35KV降压变电所设计方案

合集下载

(完整)35kV总降压变电所及高压配电系统初步设计

(完整)35kV总降压变电所及高压配电系统初步设计

目录1 前言 (1)1.1毕业设计背景 (1)1.2毕业设计意义 (1)1.3设计要求 (1)2 35kV变电所一次系统负荷计算 (2)2.1变电所电力负荷分组与计算 (2)2.2 需要系数法的计算 (2)2.2.1设备负荷计算举例 (3)2.2.2总配电所和车间变电所数量的确定 (4)2.2.3各车间变电所负荷计算及无功功率补偿 (5)2.3 低压变压器的选择与损耗计算 (8)2.3.1低压变压器的选择 (8)2.3.2 各低压变压器的损耗计算 (9)2.4 主变压器的选择 (11)2.4.2主变压器损耗计算 (12)3 系统主接线设计 (13)3.1主接线设计的基本要求 (13)3.1.1供电电源的确定 (13)3.2电气主接线方案的确定 (13)3.2.1 确定35kV、10kV电气主接线 (13)3.2.2供电系统简图 (14)4 短路电流的计算 (15)4.1 短路电流 (15)4.1.1短路的原因 (15)4.1.2 短路的危害 (15)4.1.3 短路电流计算的目的 (15)4.1.4 短路电流计算的标幺值法 (15)4.2 计算各元件的电抗标幺值 (16)4.2.1选取基准值 (16)4.2.2供配电系统中各主要元件电抗标么值 (16)4.2.3短路电流具体计算短路电路中各主要元件的电抗标么值.. 174.2.4 在最大运行方式下 (18)4.2.5在最小运行方式下 (19)5 变电所高压电气设备的选择与校验 (21)5.1. 35KV高压开关柜的选择 (21)5.1.1短路校验的原则 (21)5.2高压设备选择及校验 (21)5.2.1 35KV断路器的选择 (22)5.2.2 35KV隔离开关的选择 (23)5.2.3 35KV电流互感器的选择 (23)5.2.4 35KV电压互感器的选择 (24)5.2.5 35KV熔断器的选择 (24)5.2.6 35KV避雷器的选择 (24)5.3 10KV电气设备的选择 (24)5.3.1 10KV开关柜的选择 (24)5.3.2 10KV断路器的选择 (24)5.3.3 隔离开关的选择 (25)5.3.4电流互感器的选择 (26)5.3.5电压互感器的选择 (26)6 高压配电线路的设计 (26)6.1高压配电线路接线方式的选择 (26)6.2高压配电线路截面的选择与校验 (27)6.2.1 35KV高压进线的选择 (27)6.2.2 截面积的校验 (27)6.2.3 10KV高压出线线路的选择与校验 (28)7 防雷与接地设计 (29)7.1防雷保护 (29)7.1.1 电力线路的防雷措施 (29)7.1.2 变配电所的防雷措施 (30)7.1.3雷电侵入波的防护 (30)7.2接地设计 (30)8 继电保护的整定计算 (31)8.1继电保护的基本任务及要求 (31)8.1.1继电保护的基本任务 (31)8.1.2 继电保护的基本要求 (31)8.2 变压器的继电保护设置 (32)8.3变电所主变压器继电保护的计算 (32)8.3.1装设瓦斯保护 (32)8.3.2装设定时限过电流保护 (32)8.3.3 装设电流速断保护 (33)8.3.4 装设过负荷保护 (34)8.3.5 10kV母线断路器的保护 (34)8.3.6 10kV出线各支路的保护 (35)结论 (35)致谢 (36)参考文献 (37)摘要本设计是为某矿山起重机有限公司设计一座35kV变电所及其配电系统。

工厂35KV总降压变电所设计方案

工厂35KV总降压变电所设计方案

工厂35KV总降压变电所设计方案某××厂总降压变电所及配电系统设计一、基础资料1、全厂用电设备情况〈1〉负荷大小用电设备总安装容量:6630kW计算负荷(10kV侧)有功:4522 kW无功:1405kVar各车间负荷统计见表8—1〈2〉负荷类型本厂绝大部分用电设备均属长期连续负荷,要求不间断供电。

停电时间超过两分钟将造成产品报废;停电时间超过半小时,主要设备,电炉将会损坏;全厂停电将造成严重经济损失,故主要车间及辅助设施均为I类负荷。

(3) 本厂为三班工作制,全年工作时数8760小时,最大负荷利用小时数5600小时。

〈3〉全厂负荷分布,见厂区平面布置图。

(图8—1)表8—1 全厂各车间负荷统计表2、电源情况〈1〉工作电源本厂拟由距其5公里处的A变电站接一回架空线路供电,A变电站110kV母线短路容量为1918MVA,基准容量为1000 MVA,A变电站安装两台SFSLZ1—31500kVA/110kV三圈变压器,其短路电压U高—中=10.5%,U高—低=17%,U低—中=6%。

详见电力系统与本厂联接图(图8—2)。

图8—1 厂区平面布置示意图 8—2 电力系统与本厂联接示意图供电电压等级,由用户选用35kV或10kV的一种电压供电。

最大运行方式:按A变电站两台变压器并列运行考虑。

最小运行方式:按A变电站两台变压器分列运行考虑。

〈2〉备用电源拟由B变电站接一回架空线作为备用电源。

系统要求,只有在工作电源停电时,才允许备用电源供电。

〈3〉功率因数供电部门对本厂功率因数要求值为:当以35kV供电时,cosφ=0.9当以10kV供电时,cosφ=0.95〈4〉电价供电局实行两部电价。

基本电价:按变压器安装容量每1千伏安每月4元计费。

电度电价:35kV β=0.05元/kWh10kV β=0.06元/kWh〈5〉线路的功率损失在发电厂引起的附加投资按每千瓦1000元。

前言电力工业对我国社会主义建设、工农业生产和人民生活影响很大,因此,提高电力系统运行的可靠性,保证安全供电是从事电力设计的重要任务。

35kv变电所设计

35kv变电所设计

摘要:随着电力行业的不断发展,人们对电力供应的要求越来越高,特别是供稳固性、可靠性和持续性。

然而电网的稳固性、可靠性和持续性往往取决于变电所的合理设计和配置。

一个典型的变电站要求变电设备运行可靠、操作灵活、经济合理、扩建方便。

出于这几方面的考虑,本论文设计了一个35kV降压变电站,此变电站有两个电压等级,一个是35kV,一个是10kV。

同时对于变电站内的主设备进行合理的选型。

本设计选择选择两台主变压器,其他设备如断路器,隔离开关,电流互感器,电压互感器,无功补偿装置和继电保护装置等等也按照具体要求进行选型、设计和配置,力求做到运行可靠,操作简单、方便,经济合理,具有扩建的可能性和改变运行方式时的灵活性。

使其更加贴合实际,更具现实意义。

关键词 35kV 变电所设计引言电能是发展国民经济的基础,是一种无形的、不能大量储存的二次能源。

电能的发、变、送、配和用电,几乎是在同一瞬间完成的,须随时保持功率平衡。

要满足国民经济发展的要求,电力工业必须超前发展,这是世界电力工业发展规律,因此,做好电力规划,加强电网建设,就尤为重要。

变电所作为变电站作为电力系统的重要组成部分,它直接影响整个电力系统的安全与经济运行,是联系发电厂和用户的中间环节,起着变换和分配电能的作用。

对其进行设计势在必行,合理的变电所不仅能充分地满足当地的供电需求,还能有效地减少投资和资源浪费。

本次设计根据一般变电所设计的步骤进行设计,包括负荷统计,主变选择,主接线选择,短路电流计算,设备选择和校验,继电保护,防雷措施等几大块。

并依据相关规定和章程设计其中个个步骤,所以能满足一般变电所的需求。

由于时间仓促和自身知识的局限,导致在设计中难免有遗漏和错误之处,望读者予以批评指正。

1 原始资料分析一、设计规模1、电压等级:设计一座,高压侧35kv 、低压侧10kv 的降压变电所。

2、进出线回数:高压侧35KV ,有两回线路,线路长度为30KM ,h T 4000,8.0cos max ==ϕ;低压侧电压为10KV ,有8回出线,其中有4回出线是双回路供电,线路长度为12KM ,负荷为5MW ,另外4回出线是单回路供电,线路长度为10KM ,负荷为 4 MW ,h T 3000,8.0cos max ==ϕ。

35kV降压变电所电气设计-毕业设计

35kV降压变电所电气设计-毕业设计

目录摘要................................................................1 引言 (2)1.1 设计的原始资料 (2)1.2 设计的基本原则: (2)1.3 本设计的主要内容 (3)2主接线的设计 (4)2.1 电气主接线的概述 (4)2.2 电气主接线基本要求 (4)2.3 电气主接线设计的原则 (4)2.4 主接线的基本接线形式 (5)2.5 主接线的设计 (5)2.6 电气主接线方案的比较 (5)3 负荷计算 (7)3.1 负荷的分类 (7)3.2 10kV侧负荷的计算 (7)4 变压器的选择 (9)4.1 主变压器的选择 (9)4.1.1 变压器容量和台数的确定 (9)4.1.2 变压器型式和结构的选择 (9)4.2 所用变压器的选择 (10)5 无功补偿..........................................................5.1 无功补偿概述.................................................5.2 无功补偿计算.................................................5.3 无功补偿装置.................................................5.4 并联电容器装置的分组.........................................5.5 并联电容器的接线.............................................6 短路电流的计算....................................................6.1 产生短路的原因和短路的定义...................................6.2 电力系统的短路故障类型.......................................6.3 短路电流计算的一般原则.......................................6.4 短路电流计算的目的...........................................6.5 短路电流计算方法.............................................6.6 短路电流的计算...............................................7 高压电器的选择....................................................7.1 电器选择的一般原则...........................................7.2 高压电器的基本技术参数的选择 (19)7.3 高压电器的校验 (19)7.4 断路器的选择选择.............................................7.5 隔离开关的选择...............................................7.6 电流互感器的选择.............................................7.7 电压互感器的选择.............................................7.8 母线的选择...................................................7.9 熔断器的选择 (29)8 继电保护和主变保护的规划 ..........................................8.1 继电保护的规划...............................................8.1.1 继电保护的基本作用....................................8.1.2 继电保护的基本任务....................................8.1.3 继电保护装置的构成....................................8.1.4 对继电保护的基本要求..................................8.1.5 本设计继电保护的规划..................................8.2 变压器保护的规划.............................................8.2.1 变压器的故障类型和不正常工作状态......................8.2.2 变压器保护的配置......................................8.2.3 本设计变压器保护的整定................................9 变电所的防雷保护 ..................................................9.1 变电所防雷概述...............................................9.2 避雷针的选择.................................................9.3 避雷器的选择................................................. 参考文献 . (39)工厂35kV总降压变电所一次电路设计摘要:变电站是电力系统的重要组成部分,它直接影响整个电力系统的安全与经济运行,是联系发电厂和用户的中间环节,起着变换和分配电能的作用。

电气课程设计- 某工厂35KV降压变电所的电气设计

电气课程设计- 某工厂35KV降压变电所的电气设计

题目某工厂35KV降压变电所的电气设计学院专业名称电气工程及其自动化班级学号姓名指导教师电能是工业生产的主要动力能源,工厂供电设计的任务是从电力系统取得电源,经过合理的传输、变换、分配到工厂车间中每一个用电设备上。

工厂工业负荷是电力系统的主要用户,工厂供电系统也是电力系统的一个组成部分,保证安全供电和经济运行,不仅关系到企业的利益,也关系到电力系统的安全和经济运行以及合理利用能源。

工厂供电设计方案必须符合国家标准中的有关规定,同时必须满足安全、可靠、优质、经济的要求。

本课程设计为某工厂总降压变电所的设计,该变电所要求的电压等级分别为35kV和6kV,其负荷均为一、二级负荷,根据设计任务书的要求,本设计的主要内容包括:负荷计算及无功补偿,确定变电所的的型式,变电所的主接线方案,短路电流计算,主要用电设备选择和校验,变电所整定继电保护和防雷保护及接地装置的设计等。

关键词:工厂,总降压变电所,电气主接线,电气设备,继电保护第1章设计任务书 (5)1.1设计题目 (5)1.2设计要求 (5)1.3设计依据 (5)1.4设计任务 (6)第2章负荷计算和无功功率补偿 (8)2.2负荷计算过程 (8)2.3补偿电容器的选择 (10)第3章变压器的选择 (12)3.1变压器的型式选择 (12)3.2变压器的台数选择 (13)3.3变压器的容量选择 (13)3.4变压器接地方式 (13)3.5功率因数的校验 (14)第4章电气主接线的设计 (16)4.1电气主接线概述 (16)4.2电气主接线的设计原则和要求 (16)4.2.1电气主接线的设计原则 (16)4.2.2电气主接线设计的基本要求 (16)4.3电气主接线方案的比较 (16)第5章短路电流的计算 (20)5.1 短路电流计算概述 (20)5.1.1短路的原因 (20)5.1.2短路的危害 (20)5.1.3短路的类型 (20)5.2短路回路参数的计算 (20)5.2.1标么值 (20)5.2.2短路电流的计算 (21)第6章电气设备选择和校验 (25)6.1 高压电器选择的一般原则 (25)6.2各种电气设备的选择 (25)6.2.1支柱绝缘子 (25)6.2.3断路器 (27)6.2.4电流互感器 (29)6.2.5电压互感器 (30)6.2.6熔断器 (31)6.2.7隔离开关 (31)6.2.8接地开关 (32)6.2.9所用变 (33)6.2.10开关柜 (33)6.3变电所设备型号总结 (34)第7章导线的选择与校验 (35)7.1导线选择的基本原则 (35)7.2导线的选择与校验 (35)7.2.1母线 (35)7.2.2主变至母线的连线 (36)7.2.3 6KV侧输电线路 (37)7.3变电所线路型号总结 (40)第8章变电所的平面布置 (41)8.1 变配电所型式的选择 (41)8.2 变配电所的总体布置 (41)第9章防雷保护与接地装置的设计 (43)9.1变配电所的防雷措施 (43)9.2电力线路的防雷措施 (43)9.3防雷装置的选择 (43)9.3.1.避雷器的安装位置 (43)9.3.2避雷器的选择列表 (44)9.3.3避雷线的选择 (44)9.3.4避雷针的选择 (44)9.4 变电所公共接地装置的设计 (46)9.4.1接地电阻的要求 (46)9.4.2接地装置的设计 (46)第10章继电保护 (48)10.1继电保护的任务、基本要求 (48)10.2电力变压器的保护 (48)10.2.1电力变压器的保护配置 (48)10.2.2电力变压器的整定计算 (48)10.3 6KV线路的保护 (52)10.3.1 6KV线路的保护配置 (52)10.3.2 6KV线路保护的整定计算 (52)10.4 6KV电容器组的继电保护 (54)10.4.1电容器组的保护配置 (54)10.4.2电容器组的继电保护整定计算 (54)个人体会 (56)参考文献 (57)第1章设计任务书1.1设计题目某工厂35KV降压变电所的电气设计1.2设计要求要求根据本厂所能取得的电源及本厂用电负荷的实际情况,按照安全可靠、技术先进、经济合理的要求,确定变电所主变压器的台数与容量、类型,选择变电所主接线方案及电气设备和进出线,确定二次回路方案,选择整定继电保护装置,确定防雷和接地装置,最后按要求写出设计说明书,绘出设计图样。

35kV变电所电气部分设计

35kV变电所电气部分设计

引言变电所是电力系统的重要组成部分,它直接影响整个电力系统的安全与经济运行,是联系发电厂和用户的中间环节,起着变换和分配电能的作用。

电气主接线是发电厂变电所的主要环节,电气主接线的拟定直接关系着全厂(所)电气设备的选择、配电装置的布置、继电保护和自动装置的确定,是变电站电气部分投资大小的决定性因素。

一个典型的变电站要求变电设备运行可靠、操作灵活、经济合理、扩建方便。

出于这几方面的考虑,本论文设计了一个35kV降压变电站,此变电站有两个电压等级,一个是35kV,一个是10kV。

同时对于变电站内的主设备进行合理的选型。

本设计选择选择两台主变压器,其他设备如断路器,隔离开关,电流互感器,电压互感器,无功补偿装置和继电保护装置等等也按照具体要求进行选型、设计和配置,力求做到运行可靠,操作简单、方便,经济合理,具有扩建的可能性和改变运行方式时的灵活性。

使其更加贴1 设计任务书1.1 设计内容要求设计一35KV/10KV降压变电所的电气部分1.2 原始资料1、所设计的35KV/10KV降压变电所为企业变电所,一次设计并建成。

2、距本变电所6.17KM 处有一系统变电所,该所与本所以双回线路相连接,该系统变电所在该所高压母线上的短路容量为600MVA。

3、待设计的变电所10KV无电源,4、负荷情况:本变电所10KV侧共向8个车间的负荷供电,其中一类负荷占25%,其余为二类负荷。

一、二类负荷共计6000KW。

5、本变电所的自用负荷约78KVA。

6、环境条件年最高气温:40℃最高月平均气温:34℃年最低气温:-4℃地震烈度:7度以上年平均雷电日:90天海拔高度:75M7、一些负荷参数的取值:a.负荷功率因数均取cosφ=0.85b.负荷同期率 Kt=0.9c.年最大负荷利用小时数Tmax=4000小时/年d.各电压等级的出线回路数在设计中根据实际需要来决定。

各电压等级是否预备用线路请自行考虑决定。

1.3 设计任务1、设计本变电所的主电路,论证设计方案是最佳方案,选址主变压器的容量和台数。

35KV降压变电所

35KV降压变电所

1 .原始资料剖析(1)变电站种类:35KV 厂用降压变电所。

(2)电压等级:35KV/10KV(3)设计规划容量:依据电力系统的规划需要安装两台容量为8000kVA 、电压为35kV/10kV 的主变压器。

距离待设计变电站6KM 处有一系统变电站,用35KV 双回架空线路向该变电所供电,以10KV 电缆给各车间供电。

该变电所的高压部分为二进二出回路,低压部分为二进八出回路,同时考虑此后装设两组电容器要预留两个出线间隔,故10KV 回路应起码设有10回出线。

待设计变电站10KV 侧无电源。

系统状况(1)35kv 侧基准值: S B =100MVA U B1=37KVΩ====×==69.131003756.1373100322221111B B B B B B S U Z KA U S I(2)10kV 侧基准值:S B =100MVA U B2=10.5KVΩ====×==1025.11005.105.55.103100322222122B B B B B B S U Z KA U S I(3)线路参数:35kv 线路为 LGJ-120,其参数为r 1Ω/kmX 1Ω/km436.0348.0236.02221211=+=+=x r z Ω/kmZ=z 1*Ω 318.069.1336.41*===B Z Z Z(1)10 kV 母线同意最低的功率因数不低于0.9。

(2)在最大运转方式下,待设计变电站高压母线上的短路功率为1000MVA 。

(3)LGJ —Ω/km(4)最大负荷利用小时数Tmax=4000h环境条件℃,土壤电阻率ρ≤500Ω•m 。

∑∑=+++++++==+++++++=)(3910700530320300500580500480)(7740950750140095010008507401100KW Q KW P )(8671391077402222KVA Q P S =+=+=∑∑2.2 变电站变压器台数的选择原则(1)关于只供应二类、三类负荷的变电站,原则上只装设一台变压器。

110-35kv降压变电所电气一次部分设计

110-35kv降压变电所电气一次部分设计

从以上校验可知断路器满足使用要求,故确定选用 SW2—35
II/1500 型少油断路器。
(3)断路器配用 CD3—XG II 型弹簧操作机构。
6.2 隔离开关的选择
6.2.1 110kV 侧隔离开关的选择 1)根据配电装置的要求,选择隔离开关带接地刀闸。 2)该隔离开关安装在户外,故选择户外式。 3)该回路额定电压为 110kV,因此所选的隔离开关额定电压
(3)、对于其它发电机侧电源 XΣ*=1/4(Xd+XT2+XL) =0.649
Xca*=XΣ* =0.649×(60/0.8)/100=0.517 查短路电流运算曲线[(一) t=0],得 I”*=2.0
I”G2=I”*
=2.0×(60/0.8)/(1.732×37)=2.341(kA)
短路冲击电流:iM3=2.55 I”G=2.55×2.341=5.970(kA)
Ue≥ 110kV,且隔离开关的额定电流大于流过断路器的最大持续电流 ImaX=1.05×(60/0.8)/(1.732×115)=0.395(kA)
4)初 GW4—110D 型单接地高压隔离开关其主要技术参数如 下:
型号
额定 电压 kV
额定 最大工作 接地
电流 电压 刀闸
kA
kV
A
极限通过电流 kA 有效值 峰值
4S 热稳 定电流
kA
备注
GW4-110D 110 1250 126 2000
32
5)校验所选的隔离开关
55
10 双接地
ห้องสมุดไป่ตู้
(1)动稳定校验
动稳定电流等于极限通过电流峰值即 idw = 55kA
流过该断路器的短路冲击电流 iM = 4.508 kA.s
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

35KV降压变电所设计方案第一篇任务书一、设计要求1、建立工程设计的正确观点,掌握电力系统设计基本原则和方法。

2、培养独立思考、解决问题的能力。

3、学习使用工程设计手册和其他参考书的能力,学习撰写工程设计说明书。

二、原始资料1、某国营企业为保证供电需求,要求设计一座35KV降压变电所,以10KV电缆给各车间供电,一次设计并建成。

2、距本变电所6Km处有一系统变电所,由该变电所用35KV双回路架空线路向待定设计的变电所供电,在最大运行方式下,待设计的变电所高压母线上的短路功率为1000MVA 。

3、待设计的变电所10KV无电源,考虑以后装设的组电容器,提高功率因素,故要求预留两个间隔。

4、本变电所10KV母线到各个车间均用电缆供电,其中一车间和二车间为一类负荷,其余为二类负荷,Tmax=4000h ,各馈线负荷如表1—1序号车间名称计算用有功功率(kw)计算用无功功率(kvar)1 一车间 1046 4712 二车间 735 4873 机械车间 808 5724 装配车间 1000 4915 锻工车间 920 2766 高压站 1350 2977 高压泵房 737 4968 其他 931 675 5、所用电的主要负荷见表1—2序号车间名称额定容量(KW)功率因素(cos )安装台数工作台数备注1 主充电机20 0.88 1 1 周期性负荷2 浮充电机 4.5 0.85 1 1 经常性负荷3 蓄电池室通风2.7 0.88 1 1 经常性负荷4 室装配装置通风110.79 2 2 周期性负荷5 交流焊机10.5 0.5 1 1 周期性负荷6、环境条件1)当地最热月平均最高温度29.9°c,极端最低温度-5.9°c,最热月地面0.8m处土壤平均26.7°c ,电缆出线净距100mm。

2)当地海拔高度507.4m。

雷暴日数36.9日/年:无空气污染,变电所地处在P≤500m·Ω的黄土上。

三、设计任务1、设计本变电所的主电路,论证设计方案是最佳方案,选址主变压器的容量和台数。

2、设计本变电所的自用电路,选择自用变压器的容量和台数。

3、计算短路电流。

4、选择导体及电气设备。

四、设计成果1、设计说明书和计算书各一份2、主电路和所用电路图各一份第二篇说明书第一章概述一、设计依据根据设计任务书给出的条件。

二、设计原则1、要遵守国家的法律、法规,贯彻执行国家经济建设的方针、政策和基本建设程序,特别是应贯彻执行提高综合经济效益和促进技术进步的方针。

2、要根据国家规、标准与有关规定,结合工程的不同性质不同要求,要实行资源的综合利用,要节约能源、水源,要保护环境,要节约用地并合理使用劳动力,要立足于自力更生。

三、变电站建设的必要性及规模1、变电站建设的必要性为了加强企业供电可靠性,减少线路损耗,适应日益增长的负荷发展需要,35KV变电所的选址于距离一电力系统变电所6KV处,其近邻工厂,其主要供电对象是企业的各个车间,这样设计减小了供电半径,供电线损大幅下降,供电量增加,适应现代化建设与发展的需要,有利于企业的经济发展2、本工程建设规模2.1、企业变电站为35kV/10kv降压变电站,该变电站为无人职守的综合自动化站,容量为2*6300千伏安,企业变电站安装两台S7-6300/35主变压器,35kV为单母线接线。

2.2、企业变电站选址在企业附近,地势平缓,海拔高度507.4m,气象条件见《任务书》的环境条件。

10kV采用屋配电装置,架空出线,10kV 电空器室外布置。

第二章主接线设计方案第一节主接线的设计原则一、主接线的设计依据1、负荷大小的重要性2、系统备用容量大小2.1运行备用容量不宜少于8-10%,以适应负荷突变,机组检修和事故停运等情况的调频需要。

2.2装有两台及以上的变压器的变电所,当其中一台事故断开时,其余主变压器的容量应保证该变电所60%~70%的全部负荷,在计及过负荷能力后的允许时间,应保证车间的一、二级负荷供电。

二、主接线的基本要求电气主接线应满足可靠性、灵活性、经济性三项基本要求,其具体要求如下:1、可靠性供电可靠性是电力生产和分配的首要要求。

1.1 断路器检修时,不宜影响供电。

1.2 线路、断路器或母线或母线隔离开关检修时,尽量减少停运出线回数及停运时间,并能保证对一级负荷及全部及大部分二级负荷的供电。

1.3 尽量避免发电厂、变电所全部停运的可能性。

1.4 大机组超高压电气主接线应满足可靠性的特殊要求。

2、灵活性主接线应满足在调度,检修及扩建时的灵活要求2.1 调度时,应可以灵活地投入和切除电源、变压器和线路,调配电源和负荷,满足系统在事故运行方式,检修运行方式以及特殊运行方式以及特殊运行方式下的系统调度要求。

2.2 检修时,可以方便地停运断路器、母线及其继电保护设备,进行安全检修而不致影响电力网的运行和对车间的供电。

2.3 扩建时,可以容易地从初期接线过渡到最终接线。

在不影响连续供电或停运时间最短的情况下,投入新装机组,变压器或线路而不互相干扰,并且对一次和二次部分的改建工作最少。

3、经济性主接线满足可靠,灵活性要求的前提下做到经济合理。

3.1 主接线应力求简单,经节省断路器、隔离开关、电流和电压互感器、避雷器等一次设备。

3.2 要能使继电保护和二次回路不过于复杂,以节省二次设备和控制电缆。

3.3 要能限制短路电流,以便于选择价廉的电气设备或轻型电器。

3.4 如能满足系统的安全运行及继电保护要求,35kV及其以下终端或分支变电所可采用简易电器。

3.5 占地面积少:主接线设计要为配电装置布置创造条件,尽量使占地面积减少。

3.6 电能损失少:经济合理地选择主变压器的种类(双绕组、三绕组或自耦变压器)、容量、数量,要避免因两次变压而增加的电能损失。

第二节主接线的设计和论证依据变电站的性质可选择单母线接线、单母线分段接线、外桥型接线、桥型接线、四种主接线方案,下面逐一论证其接线的得弊。

一、单母线接线优点:1、接线简单清晰、设备少、操作方便。

2、便于扩建和采用成套配电装置缺点:1、不够灵活可靠,任一元件(母线及母线隔离开关等)故障或检修均需使整个配电装置停电。

2、单母线可用隔离开关分段,但当一段母线故障时,全部回路仍需停电,在用隔离开关将故障的母线分开后才能恢复非故障段的供电。

适用围:一般用于6-220kV系统中,出线回路较少,对供电可靠性要求不高的中、小型发电厂与变电站中。

二、单母线分段接线1、用隔离开关分段的单母线接线这种界限实际上仍属不分段的单母线接线,只是将单母线截成两个分段,其间用分段隔离开关连接起来。

这样做的好处是两段母线可以轮流检修,缩小了检修母线时的停电围,即检修任一段母线时,只需断开与该段母线连接的引出线和电源回路拉开分段隔离开关,另一段母线仍可继续运行。

但是,若两个电源取并列运行方式,则当某段母线故障时,所有电源开关都将自动跳闸,全部装置仍需短时停电,需待用分段隔离开关将故障的母线段分开后才能恢复非故障母线段的供电。

可见,采用隔离开关分段的单母线接线较之不分段的单母线,可以缩小母线检修或故障时的停电围。

2、用断路器分段的单母线接线用隔离开关奋斗的单母线接线,虽然可以缩小母线检修或故障时的停电围,但当母线故障时,仍会短时全停电,需待分段隔离开关拉开后,才能恢复非故障母线段的运行,这对于重要用户而言是不允许的。

如采用断路器分段的单母线接线,并将重要用户采用分别接于不同母线段的双回路供电,足可以克服上诉缺点。

对用断路器分段的单母线的评价为:1)优点:a.具有单母线接线简单、清晰、方便、经济、安全等优点。

b.较之不分段的单母线供电可靠性高,母线或母线隔离开关检修或故障时的停电围缩小了一半。

与用隔离开关分段的单母线接线相比,母线或母线隔离开关短路时,非故障母线段可以实现完全不停电,而后者则需短时停电。

c.运行比较灵活。

分段断路器可以接通运行,也可断开运行。

d.可采用双回线路对重要用户供电。

方法是将双回路分别接引在不同分段母线上。

2)缺点:a.任一分段母线或母线隔离开关检修或故障时,连接在该分段母线上的所有进出回路都要停止工作,这对于容量大、出线回路数较多的配电装置仍是严重的缺点。

b.检修任一电源或出线断路器时,该回路必须停电。

这对于电压等级高的配电装置也是严要缺点。

因为电压等级高的断路器检修时间较长,对用户影响甚大。

3、单母线分段带旁路母线的接线为了在检修线路断路器时,不中断对该线路的供电,可以增设旁路设施,包括旁路开关电器和旁路母线。

这种接线不宜用于进出线回路多的情况下使用。

单母线分段接线,虽然缩小了母线或母线隔离开关检修或故障时的停电围,在一定程度上提高了供电可靠性,但在母线或母线隔离开关检修期间,连接在该段母线上的所有回路都将长时间停电,这一缺点,对于重要的变电站和用户是不允许的。

三、双母线接线为了克服上述单母线分段接线的缺点,发展了双母线接线。

按每一回路所连接的断路器数目不同,双母线接线有单断路器双母线接线、双断路器双母线接线、一台半断路器接线(因两个回路共用三台断路器,又称二分之三接线)三种基本形式。

后两种又称双重连接的接线,意即一个回路与两台断路器相连接,在超高压配电装置中被日益广泛地采用。

1、单断路器双母线接线:单断路器双母线接线器是双母线接线中最基本的接线形式。

它具有两组结构相同的母线,每一回路都经一台断路器、两组隔离开关分别连接到两组母线上,两组母线之间通过母联断路器来实现联络。

双母线接线有两种运行方式,一种运行方式是一组母线工作,一组母线备用,母联断路器在正常运行时是断开的;另一种运行方式是两组母线同时工作,母联断路器在正常运行时是接通的,这时每一回路都固定连接于某一组母线上运行,故亦称固定连接运行方式。

这两种运行方式在供电可靠性方面有所差异,当母线短路时,前者将短时全部停电;后者母线继电保护动作,只断开故障母线上电源回路的断路器和母联断路器,并不会使另一组母线中断工作。

单断路器双母线接线具有以下优缺点:1)单断路器双母线接线的优点:双母线接线有更高的可靠性,表现在以下几方面:a.检修任一段母线时,可不中断供电,即通过倒闸操作将进出线回路都切换至其中一组母线上工作,便可检修另一组母线。

b.检修任一母线隔离开关时,只需停运该回路。

c.母线发生故障后,能迅速恢复供电。

d.线路断路器"拒动"时或不允许操作时,可经一定的操作顺序使母联断路器串入该线路代替线路断路器工作,而后用母联断路器切除核线路。

e.检修任一回路断路时,可用装接“跨条”的方法,避免该线路长期停电。

f.便于试验。

在个别回路需要单独进行试验时,可将谅回路单独接至一组母线上隔离起来进行。

g.调度灵活。

各个电源和出线可以任意分配到某一组母线上,因而可以灵活地适应系统中各种运行方式的调度和潮流变化。

相关文档
最新文档