来的变量指标为p x x x ,,21 ,它们的综合指标——新变量指标为 21,z z ,m z (m≤p)。

则)2.........(..........22112222121212121111⎪⎪⎩⎪⎪⎨⎧+++=+++=+++=p mp m m m pp pp x l x l x l z x l x l x l z x l x l x l z在(2)式中,系数l ij 由下列原则来决定: (1)z i 与z j (i≠j ;i ,j=1,2,…,m)相互无关; (2)z 1是x 1,x 2,…,x p 的一切线性组合中方差最大者;z 2是与z 1不相关的x 1,x 2,…,x p 的所有线性组合中方差最大者;……;z m 是与z 1,z 2,……z m-1都不相关的x 1,x 2,…,x p 的所有线性组合中方差最大者。

(完整版)主成分分析法的步骤和原理

(完整版)主成分分析法的步骤和原理

(一)主成分分析法的基本思想主成分分析(Principal Component Analysis )是利用降维的思想,将多个变量转化为少数几个综合变量(即主成分),其中每个主成分都是原始变量的线性组合,各主成分之间互不相关,从而这些主成分能够反映始变量的绝大部分信息,且所含的信息互不重叠。

[2]采用这种方法可以克服单一的财务指标不能真实反映公司的财务情况的缺点,引进多方面的财务指标,但又将复杂因素归结为几个主成分,使得复杂问题得以简化,同时得到更为科学、准确的财务信息。

(二)主成分分析法代数模型假设用p 个变量来描述研究对象,分别用X 1,X 2…X p 来表示,这p 个变量构成的p 维随机向量为X=(X 1,X 2…X p )t 。

设随机向量X 的均值为μ,协方差矩阵为Σ。

对X 进行线性变化,考虑原始变量的线性组合: Z 1=μ11X 1+μ12X 2+…μ1p X pZ 2=μ21X 1+μ22X 2+…μ2p X p…… …… ……Z p =μp1X 1+μp2X 2+…μpp X p主成分是不相关的线性组合Z 1,Z 2……Z p ,并且Z 1是X 1,X 2…X p 的线性组合中方差最大者,Z 2是与Z 1不相关的线性组合中方差最大者,…,Z p 是与Z 1,Z 2 ……Z p-1都不相关的线性组合中方差最大者。

(三)主成分分析法基本步骤第一步:设估计样本数为n ,选取的财务指标数为p ,则由估计样本的原始数据可得矩阵X=(x ij )m ×p ,其中x ij 表示第i 家上市公司的第j 项财务指标数据。

第二步:为了消除各项财务指标之间在量纲化和数量级上的差别,对指标数据进行标准化,得到标准化矩阵(系统自动生成)。

第三步:根据标准化数据矩阵建立协方差矩阵R ,是反映标准化后的数据之间相关关系密切程度的统计指标,值越大,说明有必要对数据进行主成分分析。

其中,R ij (i ,j=1,2,…,p )为原始变量X i 与X j 的相关系数。

主成分分析方法

主成分分析方法

主成分分析方法在经济问题的研究中,我们常常会遇到影响此问题的很多变量,这些变量多且又有一定的相关性,因此我们希望从中综合出一些主要的指标,这些指标所包含的信息量又很多。

这些特点,使我们在研究复杂的问题时,容易抓住主要矛盾。

那么怎样找综合指标?主成分分析是将原来众多具有一定相关性的指标重新组合成一组新的相互无关的综合指标来代替原来指标的统计方法,也是数学上处理降维的一种方法. 一. 主成分分析法简介主成分分析是将多个变量通过线性变换以选出较少个数重要变量的一种多元统计分析方法,又称主分量分析。

在实际问题中,为了全面分析问题,往往提出很多与此有关的变量(或因素),因为每个变量都在不同程度上反映这个课题的某些信息。

但是,在用统计分析方法研究这个多变量的课题时,变量个数太多就会增加课题的复杂性。

人们自然希望变量个数较少而得到的信息较多。

在很多情形,变量之间是有一定的相关关系的,当两个变量之间有一定相关关系时,可以解释为这两个变量反映此课题的信息有一定的重叠。

主成分分析是对于原先提出的所有变量,建立尽可能少的新变量,使得这些新变量是两两不相关的,而且这些新变量在反映问题的信息方面尽可能保持原有的信息。

信息的大小通常用离差平方和或方差来衡量。

主成分分析的基础思想是将数据原来的p 个指标作线性组合,作为新的综合指标(P F F F ,,,21 )。

其中1F 是“信息最多”的指标,即原指标所有线性组合中使)var(1F 最大的组合对应的指标,称为第一主成分;2F 为除1F 外信息最多的指标,即0),cov(21 F F 且)var(2F 最大,称为第二主成分;依次类推。

易知P F F F ,,,21 互不相关且方差递减。

实际处理中一般只选取前几个最大的主成分(总贡献率达到85%),达到了降维的目的。

主成分的几何意义:设有n 个样品,每个样品有两个观测变量,,21X X 二维平面的散点图。

n 个样本点,无论沿着1X 轴方向还是2X 轴方向,都有较大的离散性,其离散程度可以用1X 或2X 的方差表示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

主成分分析方法
我们进行系统分析评估或医学上因子分析等时,多变量问题是经常会遇到的。

变量太多,无疑会增加分析问题的难度与复杂性,而且在许多实际问题中,多个变量之间是具有一定的相关关系的。

因此,我们就会很自然地想到,能否在各个变量之间相关关系研究的基础上,用较少的新变量代替原来较多的变量,而且使这些较少的新变量尽可能多地保留原来较多的变量所反映的信息?事实上,这种想法是可以实现的,本节拟介绍的主成分分析方法就是综合处理这种问题的一种强有力的方法。

第一节 主成分分析方法的原理
主成分分析是把原来多个变量化为少数几个综合指标的一种统计分析方法,从数学角度来看,这是一种降维处理技术。

假定有n 样本,每个样本共有p 个变量描述,这样就构成了一个n×p 阶的数据矩阵:
111212122212.....................p p n n np x x x x x x X x x x ⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭
(1)
如何从这么多变量的数据中抓住事物的内在规律性呢?要解决这一问题,自然要在p 维空间中加以考察,这是比较麻烦的。

为了克服这一困难,就需要进行降维处理,即用较少的几个综合指标来代替原来较多的变量指标,而且使这些较少的综合指标既能尽量多地反映原来较多指标所反映的信息,同时它们之间又是彼此独立的。

那么,这些综合指标(即新变量)应如何选取呢?显然,其最简单的形式就是取原来变量指标的线性组合,适当调整组合系数,使新的变量指标之间相互独立且代表性最好。

如果记原来的变量指标为p x x x ,,21 ,它们的综合指标——新变量指标为 21,z z ,m z (m≤p)。


)2.........(..........22112222121212121111⎪⎪⎩
⎪⎪⎨
⎧+++=+++=+++=p mp m m m p p p p x l x l x l z x l x l x l z x l x l x l z
在(2)式中,系数l ij 由下列原则来决定:
(1)z i 与
z j (i≠j;i ,j=1,2,…,m)相互无关;
(2)z 1是x 1,x 2,…,x p 的一切线性组合中方差最大者;z 2是与z 1不相关的x 1,x 2,…,x p 的所有线性组合中方差最大者;……;z m 是与z 1,z 2,……z m-1都不相关的x 1,x 2,…,x p 的所有线性组合中方差最大者。

且(2)式要求:22212....1i i ip l l l +++=
这样决定的新变量指标z 1,z 2,…,z m 分别称为原变量指标x 1,x 2,…,x p 的第一,第二,…,第m 主成分。

其中,z 1在总方差中占的比例最大,z 2,z 3,…,z m 的方差依次递减。

在实际问题的分析中,常挑选前几个最大的主成分,这样既减少了变量的数目,又抓住了主要矛盾,简化了变量之间的关系。

从以上分析可以看出,找主成分就是确定原来变量x j (j=1,2,…,p)在诸主成分z i (i=1,2,…,m)上的载荷l ij (i=1,2,…,m ;j=1,2,…,p)。

同时,12(,,....,)i i ip l l l 不是别的,而恰好是x 1,x 2,…,x p 的相关矩阵的特征值所对应的特征向量。

且z 1方差取到最大就是x 1,x 2,…,x p 相关矩阵在第一个特征值所对应特征向量处达到。

z m 方差取到最大就是x 1,x 2,…,x p 相关矩阵在第m 个特征值所对应特征向量处达到。

第二节 主成分分析的解法
主成分分析的计算步骤
通过上述主成分分析的基本原理的介绍,我们可以把主成分分析计算步骤归纳如下:
(1)计算相关系数矩阵
⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=PP P P P P r r r r r r r r r R 2
1222
2111211........................... ………(3) 在公式(3)中,ij r (i ,j=1,2,…,p)为原来变量i x 与j x 的相关系数,其计算公式为
∑∑∑-------=n k n k j kj i ki n k j kj i ki ij x x x x
x x x x r 11
221)()()
)((…….(4) 因为R 是实对称矩阵(即r ij =r ji ),所以只需计算其上三角元素或下三角元素即可。

(2)计算特征值与特征向量
首先解特征方程|λI -R |=0求出特征值λi (i=1,2,…,p),并使其按大小顺序排列,即λ1≥λ2≥…,≥λp ≥0;然后分别求出对应于特征值λi 的特征向量e i (i=1,2,…,p)。

相关文档
最新文档