第5章点的合成运动习题解答
高中物理(新人教版)必修第二册课后习题:第五章习题课运动的合成与分解的两个模型【含答案及解析】

第五章抛体运动习题课:运动的合成与分解的两个模型课后篇巩固提升合格考达标练1.某小船船头垂直于河岸渡河,若水流速度突然增大,其他条件不变,下列判断正确的是()A.小船渡河的时间不变B.小船渡河的时间减少C.小船渡河的时间增加D.小船到达对岸的地点不变,与水速大小无关,选项v,河宽为d,则渡河时间t=dvA正确,B、C错误;由于水速增大,故合速度的方向变化,到达河对岸的地点变化,选项D错误。
2.(2021山东烟台高一期中)光滑半球A放在竖直面光滑的墙角处,用手推着保持静止。
现在A与墙壁之间放入光滑球B,放手让A和B由静止开始运动,当A、B运动到图示位置时,二者球心的连线与水平面成θ角,速度大小分别为v A和v B,则以下关系正确的是()A.v A=v BB.v A=v B sin θC.v A=v B cos θD.v A=v B tan θ,所以两球沿球心连线方向的分速度大小相等,即v A cos θ=v B sin θ,得v A=v B tan θ,故D正确。
3.(多选)如图所示,一人以恒定速度v 0通过定滑轮竖直向下拉小车,使其在水平面上运动,当运动到如图位置时,细绳与水平方向成60°,则此时 ( )A.小车运动的速度为12v 0 B.小车运动的速度为2v 0 C.小车在水平面上做加速运动 D.小车在水平面上做减速运动,如图。
人拉绳的速度与小车沿绳子方向的分速度是相等的,根据三角函数关系:v cos 60°=v 0,则v=vcos60°=2v 0,随小车向左运动,细绳与水平方向的夹角α越来越大,由v=v0cosα知v 越来越大,则小车在水平面上做加速运动,故B 、C 正确。
4.(2021河南焦作期末)不可伸长的轻绳通过定滑轮,两端分别与甲、乙两物体连接,两物体分别套在水平、竖直杆上。
控制乙物体以v=2 m/s 的速度由C 点匀速向下运动到D 点,同时甲由A 点向右运动到B 点,四个位置绳子与杆的夹角分别如图所示,绳子一直绷直。
理论力学重难点及相应题解

运动学部分:一、点的运动学重点难点分析1.重点:点的运动的基本概念(速度与加速度,切向加速度和法向加速度的物理意义等);选择坐标系,建立运动方程,求速度、加速度。
求点的运动轨迹。
2.难点:运动方程的建立。
解题指导:1.第一类问题(求导):建立运动方程然后求导。
若已知点的运动轨迹,且方程易于写出时,一般用自然法,否则用直角坐标法。
根据点的运动性质选取相应的坐标系,对于自然法要确定坐标原点和正向。
不管用哪种方法,注意将点置于一般位置,而不能置于特殊位置。
根据运动条件和几何关系把点的坐标表示为与时间有关的几何参数的函数,即可得点的运动方程。
2.第二类问题(积分):由加速度和初始条件求运动方程,即积分并确定积分常数。
二、刚体的简单运动重点难点分析:1.重点:刚体平移、定轴转动基本概念;刚体运动方程,刚体上任一点的速度和加速度。
2.难点:曲线平移。
解题指导:首先正确判断刚体运动的性质。
其后的分析与点的运动分析一样分两类问题进行。
建立刚体运动方程时,应将刚体置于一般位置。
三、点的合成运动(重要)重点难点分析:1.重点:动点和动系的选择;三种运动的分析。
速度合成与加速度合成定理的运用。
2.难点:动点和动系的选择。
解题指导:1.动点的选择、动系的确定和三种运动的分析常常是同时进行的,不可能按顺序完全分开。
2.常见的运动学问题中动点和动系的选择大致可分以下五类:(1)两个(或多个)不坟大小的物体独立运动,(如飞机、海上的船舶等)对该类问题,可根据情况任选一个物体为动点,而将动系建立在另一个物体上。
由于不考虑物体的大小,因此动系(刚体)与物体(点)只在一个点上连接,可视为铰接,建立的是平移动坐标系。
(2)一个小物体(点)相对一个大物体(刚体)运动,此时选小物体为动点,动系建立在大物体上。
(3)两个物体通过接触而产生运动关系。
其中一个物体的接触只发生在一个点上,而另一个物体的接触只发生在一条线上。
选动点为前一物体的接触点,动系则建立在后一物体上。
第5章点的合成运动习题解答080814讲课稿

第 5 章点的合成运动习题解答0 8 08 1 4第五章点的合成运动本章要点一、绝对运动、相对运动和牵连运动一个动点,两个参照系:定系,动系;三种运动:绝对运动、相对运动和牵连运动,包括三种速度:绝对速度、相对速度和牵连速度;三种加速度:绝对加速度、相对加速度和牵连加速度;牵连点:动参考系上瞬时与动点相重合的那一点称为动参考系上的牵连点。
二、速度合成定理动点的绝对速度,等于它在该瞬时的牵连速度与相对速度的矢量和,即V a V e V r解题要领1定系一般总是取地面,相对定系运动的物体为动系,动点不能在动系上.2牵连速度是牵连点的速度•3速度合成定理中的三个速度向量,涉及大小方向共六个因素,能且只能存在两个未知数方能求解,因此,至少有一个速度向量的大小方向皆为已知的.4作速度平行四边形时,注意作图次序:一定要先画大小方向皆为已知的速度向量,然后再根据已知条件画上其余两个速度向量,特别注意,绝对速度处于平行四边形的对角线位置.5用解三角形的方法解速度合成图.三、加速度合成定理1牵连运动为平移时的加速度合成定理当牵连运动为平移时,动点的绝对加速度等于牵连加速度与相对加速度的矢量和,即a a a e a r ,当点作曲线运动时,其加速度等于切向加速度和法向加速度的矢量和,因此上式还可进一步写成a;a a a e n t na e a r a r其中a;dv;,n aa2V a tdV e n,a e ,a e2Ve a t,a r dV r,a n2v■ ?a, e, r依次dt a dt e dt r为绝对轨迹、牵连轨迹和相对轨迹的曲率半径。
解题要领1牵连运动为平移时的加速度合成定理只对“牵连运动为平移时”成立,因此,判定牵连运动是否为平移至关重要.2牵连运动为平移时的加速度合成定理涉及的三个加速度,每一加速度都可能有切向和法向加速度。
但是,法向加速度只与速度有关,因此,可以通过速度分析予以求解,从而在此处是作为已知的。
《工程力学》课后习题与答案全集

由 ,作出速度平行四边形,如图示:
即:
7.图示平行连杆机构中, mm, 。曲柄 以匀角速度 2rad/s绕 轴转动,通过连杆AB上的套筒C带动杆CD沿垂直于 的导轨运动。试示当 时杆CD的速度和加速度。
解:取CD杆上的点C为动点,AB杆为动系。对动点作速度分析和加速度分析,如图(a)、(b)所示。图中:
解:设该力系主矢为 ,其在两坐标轴上的投影分别为 、 。由合力投影定理有:
=-1.5kN
kN
kN
;
由合力矩定理可求出主矩:
合力大小为: kN,方向
位置: m cm,位于O点的右侧。
2.火箭沿与水平面成 角的方向作匀速直线运动,如图所示。火箭的推力 kN与运动方向成 角。如火箭重 kN,求空气动力 和它与飞行方向的交角 。
(d)由于不计杆重,杆AB在A、C两处受绳索作用的拉力 和 ,在B点受到支座反力 。 和 相交于O点,
根据三力平衡汇交定理,
可以判断 必沿通过
B、O两点的连线。
见图(d).
第二章力系的简化与平衡
思考题:1.√;2.×;3.×;4.×;5.√;6.×;7.×;8.×;9.√.
1.平面力系由三个力和两个力偶组成,它们的大小和作用位置如图示,长度单位为cm,求此力系向O点简化的结果,并确定其合力位置。
则
(mm/s)
故 =100(mm/s)
又有: ,因
故:
即:
第四章刚体的平面运动
思考题
1.×;2.√; 3.√;4.√;5.×.
习题四
1.图示自行车的车速 m/s,此瞬时后轮角速度 rad/s,车轮接触点A打滑,试求点A的速度。
第5章点的合成运动习题解答080814课件

第五章 点的合成运动本章要点一、绝对运动、相对运动和牵连运动一个动点,两个参照系: 定系,动系;三种运动:绝对运动、相对运动和牵连运动, 包括三种速度:绝对速度、相对速度和牵连速度; 三种加速度:绝对加速度、相对加速度和牵连加速度;牵连点:动参考系上瞬时与动点相重合的那一点称为动参考系上的牵连点。
二、速度合成定理动点的绝对速度,等于它在该瞬时的牵连速度与相对速度的矢量和,即r e a v v v +=解题要领1 定系一般总是取地面,相对定系运动的物体为动系,动点不能在动系上.2 牵连速度是牵连点的速度.3 速度合成定理中的三个速度向量,涉及大小方向共六个因素,能且只能存在两个未知数方能求解,因此,至少有一个速度向量的大小方向皆为已知的.4 作速度平行四边形时,注意作图次序:一定要先画大小方向皆为已知的速度向量,然后再根据已知条件画上其余两个速度向量,特别注意,绝对速度处于平行四边形的对角线位置.5 用解三角形的方法解速度合成图. 三、加速度合成定理1 牵连运动为平移时的加速度合成定理当牵连运动为平移时,动点的绝对加速度等于牵连加速度与相对加速度的矢量和,即r e a a a a +=,当点作曲线运动时,其加速度等于切向加速度和法向加速度的矢量和,因此上式还可进一步写成n r t r n e t e na t a a a a a a a +++=+其中 t v a d d a t a=,a 2a n a ρv a =,t v a d d e t e =,e2e ne ρv a =,t v a d d r t r =,r 2r n r ρv a =,r e a ,,ρρρ依次为绝对轨迹、牵连轨迹和相对轨迹的曲率半径。
解题要领1牵连运动为平移时的加速度合成定理只对“牵连运动为平移时”成立,因此,判定牵连运动是否为平移至关重要.2 牵连运动为平移时的加速度合成定理涉及的三个加速度,每一加速度都可能有切向和法向加速度。
点的运动合成习题参考解答

解:用点的复合运动求解,取重物 B 为动点,动系与水平悬臂固连,则牵连运
动为定轴转动,相对运动为直线运动。
由于
vr
=
dx dt
=
−0.5 m/s
( ←)
方向与轴 x 的正向相反。
当 t = 10 s 时, ve = x ⋅ω = 15 × 0.1 = 1.5 m/s , 方向指向轴 z 的正向。速度图见上
2. 图示曲柄滑道机构中,曲柄长 AB = r,绕轴 O 以ω作匀速转动,滑槽 DΕ与水 平线成60°角。求当ϕ =0、30°、60°时,杆 BC 的速度。
解:本题机构 BC 作平动,可以用点的运动学方法求解。这里应用点的合成运动 求解,以滑块 A 为动点,动系与构件 BC 固结,考虑一般位置速度图如下图所示。
可得
aa = ae + ar
aBC = ae = va sinθ = OA⋅ω 2 sinθ = 0.4 × 0.25sin 30o = 0.05 m/s2 (↓)
6. 小车的运动规律为 x = 50 t2,x 以 cm 计,t 以 s 计。车上摆杆 OM 在铅垂面内
绕轴 O 转动,其转动规律为ϕ = π sin πt 。如 OM = 60 cm。求 t = 1 s 时摆杆端
由 va = ve + vr 和速度三角形,以及正弦定理有
ve sin(30o
−ϕ)
=
va sin60o
⇒
v BC
= ve
=
va sin60 o
sin(30o
−ϕ)
将 va = rω 及ϕ =0、30°、60° 分别代入上式解得当ϕ =0、30°、60° 时,
vBC =
3 rω, 3
理论力学《点的合成运动》答案

4
动系:固连于CBDE上的坐标系。 动系平动, v A = v CBDE = v BC 静系:固连于地面的坐标系。 绝对速度:A相对于地面的速度。 相对速度:A相对于DE的速度。 牵连速度:CBDE相对于地面的速度。
→ → →
vr
900 − ϕ A
120 0
va
ϕ
ve = vBC
ϕ O
5
相对速度:C相对于OC杆的速度。 牵连速度:OC杆相对于地面的速度。
ve = OC ⋅ ω =
→ → →
0.4 × 0.5 = 0.231( m / s ) cos 30 0
va = ve + vr va = ve 0.2 = = 0.267( m / s ) 0 cos 30 cos 2 30 0
BC作平动,故
v BC = v a = 1.155lω 0
[习题7-9] 一外形为半圆弧的凸轮A,半径r=300mm,沿水平方向向右作匀加速运动, 其加速度aA=800mm/s 。凸轮推动直杆BC沿铅直导槽上下运动。设在图所示瞬时, vA=600mm/s,求杆BC的速度及加速度。 解: 动点:B。 动系:固连于凸轮A上的坐标系。 静系:固连于地面的坐标系。 绝对速度:B相对于地面的速度。 相对速度:B相对于凸轮的速度。 牵连速度:B相对于凸轮的速度。
θ = 40.930
→ →
即 v 与 v1 之间的夹角为 θ = 40.93 。 种子走过的水平距离为:
0
s = v x t = v cos θ ⋅ t h = vyt +
1 2 gt 2 1 2 gt 2
h = v sin θt +
0.25 = 2.65 sin 40.930 t + 0.5 × 9.8t 2
理论力学习题答案

第一章静力学公理和物体的受力分析一、是非判断题1.1.1 在任何情况下,体内任意两点距离保持不变的物体称为刚体。
( ∨ ) 1.1.2 物体在两个力作用下平衡的必要与充分条件是这两个力大小相等、方向相反,沿同一直线。
( × )1.1.3 加减平衡力系公理不但适用于刚体,而且也适用于变形体。
( × ) 1.1.4 力的可传性只适用于刚体,不适用于变形体。
( ∨ ) 1.1.5 两点受力的构件都是二力杆。
( × ) 1.1.6只要作用于刚体上的三个力汇交于一点,该刚体一定平衡。
( × ) 1.1.7力的平行四边形法则只适用于刚体。
( × ) 1.1.8 凡矢量都可以应用平行四边形法则合成。
( ∨ ) 1.1.9 只要物体平衡,都能应用加减平衡力系公理。
( × ) 1.1.10 凡是平衡力系,它的作用效果都等于零。
( × ) 1.1.11 合力总是比分力大。
( × ) 1.1.12只要两个力大小相等,方向相同,则它们对物体的作用效果相同。
( × ) 1.1.13若物体相对于地面保持静止或匀速直线运动状态,则物体处于平衡。
( ∨ ) 1.1.14当软绳受两个等值反向的压力时,可以平衡。
( × ) 1.1.15静力学公理中,二力平衡公理和加减平衡力系公理适用于刚体。
( ∨ ) 1.1.16静力学公理中,作用力与反作用力公理和力的平行四边形公理适用于任何物体。
( ∨ ) 1.1.17 凡是两端用铰链连接的直杆都是二力杆。
( × ) 1.1.18 如图所示三铰拱,受力F ,F1作用,其中F作用于铰C的销子上,则AC、BC构件都不是二力构件。
( × )二、填空题1.2.1 力对物体的作用效应一般分为 外 效应和 内 效应。
1.2.2 对非自由体的运动所预加的限制条件称为 约束 ;约束力的方向总是与约束所能阻止的物体的运动趋势的方向 相反 ;约束力由 主动 力引起,且随 主动 力的改变而改变。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章 点的合成运动本章要点一、绝对运动、相对运动和牵连运动一个动点,两个参照系: 定系,动系;三种运动:绝对运动、相对运动和牵连运动, 包括三种速度:绝对速度、相对速度和牵连速度; 三种加速度:绝对加速度、相对加速度和牵连加速度;牵连点:动参考系上瞬时与动点相重合的那一点称为动参考系上的牵连点。
二、速度合成定理动点的绝对速度,等于它在该瞬时的牵连速度与相对速度的矢量和,即r e a v v v +=解题要领1 定系一般总是取地面,相对定系运动的物体为动系,动点不能在动系上.2 牵连速度是牵连点的速度.3 速度合成定理中的三个速度向量,涉及大小方向共六个因素,能且只能存在两个未知数方能求解,因此,至少有一个速度向量的大小方向皆为已知的.4 作速度平行四边形时,注意作图次序:一定要先画大小方向皆为已知的速度向量,然后再根据已知条件画上其余两个速度向量,特别注意,绝对速度处于平行四边形的对角线位置.5 用解三角形的方法解速度合成图. 三、加速度合成定理1 牵连运动为平移时的加速度合成定理当牵连运动为平移时,动点的绝对加速度等于牵连加速度与相对加速度的矢量和,即r e a a a a +=,当点作曲线运动时,其加速度等于切向加速度和法向加速度的矢量和,因此上式还可进一步写成n r t r ne t e n a t a a a a a a a +++=+其中 t v a d d a t a=,a 2a n a ρv a =,t v a d d e t e =,e2e n e ρv a =,t v a d d r t r =,r 2r nr ρv a =,r e a ,,ρρρ依次为绝对轨迹、牵连轨迹和相对轨迹的曲率半径。
解题要领1牵连运动为平移时的加速度合成定理只对“牵连运动为平移时”成立,因此,判定牵连运动是否为平移至关重要.2 牵连运动为平移时的加速度合成定理涉及的三个加速度,每一加速度都可能有切向和法向加速度。
但是,法向加速度只与速度有关,因此,可以通过速度分析予以求解,从而在此处是作为已知的。
剩下的三个切向加速度的大小方向共有六个因素,能且只能有2个未知量时方可求解。
3 因加速度合成定理涉及的矢量较多,一般不用几何作图的方法求解,而是列投影式计算,千万不能写成“平衡方程”的形式。
4 在加速度分析中,因动点和动系的选择不当而出现了一种似是而非的分析过程。
教材中例5.3.5的一个典型错误解法如下:例:半径为r 的半圆凸轮移动时,推动靠在凸轮上的杆OA 绕O 轴转动,凸轮底面直径DE 的延长线通过O 点,如图所示。
若在 30=ϕ的图示瞬时位置,已知凸轮向左的移动速度为u ,加速度为a 且与u 反向,求此瞬时OA 杆的角速度ω与角加速度α。
“解”:取OA 杆上与凸轮相接触的B 点为动点,动系固结在凸轮上。
设OA 杆的角 速度和角加速度分别为 和。
1)速度分析:根据速度合成定理,可画出速度平行四边形如图所a 示。
由几何关系可得u v v 2130sin e a == , u v v 2330cos e r == 方向如图所示。
由此可求得OA 杆在图示瞬时的角速度为ru u r OB v ω63230ctg 1a ===, 转向如图所示。
2) 加速度分析:根据牵连运动为平移时的加速度合成定理,有(a )(b)n r t r en ata a a a a a ++=+大小: αOB ? 2ωOB a ? BCv 2r方向: OA ⊥ 指向O 点 ← BC ⊥ 指向C 点加速度矢量关系图如图b 所示。
在这个矢量关系式中,各加速度分量的大小、方向共有十个要素,已知八个要素,可以求解。
将图示的加速度矢量关系向CB 方向投影,得()⎪⎪⎭⎫ ⎝⎛+-=--=--=--=r u a r u/aBC v a a a a 43223230sin 30sin 222rn re ta, t a a 为负值说明τa a 的真实指向应与图设的指向相反。
由此,可求得OA 杆在图示瞬时的角加速度的大小为⎪⎪⎭⎫⎝⎛+=+===r u a r rr /u a/BC a OB a α2323343230ctg 22ta t a , 转向如图所示(由t a a 的真实指向决定)。
上述解法是“避免 ”了取OA 杆为动系时出现的科氏加速度,错在何处?这不难从杆OA 的转动方程xR=ϕsin , 对时间求导求得OA 杆的角速度和角加速度值得到验证,式中OA x =。
可以看到,速度分析的结果是正确的,而加速度分析结果是错误的。
原因是“取OA 杆上与凸轮相接触的B 点为动点”,此动点只在此瞬时与凸轮相接触,随后就分道扬镳了,其相对轨迹不是凸轮轮廓线,相对轨迹不清楚,因此,上面分析中nr a 用凸轮轮廓线的半径作为相对轨迹的曲率半径的计算是错误的。
2 牵连运动为转动时的加速度合成定理牵连运动为转动时点的加速度合成定理:当牵连运动为转动时,动点的绝对加速度,等于该瞬时动点的牵连加速度、相对加速度与科氏加速度的矢量和c r e a a a a a ++=,其中科氏加速度为r e c ω2v a ⨯=,当相对速度矢量与牵连角速度矢量垂直时,相对速度顺着牵连角速度转90的方向就是科氏加速度的方向,大小为r e ω2v a c =.当点作曲线运动时,其加速度等于切向加速度和法向加速度的矢量和,因此上式还可进一步写成c n r t r ne t e n a t a a a a a a a a ++++=+.解题要领:1 在加速度分析中要特别注意动系是否有角速度,如果有,就要考虑科氏加速度。
2 牵连运动为转动时的加速度合成定理涉及的矢量较多,最多有7个矢量,分析和列投影式时不要遗漏了。
3 法向加速度和科氏加速度只与速度和角速度有关,因此,在加速度分析时应作为是已知的。
4 牵连运动为转动时的加速度合成定理只可以解2个未知量。
第五章 点的合成运动 习题解答5-1 在图a 、b 所示的两种机构中,已知20021==a O O mm ,31=ωrad/s 。
求图示位置时杆A O 2的角速度。
解:(1)取杆A O 1上的A 点为动点,杆A O 2为动系。
1a ωa v =,由r e a v v v +=作速度平行四边形(如题5-1图a 所示),得a v v 1a e 2330cos ω==, rad/s 5.1212e 2===ωωAO v , (逆时针)(2)取滑块A 为动点,杆A O 1为动系, 1e ωa v =,由r e a v v v +=作速度平行四边形(如题5-1图b 所示),得1e a 3230cos ωa v v ==,rad/s 23212a 2===ωωA O v .(逆时针)5-2图示曲柄滑道机构中,杆BC 为水平,杆DE 保持铅直。
曲柄长10.OA =m ,并以匀角速度20=ωrad/s 绕O 轴转动,通过滑块A 使杆BC 作往复运动。
求当曲柄水平线的交角分别为0=ϕ、 30、 90时杆BC 的速度。
解:取滑块A 为动点,动系为BCE 杆。
m /s 2OA a =⋅=ϕv . 由 r e a v v v += 得 ϕsin a e v v =题5-2图(a)( b)题5-1图当 0=ϕ 时, 0e =v ;当30=ϕ时,m/s 1e =v ;当90=ϕ时,m/s 2e =v .5-3图示曲柄滑道机构中,曲柄长r OA =,并以匀角速度ω饶O 轴转动。
装在水平杆上的滑槽DE 与水平线成60角。
求当曲柄与水平线交角0=ϕ、30、60时,杆BC 的速度。
解:取滑块A 为动点,动系为杆BC ,ωωr v =⋅=OA a . 作速度矢量图如图示。
由正弦定理)30-sin()60-sin(180ea ϕv v =, 解得)30-sin(32-e ϕω⋅=r v . 当0=ϕ时, 33e v r ω=; 当30oϕ=时, 0=e v ;当60oϕ=时, 33e v r ω=-(向右). 5-4如图所示,瓦特离心调速器以角速度ω绕铅垂轴转动。
由于机器转速的变化,调速器重球以角速度1ω向外张开。
如该瞬间10rad/s =ω,1.2rad/s 1=ω。
球柄长500mm =l ,悬挂球柄的支点到铅垂的距离为50mm =e ,球柄与铅垂轴间所成的夹角30=β。
求此时重球绝对速度的大小。
解:取重球为动点,转轴AB 为动系,则 ωl v r =,方向如图示;牵连速度()ωβsin e l e v +=,方向与ADB 垂直。
根据r e a v v v +=,题5-3图题5-4图由勾股定理得 m/s 059.32r 2e a =+=v v v .5-5图示L 形杆BCD 以匀速v 沿导槽向右平动,CD BC ⊥,hBC =。
靠在它上面并保持接触的直杆OA 长为l ,可绕O 轴转动。
试以x 的函数表示出直杆OA 端点A 的速度。
解: 以L 形杆上的B 为动点,OA 杆为动系,则动点相对于动系做直线运动。
v v =a ,设OBC ∠为θ,由速度合成定理得 v x h h v v 22a e cos +==ϑ,由此可求得v xh hl l x h v v eA 2222+=+=. 也可以利用以下关系解出A v 。
由h xh x arctan ,tan ==θθ,vt x = v x h hl r v x h vh h x h vt A 22222,1d d +==+=⎪⎭⎫⎝⎛+==ωθω.5-6如图所示,摇杆OC 绕O 轴转动,拨动固定在齿条AB 上的销钉K 而使齿条在铅直导轨内移动。
齿条再传动半径100=r mm 的齿轮D 。
连线1OO 是水平的,距离400=l mm 。
在图示位置,摇杆角速度50.=ωrad/s , 30=ϕ。
试求此时齿轮D 的角速度。
解: 解法一:分两步计算。
(1)计算齿条AB 的速度。
取K 为动点,OC 杆为动系,则ωOK v =e . 由速度合成定理得:ϕωϕ2e a cos cos l v v v AB ===, (2)计算齿轮D 的角速度。
rad/s 67.238cos 2====ϕωωr l r v AB D .(逆时针) 解法二:设齿轮D 和齿条AB 的啮合点到K 点的距离为h ,题5-5图题5-6图则 ωϕϕ-== ,tan l h ,从而有 ()tl l t t h v AB ωωϕ2cos tan dd d d -===, 代入数据,m/s 15430cos 5.04.02-=⨯-= AB v .其中负号表示AB v 是沿h 减小的方向,即向下。
齿轮D 的角速度为 m/s 67.238===r v v AB D .(逆时针) 5-7绕轴O 转动的圆盘及直杆OA 上均有一导槽,两导槽间有一活动销子M 如图所示,0.1m =b 。