七下数学复习题 及答案
新人教版七年级数学(下册)期末复习卷及答案

新人教版七年级数学(下册)期末复习卷及答案 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.若()286m n a b a b =,那么22m n -的值是 ( ) A .10 B .52 C .20 D .322.下列图形中,不是轴对称图形的是( )A .B .C .D .3.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x 名工人生产螺钉,则下面所列方程正确的是( )A .2×1000(26﹣x )=800xB .1000(13﹣x )=800xC .1000(26﹣x )=2×800xD .1000(26﹣x )=800x4.已知5x =3,5y =2,则52x ﹣3y =( )A .34B .1C .23D .985.已知x 是整数,当30x -取最小值时,x 的值是( )A .5B .6C .7D .86.如图,在△ABC 中,∠ABC ,∠ACB 的平分线BE ,CD 相交于点F ,∠ABC =42°,∠A =60°,则∠BFC 的度数为( )A .118°B .119°C .120°D .121°7.把1aa-根号外的因式移入根号内的结果是()A.a-B.a--C.a D.a-8.6的相反数为()A.-6 B.6 C.16-D.169.如图,在△ABC中,AB=AC,D是BC的中点,AC的垂直平分线交AC,AD,AB于点E,O,F,则图中全等三角形的对数是()A.1对B.2对C.3对D.4对10.如图,在菱形ABCD中,AC=62,BD=6,E是BC边的中点,P,M分别是AC,AB上的动点,连接PE,PM,则PE+PM的最小值是()A.6 B.33 C.26 D.4.5二、填空题(本大题共6小题,每小题3分,共18分)1.27-的立方根是________.2.如图,将三个同样的正方形的一个顶点重合放置,那么1∠的度数为__________.3.有4根细木棒,长度分别为2cm、3cm、4cm、5cm,从中任选3根,恰好能搭成一个三角形的概率是__________.4.同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数解析式是y =95x +32.若某一温度的摄氏度数值与华氏度数值恰好相等,则此温度的摄氏度数为__ ______℃.5.如图,AD ∥BC ,∠D=100°,CA 平分∠BCD ,则∠DAC=________度.6.已知|x|=3,则x 的值是________.三、解答题(本大题共6小题,共72分)1.求满足不等式组()32813 1322x x x x ⎧--≤⎪⎨--⎪⎩<的所有整数解.2.已知关于x 的方程23x m m x -=+与12x +=3x ﹣2的解互为倒数,求m 的值.3.如图是一块长方形的空地,长为x 米,宽为120米,现在它分成甲、乙、丙三部分,其中甲和乙是正方形形状.(1)乙地的边长为 ;(用含x 的代数式表示)(2)若设丙地的面积为S 平方米,求出S 与x 的关系式;(3)当200x =时,求S 的值.4.如图,∠1=∠ACB,∠2=∠3,求证:∠BDC+∠DGF=180°.5.“大美湿地,水韵盐城”.某校数学兴趣小组就“最想去的盐城市旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,下面是根据调查结果进行数据整理后绘制出的不完整的统计图:请根据图中提供的信息,解答下列问题:(1)求被调查的学生总人数;(2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;(3)若该校共有800名学生,请估计“最想去景点B“的学生人数.6.某农产品生产基地收获红薯192吨,准备运给甲、乙两地的承包商进行包销.该基地用大、小两种货车共18辆恰好能一次性运完这批红薯,已知这两种货车的载重量分别为14吨/吨和8吨/辆,运往甲、乙两地的运费如下表:车型运费(1)求这两种货车各用多少辆;(2)如果安排10辆货车前往甲地,其余货车前往乙地,其中前往甲地的大货车为a辆,总运费为w元,求w关于a的函数关系式;(3)在(2)的条件下,若甲地的承包商包销的红薯不少于96吨,请你设计出使总运费最低的货车调配方案,并求出最低总运费.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、A3、C4、D5、A6、C7、B8、A9、D10、C二、填空题(本大题共6小题,每小题3分,共18分)1、-3.2、20°.3、344、-405、40°6、±3三、解答题(本大题共6小题,共72分)1、不等式组的解集:-1≤x <2,整数解为:-1,0,1.2、353、(1)(0)12x -米 (2)(120)(240)S x x =-- (3)32004、略5、(1)40;(2)72;(3)280.6、(1)大货车用8辆,小货车用10辆;(2)w=70a+11400(0≤a ≤8且为整数);(3)使总运费最少的调配方案是:3辆大货车、7辆小货车前往甲地;5辆大货车、3辆小货车前往乙地.最少运费为11610元.。
人教版七年级数学下册期末复习题(含答案)

人教版七年级数学下册期末复习题(含答案)一、选择题1.如图所示,下列结论中正确的是( )A .1∠和2∠是同位角B .2∠和3∠是同旁内角C .1∠和4∠是内错角D .3∠和4∠是对顶角 2.北京2022年冬奥会会徽是以汉字“冬”为灵感来源设计的.在下面如图的四个图中,能由如图经过平移得到的是( )A .B .C .D . 3.平面直角坐标系中,点(a 2+1,2020)所在象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 4.下列四个命题:①两条直线相交,若对顶角互补,则这两条直线互相垂直;②两条直线被第三条直线所截,内错角相等;③如果两条直线都与第三条直线平行,那么这两条直线也互相平行;④经过直线外一点,有且只有一条直线与已知直线平行.其中是真命题的个数是( )A .1B .2C .3D .45.如图,直线AB ,CD 被直线ED 所截,//AB CD ,1140∠=︒,则D ∠的度数为( ).A .40°B .60°C .45°D .70°6.对于有理数a .b ,定义min {a ,b }的含义为:当a <b 时,min {a ,b }=a ,当b <a 时,min {a ,b }=b .例如:min {1,﹣2}=﹣2,已知min 30a }=a ,min 30b }30a 和b 为两个连续正整数,则a ﹣b 的立方根为( )A .﹣1B .1C .﹣2D .27.在同一个平面内,A ∠为50°,B 的两边分别与A ∠的两边平行,则B 的度数为( ).A .50°B .40°或130°C .50°或130°D .40°8.如图,一个蒲公英种子从平面直角坐标系的原点O 出发,向正东走3米到达点1A ,再向正北方向走6米到达点2A ,再向正西方向走9米到达点3A ,再向正南方向走12米到达点4A ,再向正东方向走15米到达点5A ,以此规律走下去,当蒲公英种子到达点10A 时,它在坐标系中坐标为( )A .(12,12)--B .(15,18)C .(15,12)-D .(15,18)-九、填空题9.0.0081的算术平方根是______十、填空题10.已知点P (3,﹣1),则点P 关于x 轴对称的点Q _____.十一、填空题11.在△ABC 中,AD 为高线,AE 为角平分线,当∠B=40º,∠ACD=60º,∠EAD 的度数为_________.十二、填空题12.如图,将一块三角板的直角顶点放在直尺的一边上,当∠2=54º时,∠1=______.十三、填空题13.如图,将四边形纸片ABCD 沿MN 折叠,点A 、D 分别落在点A 1、D 1处.若∠1+∠2=130°,则∠B +∠C =___°.十四、填空题14.a 是不为2的有理数,我们把2称为a 的“文峰数”如:3的“文峰数”是2223=--,-2的“文峰数”是()21222=--,已知a 1=3,a 2是a 1的“文峰数”, a 3是a 2的“文峰数”, a 4是a 3的“文峰数”,……,以此类推,则a 2020=______十五、填空题15.如果点P (m +3,m ﹣2)在x 轴上,那么m =_____.十六、填空题16.在平面直角坐标系中,点(,)P x y 经过某种变换后得到点(1,2)P y x '-++,我们把点(1,2)P y x '-++叫做点(,)P x y 的终结点已知点1P 的终结点为2P 点2P 的终结点为3P ,点3P 的终结点为4P ,这样依次得到1234,,,,,,n P P P P P ⋯⋯,若点1P 的坐标为(2,0),则点2021P 的坐标为____十七、解答题17.计算下列各式的值:(1)|–2|–3–8 + (–1)2021;(2)()2133+3––6⎛⎫ ⎪⎝⎭. 十八、解答题18.求下列各式中x 的值:(1)(x +1)3﹣27=0(2)(2x ﹣1)2﹣25=0十九、解答题19.如图,已知∠AED =∠C ,∠DEF =∠B ,试说明∠EFG +∠BDG =180∘,请完成下列填空:∵∠AED =∠C (_________)∴ED ∥BC (_________)∴∠DEF =∠EHC (___________)∵∠DEF =∠B (已知)∴_______(等量代换)∴BD ∥EH (同位角相等,两直线平行)∴∠BDG =∠DFE (两直线平行,内错角相等)∵_________________(邻补角的意义)∴∠EFG +∠BDG =180∘(___________)二十、解答题20.如图,三角形ABC在平面直角坐标系中,(1)请写出三角形ABC各点的坐标;(2)将三角形ABC经过平移后得到三角形A1B1C1,若三角形ABC中任意一点M(a,b)与三角形A1B1C1的对应点的坐标为M1(a-1,b+2),写出A1B1C1的坐标,并画出平移后的图形;(3)求出三角形ABC的面积.二十一、解答题21.已知:a是815-的小数部分.+的小数部分,b是815(1)求a、b的值;(2)求4a+4b+5的平方根.二十二、解答题22.如图是一块正方形纸片.(1)如图1,若正方形纸片的面积为1dm2,则此正方形的对角线AC的长为dm.(2)若一圆的面积与这个正方形的面积都是2πcm2,设圆的周长为C圆,正方形的周长为C正,则C圆C正(填“=”或“<”或“>”号)(3)如图2,若正方形的面积为16cm2,李明同学想沿这块正方形边的方向裁出一块面积为12cm2的长方形纸片,使它的长和宽之比为3:2,他能裁出吗?请说明理由?二十三、解答题23.已知,AB ∥CD ,点E 在CD 上,点G ,F 在AB 上,点H 在AB ,CD 之间,连接FE ,EH ,HG ,∠AGH =∠FED ,FE ⊥HE ,垂足为E .(1)如图1,求证:HG ⊥HE ;(2)如图2,GM 平分∠HGB ,EM 平分∠HED ,GM ,EM 交于点M ,求证:∠GHE =2∠GME ;(3)如图3,在(2)的条件下,FK 平分∠AFE 交CD 于点K ,若∠KFE :∠MGH =13:5,求∠HED 的度数.二十四、解答题24.综合与探究综合与实践课上,同学们以“一个含30角的直角三角尺和两条平行线”为背景开展数学活动,如图,已知两直线a ,b ,且//a b ,三角形ABC 是直角三角形,90BCA ∠=︒,30BAC ∠=︒,60ABC ∠=︒操作发现:(1)如图1.148∠=︒,求2∠的度数;(2)如图2.创新小组的同学把直线a 向上平移,并把2∠的位置改变,发现21120∠-∠=︒,请说明理由.实践探究:(3)填密小组在创新小组发现的结论的基础上,将图2中的图形继续变化得到图3,AC 平分BAM ∠,此时发现1∠与2∠又存在新的数量关系,请写出1∠与2∠的数量关系并说明理由.二十五、解答题25.解读基础:(1)图1形似燕尾,我们称之为“燕尾形”,请写出A ∠、B 、C ∠、D ∠之间的关系,并说明理由;(2)图2形似8字,我们称之为“八字形”,请写出A ∠、B 、C ∠、D ∠之间的关系,并说明理由:应用乐园:直接运用上述两个结论解答下列各题(3)①如图3,在ABC ∆中,BD 、CD 分别平分ABC ∠和ACB ∠,请直接写出A ∠和D ∠的关系 ;②如图4,A B C D E F ∠+∠+∠+∠+∠+∠= .(4)如图5,BAC ∠与BDC ∠的角平分线相交于点F ,GDC ∠与CAF ∠的角平分线相交于点E ,已知26B ∠=︒,54C ∠=︒,求F ∠和E ∠的度数.【参考答案】一、选择题1.B解析:B【分析】根据同位角,内错角,同旁内角以及对顶角的定义进行解答.【详解】解:A 、∠1和∠2是同旁内角,故本选项错误;B 、∠2和∠3是同旁内角,故本选项正确;C 、∠1和∠4是同位角,故本选项错误;D 、∠3和∠4是邻补角,故本选项错误;故选:B .【点睛】本题考查了同位角,内错角,同旁内角以及对顶角的定义.解答此类题确定三线八角是关键,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义.2.C【分析】根据平移只改变图形的位置,不改变图形的形状与大小解答.【详解】解:观察各选项图形只改变图形的位置,不改变图形的形状与大小可知,A.是旋转180°后图形,故选项A不合题意;B.是解析:C【分析】根据平移只改变图形的位置,不改变图形的形状与大小解答.【详解】解:观察各选项图形只改变图形的位置,不改变图形的形状与大小可知,A.是旋转180°后图形,故选项A不合题意;B.是轴对称图形,故选项B不合题意;C.选项的图案可以通过平移得到.故选项C符合题意;D.是轴对称图形,故选项D不符合题意.故选:C.【点睛】本题考查了图形的平移,掌握平移的定义及性质是解题的关键.3.A【分析】根据点的横纵坐标的正负判断即可.【详解】解:因为a2+1≥1,所以点(a2+1,2020)所在象限是第一象限.故选:A.【点睛】本题主要考查点所在的象限,掌握每个象限内点的横纵坐标的正负是关键.4.C【分析】根据对顶角的性质和垂直的定义判断①;根据内错角相等的判定方法判定②;根据平行线的判定对③进行判断;根据经过直线外一点,有且只有一条直线与已知直线平行判断④即可【详解】解:两条直线相交,若对顶角互补,则这两条直线互相垂直,所以①正确;两条互相平行的直线被第三条直线所截,内错角相等;,所以②错误;如果两条直线都与第三条直线平行,那么这两条直线也互相平行,所以③正确;经过直线外一点,有且只有一条直线与已知直线平行,所以④正确.故选:C.【点睛】本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题,熟练掌握相关性质是解题的关键.5.A【分析】根据平行线的性质得出∠2=∠D,进而利用邻补角得出答案即可.【详解】解:如图,∵AB∥CD,∴∠2=∠D,∵∠1=140°,∴∠D=∠2=180°−∠1=180°−140°=40°,故选:A.【点睛】此题考查平行线的性质,关键是根据两直线平行,内错角相等解答.6.A【分析】根据a,b的范围即可求出a−b的立方根.【详解】解:根据题意得:a30b30∵25<30<36,∴5306,∵a和b为两个连续正整数,∴a=5,b=6,∴a﹣b=﹣1,∴﹣1的立方根是﹣1,故选:A.【点睛】本题考查用新定义解决数学问题及无理数的估计,立方根的求法,正确理解新定义是求解本题的关键.7.C【分析】如图,分两种情况进行讨论求解即可.【详解】解:①如图所示,AC∥BF,AD∥BE,∴∠A=∠FOD,∠B=∠FOD,∴∠B=∠A=50°;②如图所示,AC∥BF,AD∥BE,∴∠A=∠BOD,∠B+∠BOD=180°,∴∠B+∠A=180°,∴∠B=130°,故选C.【点睛】本题主要考查了平行线的性质,解题的关键在于能够熟练掌握相关知识进行求解.8.B【分析】由题意可知:OA1=3;A1A2=3×2;A2A3=3×3;可得规律:An﹣1An=3n,根据规律可得到A9A10=3×10=30,进而求得A10的横纵坐标.【详解】解:根据题意可解析:B【分析】由题意可知:OA1=3;A1A2=3×2;A2A3=3×3;可得规律:A n﹣1A n=3n,根据规律可得到A9A10=3×10=30,进而求得A10的横纵坐标.【详解】解:根据题意可知:OA1=3,A1A2=6,A2A3=9,A3A4=12,A4A5=15,A5A6=18•••,A9A10=30,∴A1点坐标为(3,0),A2点坐标为(3,6),A3点坐标为(﹣6,6),A4点坐标为(﹣6,﹣6),A5点坐标为(9,﹣6),A6点坐标为(9,12),以此类推,A9点坐标为(15,﹣12),所以A10点横坐标为15,纵坐标为﹣12+30=18,∴A10点坐标为(15,18),故选:B.【点睛】本题主要考查了坐标确定位置的运用,解题的关键是发现规律,利用规律解决问题,解题时注意:各象限内点P(a,b)的坐标特征为:①第一象限:a>0,b>0;②第二象限:a<0,b>0;③第三象限:a<0,b<0;④第四象限:a>0,b<0.九、填空题9.3【分析】根据算术平方根的性质解答即可.【详解】解:,0.09的算术平方根是0.3.故答案为:0.3.【点睛】本题考查了算术平方根,解题的关键是化简后再求算术平方根.解析:3【分析】根据算术平方根的性质解答即可.【详解】,0.090.09的算术平方根是0.3.故答案为:0.3.【点睛】本题考查了算术平方根,解题的关键是化简后再求算术平方根.十、填空题10.(3,1)【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答即可.【详解】解:∵点P(3,﹣1)∴点P关于x轴对称的点Q(3,1)故答案为(3,1).【点睛】本题主要解析:(3,1)【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答即可.【详解】解:∵点P(3,﹣1)∴点P关于x轴对称的点Q(3,1)故答案为(3,1).【点睛】本题主要考查了平面直角坐标系点关于坐标轴的对称关系,熟记对称的特点是解题的关键.十一、填空题11.10°或40°;【分析】首先根据三角形的内角和定理求得∠BAC,再根据角平分线的定义求得∠BAE,再根据三角形的一个外角等于和它不相邻的两个内角和求得∠AED,最后根据直角三角形的两个锐角互余即解析:10°或40°;【分析】首先根据三角形的内角和定理求得∠BAC,再根据角平分线的定义求得∠BAE,再根据三角形的一个外角等于和它不相邻的两个内角和求得∠AED,最后根据直角三角形的两个锐角互余即可求解.【详解】解:当高AD在△ABC的内部时.∵∠B=40°,∠C=60°,∴∠BAC=180°-40°-60°=80°,∵AE平分∠BAC,∴∠BAE=1∠BAC=40°,2∵AD⊥BC,∴∠BDA=90°,∴∠BAD=90°-∠B=50°,∴∠EAD=∠BAD-∠BAE=50°-40°=10°.当高AD在△ABC的外部时.同法可得∠EAD=10°+30°=40°故答案为10°或40°.【点睛】此题考查三角形内角和定理,角平分线的定义,三角形的外角性质,解题关键在于求出∠BAE的度数十二、填空题12.36°【分析】如图,根据平行线的性质可得∠3=∠2,然后根据平角的定义解答即可.【详解】解:如图,∵三角尺的两边a∥b,∴∠3=∠2=54º,∴∠1=180°-90°-∠3=36°.故解析:36°【分析】如图,根据平行线的性质可得∠3=∠2,然后根据平角的定义解答即可.【详解】解:如图,∵三角尺的两边a∥b,∴∠3=∠2=54º,∴∠1=180°-90°-∠3=36°.故答案为:36°.【点睛】本题以三角板为载体,主要考查了平行线的性质和和平角的定义,属于基础题型,熟练掌握平行线的性质是解题关键.十三、填空题13.115【分析】先根据∠1+∠2=130°得出∠AMN+∠DNM 的度数,再由四边形内角和定理即可得出结论.【详解】解:∵∠1+∠2=130°,∴∠AMN+∠DNM= =115°.∵∠A+∠解析:115【分析】先根据∠1+∠2=130°得出∠AMN +∠DNM 的度数,再由四边形内角和定理即可得出结论.【详解】解:∵∠1+∠2=130°,∴∠AMN +∠DNM =3601302︒-︒ =115°. ∵∠A +∠D +(∠AMN +∠DNM )=360°,∠A +∠D +(∠B +∠C )=360°,∴∠B +∠C =∠AMN +∠DNM =115°.故答案为:115.【点睛】本题考查的是翻折变换,熟知图形翻折不变性的性质是解答此题的关键.十四、填空题14..【分析】先根据题意求得、、、,发现规律即可求解.【详解】解:∵a1=3∴,,,,∴该数列为每4个数为一周期循环,∵∴a2020=.故答案为:.【点睛】此题主要考查规律的探索, 解析:43. 【分析】先根据题意求得2a、3a、4a、5a,发现规律即可求解.【详解】解:∵a1=3∴222 23a==--,()321222a==--,4241322a==-,523423a==-,∴该数列为每4个数为一周期循环,∵20204505÷=∴a2020=44 3a=.故答案为:43.【点睛】此题主要考查规律的探索,解题的关键是根据题意发现规律.十五、填空题15.【分析】根据x轴上的点的纵坐标等于0列式计算即可得解.【详解】∵点P(m+3,m﹣2)在x轴上,∴m﹣2=0,解得m=2.故答案为:2.【点睛】此题考查点的坐标,熟记x轴上的点的纵解析:【分析】根据x轴上的点的纵坐标等于0列式计算即可得解.【详解】∵点P(m+3,m﹣2)在x轴上,∴m﹣2=0,解得m=2.故答案为:2.【点睛】此题考查点的坐标,熟记x轴上的点的纵坐标等于0是解题的关键.十六、填空题16.【分析】利用点P(x,y)的终结点的定义分别写出点P2的坐标为(1,4),点P3的坐标为(−3,3),点P4的坐标为(−2,−1),点P5的坐标为(2,0),…,从而得到每4次变换一个循环,然后解析:(2,0)【分析】利用点P (x ,y )的终结点的定义分别写出点P 2的坐标为(1,4),点P 3的坐标为(−3,3),点P 4的坐标为(−2,−1),点P 5的坐标为(2,0),…,从而得到每4次变换一个循环,然后利用2021=4×505+1可判断点P 2021的坐标与点P 1的坐标相同.【详解】解:根据题意得点P 1的坐标为(2,0),则点P 2的坐标为(1,4),点P 3的坐标为(−3,3),点P 4的坐标为(−2,-1),点P 5的坐标为(2,0),…,而2021=4×505+1,所以点P 2021的坐标与点P 1的坐标相同,为(2,0),故答案为:(2,0).【点睛】本题考查了坐标的变化规律探索,找出前5个点的坐标,找出变化规律,是解题的关键. 十七、解答题17.(1)3;(2)–2【分析】(1)根据绝对值、立方根、乘方解决此题.(2)先用乘法分配律去括号,从而简化运算.再根据算术平方根解决本题.【详解】解:(1)原式=,=3.(2)原式,=解析:(1)3;(2)–2【分析】(1)根据绝对值、立方根、乘方解决此题.(2)先用乘法分配律去括号,从而简化运算.再根据算术平方根解决本题.【详解】解:(1)原式=()()221--+-,=3.(2)原式= =3+1-6,=–2.【点睛】本地主要考查绝对值、立方根、算术平方根以及乘方,熟练掌握绝对值、立方根、算术平方根以及乘方是解决本题的关键.十八、解答题18.(1)x=2;(2)x=3或x=-2.【分析】(1)根据立方根的定义进行求解即可;(2)根据平方根的定义进行求解,即可得出答案.【详解】解:(1)(x+1)3-27=0,(x+1)3=2解析:(1)x=2;(2)x=3或x=-2.【分析】(1)根据立方根的定义进行求解即可;(2)根据平方根的定义进行求解,即可得出答案.【详解】解:(1)(x+1)3-27=0,(x+1)3=27,x+1=3,x=2;(2)(2x-1)2-25=0,(2x-1)2=25,2x-1=±5,x=3或x=-2.【点睛】本题考查了立方根和平方根,熟练掌握立方根和平方根的定义是解题的关键.十九、解答题19.已知;同位角相等,两直线平行;两直线平行,内错角相等;∠EHC=∠B;∠DFE+∠EFG =180∘;等量代换【分析】根据同位角相等,两直线平行推出ED∥BC,通过两直线平行,内错角相等推出∠解析:已知;同位角相等,两直线平行;两直线平行,内错角相等;∠EHC =∠B;∠DFE+∠EFG =180∘;等量代换【分析】根据同位角相等,两直线平行推出ED∥BC,通过两直线平行,内错角相等推出∠DEF=∠EHC,再运用等量代换得到∠EHC =∠B,最后推出BD∥EH,∠BDG=∠DFE,再利用邻补角的意义推出结论,据此回答问题.【详解】解:∵∠AED=∠C (已知)∴ED∥BC(同位角相等,两直线平行)∴∠DEF=∠EHC (两直线平行,内错角相等)∵∠DEF=∠B(已知)∴∠EHC =∠B (等量代换)∴BD∥EH(同位角相等,两直线平行)∴∠BDG=∠DFE(两直线平行,内错角相等)∵∠DFE+∠EFG =180∘(邻补角的意义)∴∠EFG+∠BDG=180∘(等量代换).【点睛】本题主要考查平行线的判定和性质,属于综合题,难度一般,熟练掌握平行线的判定和性质是解题关键.二十、解答题20.(1)A(-2,-2),B(3,1),C(0,2);(2)A1(-3,0),B1(2,3),C1(-1,4),图见详解;(3)7【分析】(1)利用点的坐标的表示方法分别写出点A、B、C的坐标;解析:(1)A(-2,-2),B(3,1),C(0,2);(2)A1(-3,0),B1(2,3),C1(-1,4),图见详解;(3)7【分析】(1)利用点的坐标的表示方法分别写出点A、B、C的坐标;(2)先利用点的坐标平移的规律写出点A、B、C的对应点A1、B1、C1的坐标,然后描点即可得到△A1B1C1;(3)利用一个矩形的面积分别减去三个三角形的面积计算三角形ABC的面积.【详解】解:(1)如图观察可得:A(-2,-2),B(3,1),C(0,2);(2)根据三角形ABC中任意一点M(a,b)与三角形A1B1C1的对应点的坐标为M1(a-1,b+2)可知,△ABC向左平移一个单位长度,向上平移两个单位长度,平移后坐标为:A1(-3,0),B1(2,3),C1(-1,4),平移后的△A1B1C1如下图所示:;(3)111545313247222ABCS= =⨯-⨯⨯-⨯⨯-⨯⨯.【点睛】本题考查了作图-平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.二十一、解答题21.(1)a=﹣3,b=4﹣;(2)±3.【分析】(1)根据3<<4,即可求出a、b的值;(2)把a,b代入代数式计算求值,再求平方根即可.【详解】解:(1)∵3<<4,∴11<8+<12,解析:(1)a153,b=4152)±3.【分析】(1)根据3154,即可求出a、b的值;(2)把a,b代入代数式计算求值,再求平方根即可.【详解】解:(1)∵3154,∴11<1512,4<8155,∵a是815b是815∴a=1511153,b=8154=415(2))(44543445121659a b ++=++=+-=, ∴4a +4b +5的平方根为:±3.【点睛】出a 、b 的值是解题关键.二十二、解答题22.(1);(2)<;(3)不能;理由见解析.【分析】(1)由正方形面积,易求得正方形边长,再由勾股定理求对角线长;(2)由圆面积公式,和正方形面积可求周长,比较两数大小可以采用比商法; (3)采解析:(12)<;(3)不能;理由见解析.【分析】(1)由正方形面积,易求得正方形边长,再由勾股定理求对角线长;(2)由圆面积公式,和正方形面积可求周长,比较两数大小可以采用比商法; (3)采用方程思想求出长方形的长边,与正方形边长比较大小即可.【详解】解:(1)由已知AB 2=1,则AB =1,由勾股定理,AC ;(2,周长为2.1C C <圆正;即C 圆<C 正; 故答案为:<(3)不能;由已知设长方形长和宽为3xcm 和2xcm∴长方形面积为:2x •3x =12解得x∴长方形长边为>4∴他不能裁出.【点睛】本题主要考查了算术平方根在正方形、圆、长方形面积中的应用,灵活的进行算术平方根的计算与无理数大小比较是解题的关键.二十三、解答题23.(1)见解析;(2)见解析;(3)40°【分析】(1)根据平行线的性质和判定解答即可;(2)过点H作HP∥AB,根据平行线的性质解答即可;(3)过点H作HP∥AB,根据平行线的性质解答即可.解析:(1)见解析;(2)见解析;(3)40°【分析】(1)根据平行线的性质和判定解答即可;(2)过点H作HP∥AB,根据平行线的性质解答即可;(3)过点H作HP∥AB,根据平行线的性质解答即可.【详解】证明:(1)∵AB∥CD,∴∠AFE=∠FED,∵∠AGH=∠FED,∴∠AFE=∠AGH,∴EF∥GH,∴∠FEH+∠H=180°,∵FE⊥HE,∴∠FEH=90°,∴∠H=180°﹣∠FEH=90°,∴HG⊥HE;(2)过点M作MQ∥AB,∵AB∥CD,∴MQ∥CD,过点H作HP∥AB,∵AB∥CD,∴HP∥CD,∵GM平分∠HGB,∠BGH,∴∠BGM=∠HGM=12∵EM平分∠HED,∠HED,∴∠HEM=∠DEM=12∵MQ∥AB,∴∠BGM=∠GMQ,∵MQ∥CD,∴∠QME=∠MED,∴∠GME=∠GMQ+∠QME=∠BGM+∠MED,∵HP∥AB,∴∠BGH=∠GHP=2∠BGM,∵HP∥CD,∴∠PHE=∠HED=2∠MED,∴∠GHE=∠GHP+∠PHE=2∠BGM+2∠MED=2(∠BGM+∠MED),∴∠GHE=∠2GME;(3)过点M作MQ∥AB,过点H作HP∥AB,由∠KFE:∠MGH=13:5,设∠KFE=13x,∠MGH=5x,由(2)可知:∠BGH=2∠MGH=10x,∵∠AFE+∠BFE=180°,∴∠AFE=180°﹣10x,∵FK平分∠AFE,∴∠AFK=∠KFE=12∠AFE,即1(18010)132x x︒-=,解得:x=5°,∴∠BGH=10x=50°,∵HP∥AB,HP∥CD,∴∠BGH=∠GHP=50°,∠PHE=∠HED,∵∠GHE=90°,∴∠PHE=∠GHE﹣∠GHP=90°﹣50°=40°,∴∠HED=40°.【点睛】本题考查了平行线的判定与性质,熟练掌握平行线的判定与性质定理以及灵活构造平行线是解题的关键.二十四、解答题24.(1);(2)理由见解析;(3),理由见解析.【分析】(1)由平角定义求出∠3=42°,再由平行线的性质即可得出答案;(2)过点B作BD∥a.由平行线的性质得∠2+∠ABD=180°,∠1=∠解析:(1)242∠=︒;(2)理由见解析;(3)12∠=∠,理由见解析.【分析】(1)由平角定义求出∠3=42°,再由平行线的性质即可得出答案;(2)过点B 作BD ∥a .由平行线的性质得∠2+∠ABD =180°,∠1=∠DBC ,则∠ABD =∠ABC−∠DBC =60°−∠1,进而得出结论;(3)过点C 作CP ∥a ,由角平分线定义得∠CAM =∠BAC =30°,∠BAM =2∠BAC =60°,由平行线的性质得∠1=∠BAM =60°,∠PCA =∠CAM =30°,∠2=∠BCP =60°,即可得出结论.【详解】解:(1)如图1 148∠=︒,90BCA ∠=︒,3180142BCA ∴∠=︒-∠-∠=︒,//a b ,2342∴∠=∠=︒;图1(2)理由如下:如图2. 过点B 作//BD a ,图22180ABD ∴∠+∠=︒,//a b ,//b BD ∴,1∴∠=∠DBC ,601ABD ABC DBC ∴∠=∠-∠=︒-∠,2601180∴∠+︒-∠=︒,21120∴∠-∠=︒;(3)12∠=∠,图3理由如下:如图3,过点C 作//CP a , AC 平分BAM ∠,30CAM BAC ∴∠=∠=︒,260BAM BAC ∠=∠=︒,又//a b ,//CP b ∴,160BAM ∠=∠=︒,30PCA CAM ∴∠=∠=︒,903060BCP BCA PCA ∴∠=∠-∠=︒-︒=︒,又//CP a ,260BCP ∴∠=∠=︒,12∠∠∴=.【点睛】本题是三角形综合题目,考查了平移的性质、直角三角形的性质、平行线的判定与性质、角平分线定义、平角的定义等知识;本题综合性强,熟练掌握平移的性质和平行线的性质是解题的关键.二十五、解答题25.(1),理由详见解析;(2),理由详见解析:(3)①;②360°;(4); .【分析】(1)根据三角形外角等于不相邻的两个内角之和即可得出结论;(2)根据三角形内角和定理及对顶角相等即可得出结解析:(1)D A B C ∠=∠+∠+∠,理由详见解析;(2)A D B C ∠+∠=∠+∠,理由详见解析:(3)①1902D A ∠=︒+∠;②360°;(4)124E ∠=︒; =14F ∠︒.【分析】(1)根据三角形外角等于不相邻的两个内角之和即可得出结论;(2)根据三角形内角和定理及对顶角相等即可得出结论;(3)①根据角平分线的定义及三角形内角和定理即可得出结论;②连结BE ,由(2)的结论及四边形内角和为360°即可得出结论;(4)根据(1)的结论、角平分线的性质以及三角形内角和定理即可得出结论.【详解】(1)D A B C ∠=∠+∠+∠.理由如下:如图1,BDE B BAD ∠=∠+∠,CDE C CAD ∠=∠+∠,BDC B BAD C CAD B BAC C ∴∠=∠+∠+∠+∠=∠+∠+∠,D A B C ∴∠=∠+∠+∠;(2)A D B C ∠+∠=∠+∠.理由如下:在ADE ∆中,180AED A D ∠=︒-∠-∠,在BCE ∆中,180BEC B C ∠=︒-∠-∠,AED BEC ∠=∠,A D B C ∴∠+∠=∠+∠;(3)①180A ABC ACB ∠=︒-∠-∠,180D DBC DCB ∠=︒-∠-∠,BD 、CD 分别平分ABC∠和ACB ∠,∴1122ABC ACB DBC DCB ∠+∠=∠+∠,1111180()180(180)902222D ABC ACB A A ∴∠=︒-∠+∠=︒-︒-∠=︒+∠. 故答案为:1902D A ∠=︒+∠.②连结BE .∵C D CBE DEB ∠+∠=∠+∠,360A B C D E F A ABE F BEF ∴∠+∠+∠+∠+∠+∠=∠+∠+∠+∠=︒. 故答案为:360︒;(4)由(1)知,BDC B C BAC ∠=∠+∠+∠,26B ∠=︒,54C ∠=︒,80BDC BAC ∴∠=︒+∠,402CDF CAE ∴∠=︒+∠,4BAC CAE ∠=∠,2BDC CDF ∠=∠,1902GDE CDF ∴∠=︒-∠,26180AGD B GDB CDF ∠=∠+∠=︒+︒-∠,3GAE CAE ∠=∠,3336064(2)644012422E GAE AGD GDE CAE CDF ∴∠=︒-∠-∠-∠=︒-∠-∠=︒+⨯︒=︒; 180180(206)2262264014F AGF GAF CDF CAE CDF CAE ∠=︒-∠-∠=︒-︒-∠-∠=-︒+∠-∠=-︒+︒=︒.【点睛】本题考查了角平分线的性质,三角形内角和;熟练掌握角平分线的性质,进行合理的等量代换是解题的关键.。
北师大版七年级数学下册总复习专项测试题 附答案解析(10份)

总复习专项测试题(一)一、单项选择题(本大题共有15小题,每小题3分,共45分)1、如图,小强利用全等三角形的知识测量池塘两端,的距离,若,则只需测出其长度的线段是( ).A.B.C.D.2、在中,,的垂直平分线交于点,交于点,且,则为().A.B.C.D. 无法确定3、如图,已知,,则( ).A.B.C.D.4、已知在正方形网格中的位置如图所示,点、、、均在格点上,则点叫做的()A. 外心B. 内心C. 重心D. 无法确定5、在庆祝抗战胜利周年那一年,某市某楼盘让利于民,决定将原价为元/平方米的商品房价降价销售,降价后的销售价为()A.B.C.D.6、下列说法正确的是()A. 整式就是多项式B. 是单项式C. 是七次二项式D. 是单项式7、的次数和项数分别为()A.B.C.D.8、下列图形中,多边形有()A. 个B. 个C. 个D. 个9、如图,中,,,平分,,则图中等腰三角形的个数()A. 个B. 个C. 个D. 个10、如图,已知直线、被直线所截,那么的同位角是()A.C.D.11、若,则()A.B.C.D.12、下列关于“”的说法中,错误的是()A. 的绝对值是B. 的倒数是C. 的相反数是D. 是最小的正整数13、如图,在中,,点分别在边上,若,则下列结论正确的是()A. 和互为余角B. 和互为余角C. 和互为补角D. 和互为补角14、一个直三棱柱的顶点个数是()A.B.C.15、下列说法中:①棱柱的上、下底面的形状相同;②若,则点为线段的中点;③相等的两个角一定是对顶角;④不相交的两条直线叫做平行线;⑤直线外一点与直线上各点连接的所有线段中,垂线段最短.正确的有()A. 个B. 个C. 个D. 个二、填空题(本大题共有5小题,每小题5分,共25分)16、利用表格,可以表示因变量随自变量变化而变化的情况,一般地,表格第一行表示,第二行表示,但它不能全面反映的关系,只能反映其中的一部分.17、多面体中,设面数为,顶点数为,棱数为,则、、间的关系式为__________.18、计算__________.19、如图,,其中,则.20、某学校为了增强学生的国防意识,在八年级进行了一次国防知识测验.为了了解这次测验的成绩状况,从中抽取了50名学生的成绩,将所得数据整理后,画出频数分布直方图如图所示.从图中可知这50名学生的成绩的中位数在_______三、解答题(本大题共有3小题,每小题10分,共30分)21、如图,在中,,是上一点,,过点作的垂线交于点.求证:.22、如图,在等腰三角形中,已知边的垂直平分线交于点,,,求的周长.23、计算:(1)(2)总复习专项测试题(一) 答案部分一、单项选择题(本大题共有15小题,每小题3分,共45分)1、如图,小强利用全等三角形的知识测量池塘两端,的距离,若,则只需测出其长度的线段是( ).A.B.C.D.【答案】B【解析】解:由题意知,,.只需测出线段的长度即可得出池塘两端,的距离.故答案应选:.2、在中,,的垂直平分线交于点,交于点,且,则为().A.B.C.D. 无法确定【答案】B【解析】解:如图所示.,且平分,,是等腰三角形,,,,,而,且,,解得.故正确答案是:.3、如图,已知,,则( ).A.B.C.D.【答案】C【解析】解:,,,.故正确答案是.4、已知在正方形网格中的位置如图所示,点、、、均在格点上,则点叫做的()A. 外心B. 内心C. 重心D. 无法确定【答案】C【解析】解:由网格中图可知,点为的中点,点为的中点,则、的交点是的重心.5、在庆祝抗战胜利周年那一年,某市某楼盘让利于民,决定将原价为元/平方米的商品房价降价销售,降价后的销售价为()A.B.C.D.【答案】C【解析】解:由题意得,降价后的销售价为.6、下列说法正确的是()A. 整式就是多项式B. 是单项式C. 是七次二项式D. 是单项式【答案】B【解析】解:根据整式的概念可知,单项式和多项式统称为整式,故“整式就是多项式”错误;是单项式,故“是单项式”正确;是次二项式,故“是七次二项式”错误;是多项式,故“是单项式”错误.故正确答案是:是单项式7、的次数和项数分别为()A.B.C.D.【答案】A【解析】解:的次数和项数分别为.8、下列图形中,多边形有()A. 个B. 个C. 个D. 个【答案】B【解析】解:由多边形的概念可知第四个、第五个是多边形共个.9、如图,中,,,平分,,则图中等腰三角形的个数()A. 个B. 个C. 个D. 个【答案】A【解析】解:,是等腰三角形,,平分,,,,,在中,,为等腰三角形,在中,,是等腰三角形,在中,,是等腰三角形,在中,,是等腰三角形,所以共有个等腰三角形.10、如图,已知直线、被直线所截,那么的同位角是()A.B.C.D.【答案】D【解析】解:根据同位角的定义知,的同位角是.11、若,则()A.B.C.D.【答案】A【解析】解:由题意得解得.12、下列关于“”的说法中,错误的是()A. 的绝对值是B. 的倒数是C. 的相反数是D. 是最小的正整数【答案】C【解析】解:的绝对值是,正确;的倒数是,正确;的相反数是,故“的相反数是”错误;是最小的正整数,正确.13、如图,在中,,点分别在边上,若,则下列结论正确的是()A. 和互为余角B. 和互为余角C. 和互为补角D. 和互为补角【答案】B【解析】解:,,,,和互为余角.14、一个直三棱柱的顶点个数是()A.B.C.D.【答案】D【解析】解:一个直三棱柱由两个三边形的底面和个长方形的侧面组成,根据其特征及欧拉公式可知,它有个顶点.15、下列说法中:①棱柱的上、下底面的形状相同;②若,则点为线段的中点;③相等的两个角一定是对顶角;④不相交的两条直线叫做平行线;⑤直线外一点与直线上各点连接的所有线段中,垂线段最短.正确的有()A. 个B. 个C. 个D. 个【答案】B【解析】解:①棱柱的上、下底面的形状相同,此选项正确;②若,则点为线段的中点,不一定在一条直线上,故此选项错误;③相等的两个角一定是对顶角,交的顶点不一定在一个位置,故此选项错误;④不相交的两条直线叫做平行线,必须在同一平面内,故此选项错误;⑤直线外一点与直线上各点连接的所有线段中,垂线段最短,此选项正确.故正确的为①⑤,共个.二、填空题(本大题共有5小题,每小题5分,共25分)16、利用表格,可以表示因变量随自变量变化而变化的情况,一般地,表格第一行表示,第二行表示,但它不能全面反映的关系,只能反映其中的一部分.【答案】自变量;因变量;两个变量之间【解析】解:利用表格,可以表示因变量随自变量变化而变化的情况,一般地,表格第一行表示自变量,第二行表示因变量,但它不能全面反映两个变量之间的关系,只能反映其中的一部分.正确答案是:自变量;因变量;两个变量之间.17、多面体中,设面数为,顶点数为,棱数为,则、、间的关系式为__________.【答案】【解析】解:由欧拉公式:,可得:.18、计算__________.【答案】【解析】解:19、如图,,其中,则.【答案】127【解析】解:由,得,,所以.20、某学校为了增强学生的国防意识,在八年级进行了一次国防知识测验.为了了解这次测验的成绩状况,从中抽取了50名学生的成绩,将所得数据整理后,画出频数分布直方图如图所示.从图中可知这50名学生的成绩的中位数在_______组.【答案】【解析】解:根据频数分布直方图可知:后面三组的频数分别为、、,因为共有个数,所以这名学生的成绩的中位数是第和个数的平均数.因为第和个数在第三组,从图中可知这名学生的成绩的中位数在组.三、解答题(本大题共有3小题,每小题10分,共30分)21、如图,在中,,是上一点,,过点作的垂线交于点.求证:.【解析】证明:...在和中.,,..,.(三线合一).22、如图,在等腰三角形中,已知边的垂直平分线交于点,,,求的周长.【解析】解:是的垂直平分线,,而,,已知,,又知,的周长为:.正确答案是:.23、计算:(1)【解析】解:(2)【解析】解:总复习专项测试题(二)一、单项选择题(本大题共有15小题,每小题3分,共45分)1、在下图所示的水解环保、绿色食品、节能、绿色环保四个标志中,是轴对称图形的是()A.B.C.D.2、某音乐行出售三种音乐,即古典音乐,流行音乐,民族音乐,为了表示这三种音乐唱片的销售量的百分比,应该用()A. 扇形统计图B. 折线统计图C. 条形统计图D. 以上都可以3、含有 _____的等式叫做方程。
北师版七年级下册数学复习题及答案

北师版七年级下册数学复习题及答案学习是快乐的,学习是幸福的,虽然在学习的道路上我们会遇到许多困难,但是只要努力解决这些困难后,你将会感觉到无比的轻松与快乐,可能是经历过磨练过之后。
多看多写,才会进步。
下面就是小编为大家梳理归纳的内容,希望能够帮助到大家。
北师版七年级下册数学复习题及答案【篇一】一、选择题(本大题共8小题,每小题3分,共24分)(每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填在题后括号内)1.|-2|=()A.0B.-2C.+2D.1【考点】绝对值.【专题】计算题.【分析】根据一个负数的绝对值是它的相反数求解即可.【解答】解:|-2|=-(-2)=2.故选C.【点评】本题考查了绝对值,绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.在5月份的助残活动中,盲聋哑学校收到社会捐款约110000元,将110000元用科学记数法表示为()A.1.1×103元B.1.1×104元C.1.1×105元D.1.1×106元【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将110000用科学记数法表示为:1.1×105.故选:C.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.下列各对数中,互为相反数的是()A.-(-2)和2B.+(-3)和-(+3)C.D.-(-5)和-|-5|【考点】相反数.【专题】计算题.【分析】根据互为相反数的两数之和为0可得出答案.【解答】解:A、-(-2)+2=4,故本选项错误;B、+(-3)-(+3)=-6,故本选项错误;C、-2=-,故本选项错误;D、-(-5)-|-5|=0,故本选项正确.故选D.【点评】本题考查相反数的知识,比较简单,注意掌握互为相反数的两数之和为0.4.若(2a-1)2+2|b-3|=0,则ab=()A.B.C.6D.【考点】非负数的性质:偶次方;非负数的性质:绝对值;代数式求值;解二元一次方程组.【专题】计算题.【分析】由于平方与绝对值都具有非负性,根据两个非负数的和为零,其中每一个加数都必为零,可列出二元一次方程组,解出a、b 的值,再将它们代入ab中求解即可.【解答】解:由题意,得,解得.∴ab=()3=.故选D.【点评】本题主要考查非负数的性质和代数式的求值.初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类题目.5.下列式子中:,,,π(2-y2),,7-1,y2+8,,单项式和多项式的个数分别为()A.2个,5个B.2个,4个C.3个,4个D.2个,6个【考点】单项式;多项式.【分析】根据单项式与多项式的定义,结合所给各式进行判断即可.【解答】解:所给式子中单项式有,一共2个;多项式有:,,π(2-y2),7-1,y2+8,一共4个.故选B.【点评】本题考查了单项式与多项式的定义,数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式;几个单项式的和叫做多项式.掌握它们的定义是解题的关键.6.有理数-22,(-2)3,-|-2|,-按从大到小的顺序是()A.-B.(-2)3>-22>-|-2|>-C.-|-2|>-D.-22>(-2)3>->-|-2|【考点】有理数大小比较.【专题】推理填空题;实数.【分析】首先分别求出-22,(-2)3,-|-2|的值各是多少;然后根据有理数大小比较的方法,把有理数-22,(-2)3,-|-2|,-按从大到小的顺序排列起来即可.【解答】解:-22=-4,(-2)3=-8,-|-2|=-2,∵--8,∴->-|-2|>-22>(-2)3.故选:A.【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.7.当=2,y=-2时,代数式m3+ny+8的值为2010,则当=-4,y=-时,式子3m-24ny3+5016的值为()A.2009B.2011C.2012D.2013【考点】代数式求值.【分析】将=2,y=-2代入得:8m-2n=2002,等式两边同时乘以-得到-12m+3n=-3003,将=-4,y=-代入得:-12m+3n+5016,将-12m+3n=-3003代入计算即可.【解答】解:将=2,y=-2代入得m×23+n×(-2)+8=2010,整理得:8m-2n=2002,由等式的性质2可知:-12m+3n=-3003.将=-4,y=-代入得:-12m+3n+5016.∵-12m+3n=-3003,∴-12m+3n+5016=-3003+5016=2013.故选:D.【点评】本题主要考查的是求代数式的值,利用等式的性质求得-12m+3n=-3003是解题的关键.8.在一条笔直的公路边,有一些树和路灯,每相邻的两盏灯之间有3棵树,相邻的树与树,树与灯间的距离是10m,如图,第一棵树左边5m处有一个路牌,则从此路牌起向右510m~550m之间树与灯的排列顺序是()A.B.C.D.【考点】规律型:图形的变化类.【分析】根据题意可得,第一个灯的里程数为15m,第二个灯的里程数为55m,第三个灯的里程数为95m…第n个灯的里程数为15+40(n-1)=(40n-25)m,从而可计算出535m处哪个里程数是灯,也就得出了答案.【解答】解:根据题意得:第一个灯的里程数为15m,第二个灯的里程数为55m,第三个灯的里程数为95m…第n个灯的里程数为15+40(n-1)=(40n-25)m,故当n=14时候,40n-25=535m处是灯,则515m、525m、545m处均是树,故应该是树、树、灯、树,故选B.【点评】本题考查了图形的变化类问题,解决本题的关键是从原图中找到规律,并利用规律解决问题.二、填空题:(本大题8个小题,每小题3分,共24分)请把答案直接填在题中横线上.9.如果规定向东为正,那么向西即为负.汽车向东行驶3千米记作+3千米,向西行驶5千米应记作-5千米.【考点】正数和负数.【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:汽车向东行驶3千米记作3千米,向西行驶5千米应记作-5千米.故答案为:-5千米.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.10.单项式的系数是-,次数是3.【考点】单项式.【专题】计算题.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:根据单项式定义得:单项式的系数是-,次数是3.故答案为-,3.【点评】本题考查了单项式系数、次数的定义.确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.11.试写出一个关于的二次三项式,使次数为2的项的系数为2,常数项为-1:22+-1(答案不).【考点】多项式.【专题】开放型.【分析】直接利用多项式的定义结合其次数与系数的确定方法得出符合题意的答案.【解答】解:根据题意可得:22+-1(答案不).故答案为:22+-1(答案不).【点评】此题主要考查了多项式,正确掌握多项式次数与系数的确定方法是解题关键.12.比较大小:(填“>”“<”号)>-|-3|<.【考点】有理数大小比较.【专题】推理填空题;实数.【分析】(1)首先分别求出、-|-3|的值各是多少;然后根据有理数大小比较的方法,判断出它们的大小关系即可.(2)两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:(1)=,-|-3|=-3,∵,∴>-|-3|.(2)|-|=,|-|=,∵,∴-<-.故答案为:>,<.【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.13.将多项式23y-4y2+32-按的降幂排列为:23+32--4y2.【考点】多项式.【分析】根据降幂排列的定义,我们把多项式的各项按照的指数从大到小的顺序排列起来即可.【解答】解:多项式23y-4y2+32-按的降幂排列为:23+32--4y2.故答案为:23+32--4y2.【点评】此题考查了多项式的降幂排列的定义.首先要理解降幂排列的定义,然后要确定是哪个字母的降幂排列,这样才能比较准确解决问题.14.在数轴上到-3所对应的点的距离为2个单位长度的点所对应的数是-5或-1.【考点】数轴.【分析】因为所求点在-3的哪侧不能确定,所以应分所求点在-3的点的左侧和右侧两种情况讨论【解答】解:当此点在-3的点的左侧时,此点表示的点为-3-2=-5;当此点在-3的点的右侧时,此点表示的点为-3+2=-1.故答案为:-5或-1.【点评】本题考查的是数轴的特点,解答此类题目时要根据左减右加的原则进行计算.15.近似数4.007万精确到十位;5.8963(精确到0.01)的结果是5.90.【考点】近似数和有效数字.【专题】计算题.【分析】根据近似数的精确度求解.【解答】解:4.007万精确到十位;5.8963(精确到0.01)的结果5.90.故答案为十,5.90.【点评】本题考查了近似数与有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.16.数学家发明了一个魔术盒,当任意数对(a,b)放入其中时,会得到一个新的数:a2+b+1.例如把(3,-2)放入其中,就会得到32+(-2)+1=8.现将数对(-2,3)放入其中得到数m=8,再将数对(m,1)放入其中后,得到的数是66.【考点】有理数的混合运算.【专题】新定义.【分析】根据题中的新定义化简所求式子,计算即可得到结果.【解答】解:数对(-2,3)放入其中得到(-2)2+3+1=4+3+1=8;再将数对(8,1)放入其中得到82+1+1=64+1+1=66.故答案为:8;66.【点评】此题考查了有理数的混合运算,弄清题中的新定义是解本题的关键.三、解答题(本大题共8个题,共72分)解答应写出文字说明,说理过程或演算步骤.17.直接写出运算结果.(1)5+(-16)=-11(2)=0(3)(-30)-(+4)=-34(4)=-14(5)=(6)-24÷(-2)=8.【考点】有理数的混合运算.【专题】计算题;实数.【分析】(1)原式利用异号两数相加的法则计算即可得到结果;(2)原式利用0乘以任何数结果为0计算即可得到结果;(3)原式利用减法法则变形,计算即可得到结果;(4)原式利用乘法法则计算即可得到结果;(5)原式利用异号两数相加的法则计算即可得到结果;(6)原式先计算乘方运算,再计算除法运算即可得到结果.【解答】解:(1)原式=-(16-5)=-11;(2)原式=0;(3)原式=-30-4=-34;(4)原式=-6×=-14;(5)原式=2-2=;(6)原式=-16÷(-2)=8.故答案为:(1)-11;(2)0;(3)-34;(4)-14;(5);(6)8.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.18.(24分)计算.(1)(-2.8)+7.2+5.5+(-4.2)(2)(-7)-(-10)+(-8)-(-2)(3)(4)-72×2(5)(6).【考点】有理数的混合运算.【专题】计算题;实数.【分析】(1)原式结合后,相加即可得到结果;(2)原式利用减法法则变形,计算即可得到结果;(3)原式先计算乘法运算,再计算加减运算即可得到结果;(4)原式从左到右依次计算即可得到结果;(5)原式先计算乘方运算,再利用乘法分配律计算,最后算加减运算即可得到结果;(6)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=(-2.8-4.2)+(7.2+5.5)=-7+12.7=5.7;(2)原式=-7+10-8+2=12-15=-3;(3)原式=--=-;(4)原式=72×=30;(5)原式=-1+16+30-27=12;(6)原式=-64+18-24=-70.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.19.两个数,y在数轴上的位置如图所示,请完成以下填空题.(填“>”、“=”或“<”).(1)<0,y>0.(2)->0,-y<0.(3)+y>0,-y<0.(4)y<0,<0.(5)把,y,-,-y四个数的大小关系用“<”连接起来.-y【考点】数轴;有理数大小比较.【专题】存在型.【分析】(1)直接根据数轴的特点解答即可;(2)根据(1)中、y的符号即可作出判断;(3)根据数轴上、y的位置判断出、y的符号及其绝对值的大小即可;(4)根据(1)中、y的符号即可作出判断;(5)由(1)、(3)中y的符号及+y、-y的符号即可作出判断.【解答】解:(1)∵在原点的左边,y在原点的右边,∴<0,y>0,故答案为:<,>;(2)∵<0,y>0,∴->0,-y<0.故答案为:>,<;(3)∵<0,y>0,y到原点的距离大于到原点的距离,∴+y>0,-y<0.故答案为:>,<;(4)∵<0,y>0,∴y<0,<0.故答案为:<,<;(5)∵<0,y>0,y到原点的距离大于到原点的距离,∴<0∴-y故答案为:-y【点评】本题考查的是数轴的特点,熟知数轴的定义是解答此题的关键.20.数a,b,c在数轴上对应的点的位置如图所示,化简-|a|+|b+c|-|b|.【考点】整式的加减;数轴;绝对值.【分析】首先利用数轴得出a<0【解答】解:由数轴可知a<0则-|a|+|b+c|-|b|=-(-a)+b+c-b=a+c.【点评】此题考查整式的加减,数轴以及绝对值的意义,根据绝对值的意义化简是解决问题的关键.21.已知a,b互为相反数,c,d互为倒数,的绝对值是2,求代数式的值.【考点】代数式求值;相反数;绝对值;倒数.【分析】根据题意可知:a+b=0,cd=1,=±2,然后代入计算即可.【解答】解:∵a,b互为相反数,∴a+b=0.∵c,d互为倒数,∴cd=1.∵的绝对值是2,∴=±2.当=2时,原式=2×22-0+2=10,当=-2时,原式=2×(-2)2+0-2=6.综上所述,代数式的值为10或6.【点评】本题主要考查的是求代数式的值,根据题意得到a+b=0,cd=1,=±2是解题的关键.22.下表是小明记录的今年雨季一周河水的水位变化情况(上周末的水位达到警戒水位).星期一二三四五六日水位变化/米+0.20+0.81-0.35+0.03+0.28-0.36-0.01注:正号表示水位比前一天上升,负号表示水位比前一天下降.(1)本周哪一天河流的水位?哪一天河流的水位最低?它们位于警戒水位之上还是之下?与警戒水位的距离分别是多少米?(2)与上周相比,本周末河流水位是上升了还是下降了?【考点】有理数的加法;正数和负数.【专题】计算题.【分析】(1)先设标准水位,再计算出这一周中每一天的水位,即可得出答案;(2)将这些数据相加,和为正,表示跟上周相比,本周的水位上升了;和为负,表示跟上周相比,本周的水位下降了.【解答】解:(1)设警戒水位为0,则:星期一:+0.20米,星期二:+1.01米,星期三:+0.66米,星期四:+0.69米,星期五:+0.97米,星期六:+0.61米,星期日:+0.60米.所以本周星期二河流水位,位于警戒水位之上1.01米,星期一河流的水位最低,位于警戒水位之上0.20米.(2)跟上周相比,本周的水位上升了.、【点评】本题考查了有理数的加法以及正负数所表示的意义.23.某地电话拨号入网有两种收费方式:(A)计时制:0.05元/分;(B)包月制:50元,此外,每种另加收通信费0.02元/分.(1)某用户某月上网时间为小时,请分别写出两种收费方式下该用户应支付的费用;(2)若某用户估计一个月上网时间为20小时,你认为采用哪种方式较合算.【考点】列代数式;代数式求值.【分析】A种方式收费为:计时费+通信费;B种方式付费为:包月费+通信费.根据等量关系列出代数式求出结果,比较后得出结论.【解答】解:(1)A:0.05×60+0.02×60=4.2(元),B:50+0.02×60=50+1.2(元);(2)当=20时,A:84元;B:74元,∴采用包月制较合算.【点评】本题考查列代数式、代数式求值解决实际问题的能力.解决问题的关键是找到所求的量的等量关系,需注意把时间单位统一.24.按右边图示的程序计算,(1)若开始输入的n的值为20,则最后输出的结果y为多少?(2)若开始输入的n的值为4,则最后输出的结果y为多少?【考点】代数式求值.【分析】观察图形,可知n和y的关系式为:y=,因此将n的值代入就可以计算出y的值.如果计算的结果y<0,则需要把结果再次代入关系式求值,直到算出的y值>0为止,即可得出y的值.【解答】解:(1)当n=20时,y=,∴最后输出的结果为190;(2)当n=4时,,当n=6时,,当n=15时,,∴最后输出的结果为105.【点评】解答本题的关键就是弄清楚题图给出的计算程序.本题(2)中由于代入4计算出y的值是6,但6<100,不是要输出的y的值,这是本题易出错的地方,还应将=6代入y=,继续计算,直到算出的y 值>0为止.【篇二】一、选择题(本大题共8小题,每小题3分,共24分)(每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填在题后括号内)1.|-2|=()A.0B.-2C.+2D.12.在5月份的助残活动中,盲聋哑学校收到社会捐款约110000元,将110000元用科学记数法表示为()A.1.1×103元B.1.1×104元C.1.1×105元D.1.1×106元3.下列各对数中,互为相反数的是()A.-(-2)和2B.+(-3)和-(+3)C.D.-(-5)和-|-5|4.若(2a-1)2+2|b-3|=0,则ab=()A.B.C.6D.5.下列式子中:,,,π(2-y2),,7-1,y2+8,,单项式和多项式的个数分别为()A.2个,5个B.2个,4个C.3个,4个D.2个,6个6.有理数-22,(-2)3,-|-2|,-按从大到小的顺序是()A.-B.(-2)3>-22>-|-2|>-C.-|-2|>-D.-22>(-2)3>->-|-2|7.当=2,y=-2时,代数式m3+ny+8的值为2010,则当=-4,y=-时,式子3m-24ny3+5016的值为()A.2009B.2011C.2012D.20138.在一条笔直的公路边,有一些树和路灯,每相邻的两盏灯之间有3棵树,相邻的树与树,树与灯间的距离是10m,如图,第一棵树左边5m处有一个路牌,则从此路牌起向右510m~550m之间树与灯的排列顺序是()A.B.C.D.二、填空题:(本大题8个小题,每小题3分,共24分)请把答案直接填在题中横线上.9.如果规定向东为正,那么向西即为负.汽车向东行驶3千米记作+3千米,向西行驶5千米应记作__________.10.单项式的系数是__________,次数是__________.11.试写出一个关于的二次三项式,使次数为2的项的系数为2,常数项为-1:__________.12.比较大小:(填“>”“<”号)__________-|-3|__________.13.将多项式23y-4y2+32-按的降幂排列为:__________.14.在数轴上到-3所对应的点的距离为2个单位长度的点所对应的数是__________.15.近似数4.007万精确到__________位;5.8963(精确到0.01)的结果是__________.16.数学家发明了一个魔术盒,当任意数对(a,b)放入其中时,会得到一个新的数:a2+b+1.例如把(3,-2)放入其中,就会得到32+(-2)+1=8.现将数对(-2,3)放入其中得到数m=__________,再将数对(m,1)放入其中后,得到的数是__________.三、解答题(本大题共8个题,共72分)解答应写出文字说明,说理过程或演算步骤.17.直接写出运算结果.(1)5+(-16)=__________(2)=__________(3)(-30)-(+4)=__________(4)=__________(5)=__________(6)-24÷(-2)=__________.18.(24分)计算.(1)(-2.8)+7.2+5.5+(-4.2)(2)(-7)-(-10)+(-8)-(-2)(3)(4)-72×2(5)(6).19.两个数,y在数轴上的位置如图所示,请完成以下填空题.(填“>”、“=”或“<”).(1)__________0,y__________0.(2)-__________0,-y__________0.(3)+y__________0,-y__________0.(4)y__________0,__________0.(5)把,y,-,-y四个数的大小关系用“<”连接起来.__________.20.数a,b,c在数轴上对应的点的位置如图所示,化简-|a|+|b+c|-|b|.21.已知a,b互为相反数,c,d互为倒数,的绝对值是2,求代数式的值.22.下表是小明记录的今年雨季一周河水的水位变化情况(上周末的水位达到警戒水位).星期一二三四五六日水位变化/米+0.20+0.81-0.35+0.03+0.28-0.36-0.01注:正号表示水位比前一天上升,负号表示水位比前一天下降.(1)本周哪一天河流的水位?哪一天河流的水位最低?它们位于警戒水位之上还是之下?与警戒水位的距离分别是多少米?(2)与上周相比,本周末河流水位是上升了还是下降了?23.某地电话拨号入网有两种收费方式:(A)计时制:0.05元/分;(B)包月制:50元,此外,每种另加收通信费0.02元/分.(1)某用户某月上网时间为小时,请分别写出两种收费方式下该用户应支付的费用;(2)若某用户估计一个月上网时间为20小时,你认为采用哪种方式较合算.24.按右边图示的程序计算,(1)若开始输入的n的值为20,则最后输出的结果y为多少?(2)若开始输入的n的值为4,则最后输出的结果y为多少?。
人教版中学七年级下册数学期末复习题含答案

人教版中学七年级下册数学期末复习题含答案一、选择题1.如图,直线a ,b 被直线c 所截,∠1的同旁内角是( )A .∠2B .∠3C .∠4D .∠52.下列各组图形可以通过平移互相得到的是( )A .B .C .D .3.在平面直角坐标系中,下列各点在第二象限的是( )A .()1,10B .()6,4-C .()0,1-D .()3,7- 4.下列两个命题:①过一点有且只有一条直线和已知直线平行;②垂直于同一条直线的两条直线互相平行,其中判断正确的是( )A .①②都对B .①对②错C .①②都错D .①错②对 5.如图,直线////AB CD EF ,点O 在直线AB 上,下列结论正确的是( )A .12390∠+∠-∠=︒B .12390∠+∠+∠=︒C .321180∠+∠-∠=︒D .132180∠+∠-∠=︒6.下列说法错误的是( )A .3的平方根是3B .﹣1的立方根是﹣1C .0.1是0.01的一个平方根D .算术平方根是本身的数只有0和1 7.一副直角三角板如图放置,使两三角板的斜边互相平行,每块三角板的直角顶点都在另一三角板的斜边上,则∠1的度数为( )A .90°B .75°C .65°D .60°8.如图,在平面直角坐标系xOy 中,点()1,0P .点P 第1次向上跳动1个单位至点()11,1P ,紧接着第2次向左跳动2个单位至点()21,1P -,第3次向上跳动1个单位至点3P ,第4次向右跳动3个单位至点4P ,第5次又向上跳动1个单位至点5P ,第6次向左跳动4个单位至点6P ,…….照此规律,点P 第200次跳动至点200P 的坐标是( )A .()51,100B .()26,50C .()26,50-D .()51,100-九、填空题9.若a 、b 为实数,且满足|a ﹣2|+3b -=0,则a ﹣b 的立方根为_____.十、填空题10.若点()3,P m 与(),6Q n -关于x 轴对称,则2m n -=____________________________. 十一、填空题11.如图,AD 、AE 分别是△ABC 的角平分线和高,∠B=60°,∠C=70°,则∠EAD=______.十二、填空题12.如图将一张长方形纸片沿EF 折叠后,点A 、B 分别落在A ′、B ′的位置,如果∠2=70°,则∠1的度数是___________.十三、填空题13.将一条长方形纸带按如图方式折叠,若1108∠=︒,则2∠的度数为________°.十四、填空题14.如图,四个实数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q ,若0n q +=,则m ,n ,p ,q 四个实数中,绝对值最大的是________.十五、填空题15.点31,25()P m m +-到两坐标轴的距离相等,则m =________.十六、填空题16.如图,在平面直角坐标系中,边长为1的等边△OA 1A 2的一条边OA 2在x 的正半轴上,O 为坐标原点;将△OA 1A 2沿x 轴正方向依次向右移动2个单位,依次得到△A 3A 4A 5,△A 6A 7A 8…,则顶点A 2021的坐标为 __________________.十七、解答题17.计算:(1)|23-|+22;(2)22312127(6)(5)+----十八、解答题18.已知a +b =5,ab =2,求下列各式的值.(1)a 2+b 2;(2)(a ﹣b )2.十九、解答题19.如图,已知∠1+∠AFE =180°,∠A =∠2,求证:∠A=∠C +∠AFC证明:∵ ∠1+∠AFE =180°∴ CD ∥EF ( , ) ∵∠A=∠2 ∴( ) ( , ) ∴ AB ∥CD ∥EF ( , )∴ ∠A = ,∠C = ,( , )∵ ∠AFE =∠EFC +∠AFC ,∴ = .二十、解答题20.将△ABO 向右平移4个单位,再向下平移1个单位,得到三角形A ′B ′O ′(1)请画出平移后的三角形A ′B ′O ′.(2)写出点A ′、O ′的坐标.二十一、解答题21.例如∵479.<<即273<<,∴7的整数部分为2,小数部分为72-,仿照上例回答下列问题;(1)17介于连续的两个整数a 和b 之间,且a <b ,那么a = ,b = ; (2)x 是172+的小数部分,y 是171-的整数部分,求x = ,y = ; (3)求(17)y x -的平方根.二十二、解答题22.如图1,用两个边长相同的小正方形拼成一个大的正方形.(1)如图2,若正方形纸片的面积为12dm ,则此正方形的对角线AC 的长为 dm . (2)如图3,若正方形的面积为162cm ,李明同学想沿这块正方形边的方向裁出一块面积为122cm 的长方形纸片,使它的长和宽之比为3∶2,他能裁出吗?请说明理由.二十三、解答题23.问题情境:如图1,AB ∥CD ,∠PAB =130°,∠PCD =120°.求∠APC 的度数.小明的思路是:过P 作PE ∥AB ,通过平行线性质,可得∠APC =∠APE +∠CPE =50°+60°=110°.问题解决:(1)如图2,AB ∥CD ,直线l 分别与AB 、CD 交于点M 、N ,点P 在直线I 上运动,当点P 在线段MN 上运动时(不与点M 、N 重合),∠PAB =α,∠PCD =β,判断∠APC 、α、β之间的数量关系并说明理由;(2)在(1)的条件下,如果点P 在线段MN 或NM 的延长线上运动时.请直接写出∠APC 、α、B 之间的数量关系;(3)如图3,AB ∥CD ,点P 是AB 、CD 之间的一点(点P 在点A 、C 右侧),连接PA 、PC ,∠BAP 和∠DCP 的平分线交于点Q .若∠APC =116°,请结合(2)中的规律,求∠AQC 的度数.二十四、解答题24.如图1,点O 在MN 上,90,,AOB AOM m OCQ n ∠=︒∠=︒∠=︒,射线OB 交PQ 于点C ,已知m ,n 满足:220(70)0m n -+-=.(1)试说明MN //PQ 的理由;(2)如图2,OD 平分AON ∠,CF 平分OCQ ∠,直线OD 、CF 交于点E ,则OEF ∠=______︒;(3)若将AOB ∠绕点O 逆时针旋转()090αα<<︒,其余条件都不变,在旋转过程中,OEF ∠的度数是否发生变化?请说明你的结论.二十五、解答题25.如图①,将一副直角三角板放在同一条直线AB 上,其中∠ONM =30°,∠OCD =45°.(1)将图①中的三角板OMN沿BA的方向平移至图②的位置,MN与CD相交于点E,求∠CEN的度数;(2)将图①中的三角板OMN绕点O按逆时针方向旋转,使∠BON=30°,如图③,MN 与CD相交于点E,求∠CEN的度数;(3)将图①中的三角板OMN绕点O按每秒30°的速度按逆时针方向旋转一周,在旋转的过程中,在第____________秒时,直线MN恰好与直线CD垂直.(直接写出结果)【参考答案】一、选择题1.A解析:A【分析】根据同旁内角的定义:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角进行求解.【详解】解:直线a,b被直线c所截,∠1的同旁内角是∠2,故选:A.【点睛】本题考查了同旁内角的定义,能熟记同旁内角的定义的内容是解此题的关键,注意数形结合.2.C【分析】根据平移不改变图形的形状和大小,平移变换中对应线段平行(或在同一直线上)且相等,从而得出答案.【详解】解:观察图形可知图案C通过平移后可以得到.故选:C.【点睛】本题考查的是解析:C【分析】根据平移不改变图形的形状和大小,平移变换中对应线段平行(或在同一直线上)且相等,从而得出答案.【详解】解:观察图形可知图案C通过平移后可以得到.故选:C.【点睛】本题考查的是平移变换及其基本性质,掌握以上知识是解题的关键.3.D【分析】根据在第二象限的点的特征进行判断,即可得到答案.【详解】解:∵第二象限的点特征是横坐标小于零,纵坐标大于零,∴点(-3,7)在第二象限,故选D.【点睛】本题考查了点的坐标,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4.C【分析】根据平行公理及其推论判断即可.【详解】解:①过直线外一点有且只有一条直线和已知直线平行,故错误;②在同一平面内,垂直于同一条直线的两条直线互相平行,故错误;故选:C.【点睛】本题主要考查了命题与定理,平行公理及其推论,属于基础知识,要牢牢掌握.5.D【分析】根据两直线平行,同旁内角互补可得∠1+∠AOF=180°,再根据两直线平行,内错角相等可得∠3=∠AOC,而通过∠AOF=∠AOC-∠2,整理可得∠1+∠3-∠2=180°.【详解】解:∵AB∥EF,∴∠1+∠AOF=180°,∵CD∥AB,∴∠3=∠AOC,又∵∠AOF=∠AOC−∠2=∠3-∠2,∴∠1+∠3-∠2=180°.故选:D.【点睛】本题主要考查平行线的性质,从复杂图形中找出内错角,同旁内角是解题的关键.6.A【分析】根据平方根、立方根、算术平方根的概念进行判断即可.【详解】解:A、3的平方根是±3,原说法错误,故此选项符合题意;B、﹣1的立方根是﹣1,原说法正确,故此选项不符合题意;C、0.1是0.01的一个平方根,原说法正确,故此选项不符合题意;D、算术平方根是本身的数只有0和1,原说法正确,故此选项不符合题意.故选:A.【点睛】本题考查了平方根、立方根、算术平方根的概念,掌握平方根、立方根、算术平方根的概念是解题的关键.7.B【分析】根据平行线的性质可得∠FDC=∠F=30°,然后根据三角形外角的性质可得结果.【详解】解:如图,∵EF∥BC,∴∠FDC=∠F=30°,∴∠1=∠FDC+∠C=30°+45°=75°,故选:B.【点睛】本题主要考查了平行线的性质以及三角形外角的性质,熟知三角板各个角的度数是解本题的关键.8.A【分析】设第n次跳动至点Pn,根据部分点An坐标的变化找出变化规律P4n(n + 1,2n),Pn+1(n + 1,2n + 1),P4n+2(-n-1,2n+ 1),P4n+3(-n-1,2解析:A【分析】设第n次跳动至点P n,根据部分点A n坐标的变化找出变化规律P4n(n + 1,2n),P n+1(n + 1,2n + 1),P4n+2(-n-1,2n+ 1),P4n+3(-n-1,2n +2),依此规律结合200 = 50 ×4,即可得出点P200的坐标.【详解】解:设第n次跳动至点P n,观察发现:P(1,0),P1(1,1),P2(-1,1),P3(-1,2),P4(2,2),P5(2,3),P6(-2,3),P7(-2,4),P8(3,4),P9(3,5),...,∴P4n+1(n + 1,2n +1),P4n+2(-n-1,2n+ 1),P4n+3(-n-1,2n+2),P4n(n + 1,2n),(n为自然数),∵200 = 50 × 4,∴P200(50+1 ,50×2),即(51,100).故选A.【点睛】本题考查了规律型中点的坐标,解题的关键是准确找到点的坐标变化规律.九、填空题9.-1【分析】根据非负数的性质,求出a、b的值,再进而计算所给代数式的立方根.【详解】解:∵|a﹣2|+=0,|a﹣2|≥0,≥0∴a﹣2=0,3﹣b=0∴a=2,b=3∴,故答案为:解析:-1【分析】根据非负数的性质,求出a、b的值,再进而计算所给代数式的立方根.【详解】解:∵|a﹣0,|a﹣2|≥0∴a﹣2=0,3﹣b=0∴a=2,b=3∴==-,1故答案为:﹣1.【点睛】本题主要考查了非负数的性质,立方根的性质,关键是根据“两个非负数和为0,则这两个数都为0”列出方程求得a、b的值.十、填空题10.0【分析】根据平面直角坐标系中关于轴对称的两点,横坐标互为相反数,纵坐标相等的特点进行解题即可.【详解】∵点与关于轴对称∴∴,故答案为:0.【点睛】本题主要考查了平面直角坐标系内点解析:0【分析】根据平面直角坐标系中关于x 轴对称的两点,横坐标互为相反数,纵坐标相等的特点进行解题即可.【详解】∵点(3,)P m 与(,6)Q n -关于x 轴对称∴36n m =-=-,∴262(3)0m n -=--⨯-=,故答案为:0.【点睛】本题主要考查了平面直角坐标系内点的轴对称,熟练掌握相关点的轴对称特征是解决本题的关键.十一、填空题11.;【详解】解:由题意可知,∠B=60°,∠C=70°,所以°,所以°,在三角形BAE 中,°,所以∠EAD=5°故答案为:5°.【点睛】本题属于对角平分线和角度基本知识的变换求解.解析:5︒;【详解】解:由题意可知,∠B=60°,∠C=70°,所以18013050A ∠=-=°,所以25BAD ∠=°,在三角形BAE 中,906030BAE ∠=-=°,所以∠EAD=5°故答案为:5°.【点睛】本题属于对角平分线和角度基本知识的变换求解.十二、填空题12.55°【分析】先由矩形的对边平行及平行线的性质知∠B′FC=∠2=70°,再根据折叠的性质可得答案.【详解】∵四边形ABCD是矩形,∴AD∥BC,∴∠B′FC=∠2=70°,∴∠1+∠解析:55°【分析】先由矩形的对边平行及平行线的性质知∠B′FC=∠2=70°,再根据折叠的性质可得答案.【详解】∵四边形ABCD是矩形,∴AD∥BC,∴∠B′FC=∠2=70°,∴∠1+∠B′FE=180°-∠B′FC=110°,由折叠知∠1=∠B′FE,∴∠1=∠B′FE=55°,故答案为:55°.【点睛】本题主要考查折叠的性质和平行线的性质,解题的关键是掌握矩形的对边平行、两直线平行同位角相等性质.十三、填空题13.36【分析】根据平行线的性质、折叠的性质即可解决.【详解】∵AB∥CD,如图∴∠GEC=∠1=108゜由折叠的性质可得:∠2=∠FED∵∠2+∠FED+∠GEC=180゜∴∠2=解析:36【分析】根据平行线的性质、折叠的性质即可解决.【详解】∵AB ∥CD ,如图∴∠GEC =∠1=108゜由折叠的性质可得:∠2=∠FED∵∠2+∠FED +∠GEC =180゜∴∠2=11(180)(180108)3622GEC ︒-∠=⨯︒-︒=︒ 故答案为:36【点睛】本题考查了平行线的性质、折叠的性质、平角的概念,关键是掌握折叠的性质. 十四、填空题14.【分析】根据可以得到的关系,从而可以判定原点的位置,从而可以得到哪个数的绝对值最大,本题得以解决.【详解】∵,∴n 和q 互为相反数,O 在线段NQ 的中点处,∴绝对值最大的是点P 表示的数.故解析:p【分析】根据0n q +=可以得到n q 、的关系,从而可以判定原点的位置,从而可以得到哪个数的绝对值最大,本题得以解决.【详解】∵0n q +=,∴n 和q 互为相反数,O 在线段NQ 的中点处,∴绝对值最大的是点P 表示的数p .故答案为:p .【点睛】本题考查了实数与数轴,解题的关键是明确数轴的特点,利用数形结合的思想解答. 十五、填空题15.或.【分析】根据到两坐标轴的距离相等,可知横纵坐标的绝对值相等,列方程即可.【详解】解:∵点到两坐标轴的距离相等,∴,或,解得,或,故答案为:或.【点睛】本题考查了点到坐标轴的距解析:6-或45. 【分析】根据到两坐标轴的距离相等,可知横纵坐标的绝对值相等,列方程即可.【详解】解:∵点31,25()P m m +-到两坐标轴的距离相等, ∴31=25m m +-,31=25m m +-或31=(25)m m +--,解得,=6m -或4=5m , 故答案为:6-或45. 【点睛】本题考查了点到坐标轴的距离,解题关键是明确到坐标轴的距离是坐标的绝对值. 十六、填空题16.(1346.5,).【分析】观察图形可知,3个点一个循环,每个循环向右移动2个单位,依此可求顶点A2021的坐标.【详解】解:是等边三角形,边长为1,,,,…观察图形可知,3个点一个循解析:(1346.5. 【分析】观察图形可知,3个点一个循环,每个循环向右移动2个单位,依此可求顶点A 2021的坐标.【详解】解:12OA A 是等边三角形,边长为11A y ∴==112A ⎛ ⎝⎭,2(1,0)A ,3(2,0)A ,45(2A ,5(3,0)A 6(4,0)A … 观察图形可知,3个点一个循环,每个循环向右移动2个单位2021÷3=673…1,673×2=1346,故顶点A 2021的坐标是(1346.5故答案为:(1346.5 【点睛】本题考查了平面直角坐标系点的规律,等边三角形的性质,勾股定理,找到规律是解题的关键. 十七、解答题17.(1)(2)3【分析】(1)根据二次根式的运算法即可求解;(2)根据实数的性质化简,故可求解.【详解】(1)||+2==(2)==3.【点睛】此题主要考查实数与二次根式的运算解析:(12)3【分析】(1)根据二次根式的运算法即可求解;(2)根据实数的性质化简,故可求解.【详解】(1)-+(22(=11365+--=3.【点睛】此题主要考查实数与二次根式的运算,解题的关键是熟知其运算法则.十八、解答题18.(1)21;(2)17【分析】(1)根据完全平方公式变形,得到a2+b2=(a+b )2﹣2ab ,即可求解; (1)根据完全平方公式变形,得到(a ﹣b )2=a2+b2-2ab ,即可求解.【详解】解析:(1)21;(2)17【分析】(1)根据完全平方公式变形,得到a 2+b 2=(a +b )2﹣2ab ,即可求解;(1)根据完全平方公式变形,得到(a ﹣b )2=a 2+b 2-2ab ,即可求解.【详解】解:(1)∵a +b =5,ab =2,∴a 2+b 2=(a +b )2﹣2ab =52﹣2×2=21;(2))∵a +b =5,ab =2,∴(a ﹣b )2=a 2+b 2-2ab =21-2×2=17.【点睛】本题主要考查了完全平方公式,熟练掌握()2222a b a ab b +=±+ 及其变形公式是解题的关键.十九、解答题19.同旁内角互补两直线平行;AB ∥CD ;同位角相等,两直线平行;两条直线都与第三条直线平行,则这两直线也互相平行;∠AFE ,∠EFC ;两直线平行,内错角相等;∠A ,∠C+∠AFC .【分析】根据同旁解析:同旁内角互补两直线平行;AB ∥CD ;同位角相等,两直线平行;两条直线都与第三条直线平行,则这两直线也互相平行;∠AFE ,∠EFC ;两直线平行,内错角相等;∠A ,∠C +∠AFC .【分析】根据同旁内角互补,两直线平行可得 CD ∥EF ,根据∠A=∠2利用同位角相等,两直线平行,AB ∥CD ,根据平行同一直线的两条直线平行可得AB ∥CD ∥EF 根据平行线的性质可得∠A =∠AFE ,∠C =∠EFC ,根据角的和可得 ∠AFE =∠EFC +∠AFC 即可.证明:∵ ∠1+∠AFE =180°∴ CD ∥EF (同旁内角互补,两直线平行), ∵∠A=∠2 ,∴( AB ∥CD ) (同位角相等,两直线平行),∴ AB ∥CD ∥EF (两条直线都与第三条直线平行,则这两直线也互相平行)∴ ∠A = ∠AFE ,∠C = ∠EFC ,(两直线平行,内错角相等)∵ ∠AFE =∠EFC +∠AFC ,∴ ∠A = ∠C +∠AFC .故答案为同旁内角互补两直线平行;AB ∥CD ;同位角相等,两直线平行;两条直线都与第三条直线平行,则这两直线也互相平行;∠AFE ,∠EFC ;两直线平行,内错角相等;∠A ,∠C +∠AFC .【点睛】本题考查平行线的性质与判定,角的和差,掌握平行线的性质与判定是解题关键. 二十、解答题20.(1)见解析;(2)A′,O′【分析】(1)分别作出A ,B ,O 的对应点A′,B′,O′即可.(2)根据点的位置写出坐标即可.【详解】解:(1)如图,△A′B′O′即为所求作.(2)A′(解析:(1)见解析;(2)A ′()2,1,O ′()41-,【分析】(1)分别作出A ,B ,O 的对应点A ′,B ′,O ′即可.(2)根据点的位置写出坐标即可.【详解】解:(1)如图,△A ′B ′O ′即为所求作.(2)A ′(2,1),O ′(4,−1).本题考查作图−平移变换,解题的关键是熟练掌握基本知识,属于中考常考题型. 二十一、解答题21.(1),;(2);(3)【分析】(1)根据的范围确定出、的值;(2)求出,的范围,即可求出、的值,代入求出即可;(3)将代入中即可求出.【详解】解:(1),,,,故答案是:,;(解析:(1)4a =,5b =;(2)4,3x y =;(3)8±【分析】(1a 、b 的值;(221的范围,即可求出x 、y 的值,代入求出即可;(3)将4,3x y ==代入)y x 中即可求出.【详解】解:(1)1617<45∴<<,4a ∴=,5b =,故答案是:4a =,5b =;(2)4175<,627∴<,314<<,2264-,1的整数部分为:3;故答案是:4,3x y =;(3)174,3x y ==,3)464y x ∴==,)y x ∴的平方根为:8=±.【点睛】本题考查了估算无理数的大小的应用、求平方根,解题的关键是读懂题意及求出45<.二十二、解答题22.(1);(2)不能,理由见解析【分析】(1)由正方形面积,可求得正方形边长,然后利用勾股定理即可求出对角线长;(2)利用方程思想求出长方形的长边,然后与正方形边长比较大小即可.【详解】解:解析:(1)2)不能,理由见解析【分析】(1)由正方形面积,可求得正方形边长,然后利用勾股定理即可求出对角线长; (2)利用方程思想求出长方形的长边,然后与正方形边长比较大小即可.【详解】解:(1)∵正方形纸片的面积为21dm ,∴正方形的边长1AB BC dm ==, ∴AC =.(2)不能;根据题意设长方形的长和宽分别为3xcm 和2xcm .∴长方形面积为:2?312x x =,解得:x =∴长方形的长边为.∵4,∴他不能裁出.【点睛】本题考查了算术平方根在长方形和正方形面积中的应用,灵活的进行算术平方根计算及无理数大小比较是解题的关键.二十三、解答题23.(1)∠APC=α+β,理由见解析;(2)∠APC=α-β或∠APC=β-α;(3)58°【分析】(1)过点P 作PE ∥AB ,根据平行线的判定与性质即可求解;(2)分点P 在线段MN 或NM 的延长线解析:(1)∠APC =α+β,理由见解析;(2)∠APC =α-β或∠APC =β-α;(3)58°【分析】(1)过点P 作PE ∥AB ,根据平行线的判定与性质即可求解;(2)分点P 在线段MN 或NM 的延长线上运动两种情况,根据平行线的判定与性质及角的和差即可求解;(3)过点P,Q分别作PE∥AB,QF∥AB,根据平行线的判定与性质及角的和差即可求解.【详解】解:(1)如图2,过点P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠APE=α,∠CPE=β,∴∠APC=∠APE+∠CPE=α+β.(2)如图,在(1)的条件下,如果点P在线段MN的延长线上运动时,∵AB∥CD,∠PAB=α,∴∠1=∠PAB=α,∵∠1=∠APC+∠PCD,∠PCD=β,∴α=∠APC+β,∴∠APC=α-β;如图,在(1)的条件下,如果点P在线段NM的延长线上运动时,∵AB∥CD,∠PCD=β,∴∠2=∠PCD=β,∵∠2=∠PAB+∠APC,∠PAB=α,∴β=α+∠APC,∴∠APC =β-α;(3)如图3,过点P ,Q 分别作PE ∥AB ,QF ∥AB ,∵AB ∥CD ,∴AB ∥QF ∥PE ∥CD ,∴∠BAP =∠APE ,∠PCD =∠EPC ,∵∠APC =116°,∴∠BAP +∠PCD =116°,∵AQ 平分∠BAP ,CQ 平分∠PCD ,∴∠BAQ =12∠BAP ,∠DCQ =12∠PCD ,∴∠BAQ +∠DCQ =12(∠BAP +∠PCD )=58°,∵AB ∥QF ∥CD ,∴∠BAQ =∠AQF ,∠DCQ =∠CQF ,∴∠AQF +∠CQF =∠BAQ +∠DCQ =58°,∴∠AQC =58°.【点睛】此题考查了平行线的判定与性质,添加辅助线将两条平行线相关的角联系到一起是解题的关键. 二十四、解答题24.(1)见解析;(2)45;(3)不变,见解析;【分析】(1)由可求得m 及n ,从而可求得∠MOC=∠OCQ ,则可得结论;(2)易得∠AON 的度数,由两条角平分线,可得∠DON ,∠OCF 的度数,也 解析:(1)见解析;(2)45;(3)不变,见解析;【分析】(1)由220(70)0m n -+-=可求得m 及n ,从而可求得∠MOC =∠OCQ ,则可得结论;(2)易得∠AON 的度数,由两条角平分线,可得∠DON ,∠OCF 的度数,也易得∠COE 的度数,由三角形外角的性质即可求得∠OEF 的度数;(3)不变,分三种情况讨论即可.【详解】(1)∵200m -≥,2(70)0n -≥,且220(70)0m n -+-= ∴200m -=,2(70)0n -=∴m =20,n =70∴∠MOC =90゜-∠AOM =70゜∴∠MOC =∠OCQ =70゜∴MN ∥PQ(2)∵∠AON =180゜-∠AOM =160゜又∵OD 平分AON ∠,CF 平分OCQ ∠ ∴1802DON AON ∠=∠=︒,1352OCF OCQ ∠=∠=︒∵80MOE DON ∠=∠=︒∴10COE MOE MOC ∠=∠-∠=︒∴∠OEF =∠OCF +∠COE =35゜+10゜=45゜故答案为:45.(3)不变,理由如下:如图,当0゜<α<20゜时,∵CF 平分∠OCQ∴∠OCF =∠QCF设∠OCF =∠QCF =x则∠OCQ =2x∵MN ∥PQ∴∠MOC =∠OCQ =2x∵∠AON =360゜-90゜—(180゜-2x )=90゜+2x ,OD 平分∠AON∴∠DON =45゜+x∵∠MOE =∠DON =45゜+x∴∠COE =∠MOE -∠MOC =45゜+x -2x =45゜-x∴∠OEF =∠COE +∠OCF =45゜-x +x =45゜当α=20゜时,OD 与OB 共线,则∠OCQ =90゜,由CF 平分∠OCQ 知,∠OEF =45゜ 当20゜<α<90゜时,如图∵CF 平分∠OCQ∴∠OCF =∠QCF设∠OCF =∠QCF =x则∠OCQ =2x∵MN ∥PQ∴∠NOC =180゜-∠OCQ =180゜-2x∵∠AON =90゜+(180゜-2x )=270゜-2x ,OD 平分∠AON∴∠AOE=135゜-x∴∠COE=90゜-∠AOE=90゜-(135゜-x)=x-45゜∴∠OEF=∠OCF-∠COE=x-(x-45゜)=45゜综上所述,∠EOF的度数不变.【点睛】本题主要考查了角平分线的定义,平行线的判定与性质,角的和差关系,注意分类讨论,引入适当的量便于运算简便.二十五、解答题25.(1)105°;(2)135°;(3)5.5或11.5.【分析】(1)在△CEN中,用三角形内角和定理即可求出;(2)由∠BON=30°,∠N=30°可得MN∥CB,再根据两直线平行,同旁内角解析:(1)105°;(2)135°;(3)5.5或11.5.【分析】(1)在△CEN中,用三角形内角和定理即可求出;(2)由∠BON=30°,∠N=30°可得MN∥CB,再根据两直线平行,同旁内角互补即可求出∠CEN的度数.(3)画出图形,求出在MN⊥CD时的旋转角,再除以30°即得结果.【详解】解:(1)在△CEN中,∠CEN=180°-∠ECN-∠CNE=180°-45°-30°=105°;(2)∵∠BON=30°,∠N=30°,∴∠BON=∠N,∴MN∥CB.∴∠OCD+∠CEN=180°,∵∠OCD=45°∴∠CEN=180°-45°=135°;(3)如图,MN⊥CD时,旋转角为360°-90°-45°-60°=165°,或360°-(60°-45°)=345°,所以在第165°÷30°=5.5或345°÷30°=11.5秒时,直线MN恰好与直线CD垂直.【点睛】本题以学生熟悉的三角板为载体,考查了三角形的内角和、平行线的判定和性质、垂直的定义和旋转的性质,前两小题难度不大,难点是第(3)小题,解题的关键是画出适合题意的几何图形,弄清求旋转角的思路和方法,本题的第一种情况是将旋转角∠DOM放在四边形DOMF中,用四边形内角和求解,第二种情况是用周角减去∠DOM的度数.。
人教版七年级下册数学期末复习:计算题 专项练习题(Word版,含答案)

人教版七年级下册数学期末复习:计算题专项练习题1.已知数轴上三点M,O,N对应的数分别为﹣1,0,3,点P为数轴上任意一点,其对应的数为x.(1)MN的长为;(2)如果点P到点M、点N的距离相等,那么x的值是;(3)数轴上是否存在点P,使点P到点M、点N的距离之和是8?若存在,直接写出x 的值;若不存在,请说明理由.(4)如果点P以每分钟1个单位长度的速度从点O向左运动,同时点M和点N分别以每分钟2个单位长度和每分钟3个单位长度的速度也向左运动.设t分钟时点P到点M、点N的距离相等,求t的值.2.已知数轴上三点M,O,N对应的数分别为﹣2,0,4,点P为数轴上任意一点,其对应的数为x.(Ⅰ)如果点P到点M,点N的距离相等,那么x的值是.(Ⅱ)数轴上是否存在点P,使点P到点M,点N的距离之和是7?若存在,请求出x 的值;若不存在,请说明理由.(Ⅲ)如果点P以每分钟3个单位长度的速度从点O向左运动时,点M和点N分别以每分钟1个单位长度和每分钟4个单位长度的速度也向左运动,且三点同时出发,那么几分钟时点P到点M,点N的距离相等?3.例如:数轴上,3和5两数在数轴上所对的两点之间的距离可理解为|3﹣5|=2或理解为5﹣3=2,5与﹣2两数在数轴上所对的两点之间的距离可理解为|(﹣5)﹣2|=7或|5﹣(﹣2)|=7.试探索:(1)求7与﹣7两数在数轴上所对的两点之间的距离=(2)在数轴上找一个整数点A,使点A到﹣1、﹣5的距离之和等于4,请直接写出所有点A对应的数.(3)找出所有符合条件的整数x,使得|x+3|+|x﹣1|=4这样的整数是.(4)由以上探索猜想对于任何有理数x,|x﹣3|+|x+2|是否有最小值?如果有,写出最小值,并写出所有符合条件的整数x.如果没有,说明理由.4.同学们,你会求数轴上两点间的距离吗?例如:数轴上,3和5在数轴上所对的两点之间的距离可理解为|3﹣5|=2或理解为5﹣3=2,5与﹣2两数在数轴上所对的两点之间的距离可理解为|5﹣(﹣2)|=7或2﹣(﹣5)=7.解决问题:如图,在单位长度为1的数轴上有A,B,C三个点,点A,C表示的有理数互为相反数(1)请在数轴上标出原点O,并在A,B,C上方标出他们所表示的有理数;(2)B,C两点间的距离是(3)若点P为数轴上一动点,其对应的数为x①P、B两点之间的距离表示为,若P、B两点之间的距离为5,则x=②若点P到点B、点C的距离相等,则点P对应的数是③若点P到点B、点C的距离之和为7,则点P对应的数是(4)对于任何有理数a①|a﹣1|+|a+5|的最小值为,此时能使|a﹣1|+|a+5|取最小值的所有整数a的和是;②若a>1,则|a﹣1|﹣|a+5|=.③|a﹣1|+|a+2|+|a﹣4|+|a+5|的最小值是.5.平移和翻折是初中数学两种重要的图形变化.(1)平移运动①把笔尖放在数轴的原点处,先向负方向移动3个单位长度,再向正方向移动2个单位长度,这时笔尖的位置表示什么数?用算式表示以上过程及结果是A.(+3)+(+2)=+5;B.(+3)+(﹣2)=+1;C.(﹣3)﹣(+2)=﹣5;D.(﹣3)+(+2)=﹣1②一机器人从原点O开始,第1次向左跳1个单位,紧接着第2次向右跳2个单位,第3次向左跳3个单位,第4次向右跳4个单位,……,依次规律跳,当它跳2019次时,落在数轴上的点表示的数是.(2)翻折变换①若折叠纸条,表示﹣1的点与表示3的点重合,则表示2019的点与表示的点重合;②若数轴上A、B两点之间的距离为2019(A在B的左侧,且折痕与①折痕相同),且A、B两点经折叠后重合,则A点表示B点表示.③若数轴上折叠重合的两点的数分别为a,b,折叠中间点表示的数为.(用含有a,b的式子表示)6.平移和翻折是初中数学两种重要的图形变化(1)平移运动①把笔尖放在数轴的原点处,先向负方向移动3个单位长度,再向正方向移动2个单位长度,这时笔尖的位置表示什么数?用算式表示以上过程及结果是.A.(+3)+(+2)=+5 B.(+3)+(﹣2)=+1C.(﹣3)﹣(+2)=﹣5 D.(﹣3)+(+2)=﹣1②一机器人从数轴原点处O开始,第1次向负方向跳一个单位,紧接着第2次向正方向跳2个单位,第3次向负方向跳3个单位,第4次向正方向跳4个单位,…,依次规律跳,当它跳2017次时,落在数轴上的点表示的数是.(2)翻折变换①若折叠纸条,表示﹣1的点与表示3的点重合,则表示2017的点与表示的点重合;②若数轴上A、B两点之间的距离为2018(A在B的左侧,且折痕与①折痕相同),且A、B两点经折叠后重合,则A点表示,B点表示.③若数轴上折叠重合的两点的数分别为a,b,折叠中间点表示的数为.(用含有a,b的式子表示)7.已知如图,在数轴上有A,B两点,所表示的数分别为﹣10,﹣4,点A以每秒5个单位长度的速度向右运动,同时点B以每秒3个单位长度的速度也向右运动,如果设运动时间为t秒,解答下列问题:(1)运动前线段AB的长为;运动1秒后线段AB的长为;(2)运动t秒后,点A,点B运动的距离分别为和;(3)求t为何值时,点A与点B恰好重合;(4)在上述运动的过程中,是否存在某一时刻t,使得线段AB的长为5,若存在,求t 的值;若不存在,请说明理由.8.有一列数:2,4,8,16,32,…,从第二个数开始,每一个数与前一个数之比是一个常数q,这个常数q是2;根据这个规律,如果a1表示第1个数,即a1=2,a2表示第2个数,…,a n(n为正整数)表示这列数的第n个数.(1)a2019=,a n=.(2)阅读以下材料:如果想求1+3+32+33+...+320的值,可令S=1+3+32+33+ (320)将①式两边同乘以3,得:3S=3+32+33+…+320+321②由②减去①式,可以求得S=.对照阅读材料的解法求a1+a2+a3+…+a100的值;(3)记m=a101+a102+a103+…+a2019,求m的个位数.9.阅读材料1:如果a≠0,m,n都是正整数,那么a m表示的含义是“m个a相乘”,a n表示的含义是“n个a相乘”,a m+n表示的含义是“(m+n)个a相乘”,由此我们可以得到公式:a m•a n=a m+n,例如:32×35=32+5=37,5m×5=5m+1.阅读材料2:如果有一列数,从这列数的第2个数开始,每一个数与它的前一个数的比等于同一个非零的常数,这样的一列数就叫做等比数列,这个常数叫做等比数列的公比,通常用字母q表示(q≠0).(1)观察一个等比数列,,,,,…,则它的公比q=;如果a n(n为正整数)表示这个等比数列的第n项,那么a20=,a n=.(2)如果欲求1+2+4+8+16+…+230的值,可以按照如下步骤进行:令S=1+2+4+8+16+…+230……①等式两边同时乘以2,得2S=2+4+8+16+32+…+231……②由②式减去①式,得S=231﹣1,∴1+2+4+8+16+…+230=231﹣1请按照此解答过程,完成下列各题:①求1+5+52+53+54+…+520的值;②求3+2++++…+的值,其中m为正整数.(结果请用含m的代数式表示)10.已知数轴上有A、B、C三点,分别表示有理数﹣26,﹣10,10,动点P从A出发,沿AC方向,以每秒1个单位的速度向终点C运动,设点P运动时间为t秒.(1)用含t的代数式表示点P到点A、C的距离,PA=;PC=.(2)当点P运动到点B时,点Q从C点出发,沿CA方向,以每秒3个单位的速度向A点运动,当其中一点到达目的地时,另一点也停止运动.①当t=,点P、Q相遇,此时点Q运动了秒.②请用含t的代数式表示出在P、Q同时运动的过程中PQ的长.11.100个偶数按每行8个数排成如图所示的阵列:(1)图中方框内的9个数的和与中间的数有什么关系?(2)小童画了一个方框,他所画的方框内9个数的和为360,求这9个数;(3)小郑也画了一个方框,方框内9个数的和为1656,你能写出这9个数吗?如果不能,请说明理由;(4)从左到右,第1至第8列各列数之和分别记为a1、a2、a3、a4、a5、a6、a7、a8,则这8个数中,最大数与最小数之差等于.12.用“⊕”定义一种新运算:对于任意有理数a和b,规定a⊕b=ab2+2ab+a.如:1⊕3=1×32+2×1×3+1=16.(1)求(﹣2)⊕3的值;(2)若(a⊕3)⊕1=128,求a的值.13.用“⊕”定义一种新运算:对于任意有理数a和b,规定a⊕b=ab2+2ab+a.如:1⊕3=1×32+2×1×3+1=16.(1)求(﹣2)⊕3的值;(2)若(⊕3)⊕(﹣)=8,求a的值.14.用“☆”定义一种新运算:对于任意有理数a和b,规定a☆b=ab2+2ab+a.如:1☆3=1×32+2×1×3+1=16.(1)求(﹣2)☆3的值;(2)若(☆3)☆(﹣)=8,求a的值;(3)若2☆x=m,(x)☆3=n(其中x为有理数),试比较m,n的大小.15.如图,数轴上的A、B两点所表示的数分别为a、b,a+b<0,ab<0,(1)原点O的位置在;A.点A的右边B.点B的左边C.点A与点B之间,且靠近点A D.点A 与点B之间,且靠近点B(2)若a﹣b=2,①利用数轴比较大小:a1,b﹣1;(填“>”、“<”或“=”)②化简:|a﹣1|+|b+1|.参考答案1.解:(1)MN的长为3﹣(﹣1)=4;(2)根据题意得:x﹣(﹣1)=3﹣x,解得:x=1;(3)①当点P在点M的左侧时.根据题意得:﹣1﹣x+3﹣x=8.解得:x=﹣3.②P在点M和点N之间时,则x﹣(﹣1)+3﹣x=8,方程无解,即点P不可能在点M 和点N之间.③点P在点N的右侧时,x﹣(﹣1)+x﹣3=8.解得:x=5.∴x的值是﹣3或5;(4)设运动t分钟时,点P到点M,点N的距离相等,即PM=PN.点P对应的数是﹣t,点M对应的数是﹣1﹣2t,点N对应的数是3﹣3t.①当点M和点N在点P同侧时,点M和点N重合,所以﹣1﹣2t=3﹣3t,解得t=4,符合题意.②当点M和点N在点P异侧时,点M位于点P的左侧,点N位于点P的右侧(因为三个点都向左运动,出发时点M在点P左侧,且点M运动的速度大于点P的速度,所以点M永远位于点P的左侧),故PM=﹣t﹣(﹣1﹣2t)=t+1.PN=(3﹣3t)﹣(﹣t)=3﹣2t.所以t+1=3﹣2t,解得t=,符合题意.综上所述,t的值为或4.2.解:(I)根据题意得:|x﹣4|=|x﹣(﹣2)|,解得:x=1.故答案为:1.(II)根据题意得:|x﹣4|+|x﹣(﹣2)|=7,解得:x1=﹣2.5,x2=4.5.∴数轴上存在点P,使点P到点M,点N的距离之和是7,x的值为﹣2.5或4.5.(III)设运动时间为t分钟,则点P表示的数为﹣3t,点M表示的数为﹣t﹣2,点N表示的数为﹣4t+4,根据题意得:|﹣3t﹣(﹣t﹣2)|=|﹣3t﹣(﹣4t+4)|,∴﹣3t﹣(﹣t﹣2)=﹣3t﹣(﹣4t+4)或﹣3t﹣(﹣t﹣2)=3t+(﹣4t+4),解得:t1=2,t2=﹣2(舍去).答:2分钟时点P到点M,点N的距离相等.3.解:(1)7与﹣7两数在数轴上所对的两点之间的距离=7﹣(﹣7)=14.(2)所有点A对应的数为﹣1,﹣2,﹣3,﹣4,﹣5;(3)使得|x+3|+|x﹣1|=4这样的整数是﹣3,﹣2,﹣1,0,1;(4)答:有,最小值为5,符合条件的整数有:﹣2,﹣1,0,1,2,3.故答案为:(1)14;(2)﹣1,﹣2,﹣3,﹣4,﹣5;(3)﹣3,﹣2,﹣1,0,1.4.解:(1)如图所示,(2)B,C两点间的距离是|3﹣(﹣1)|=4,故答案为:4;(3)①P、B两点之间的距离表示为|x+1|,若P、B两点之间的距离为5,则x=4或﹣6,故答案为:|x+1|,4或﹣6;②∵点P到点B、点C的距离相等,∴x+1=3﹣x,解得:x=1,∴点P对应的数是1;故答案为:1;③若点P到点B、点C的距离之和为7,则有|x+1|+|3﹣x|=7,解得:x=4.5或﹣2.5;故答案为:4.5或﹣2.5;(4)①当a≥1时,|a﹣1|+|a+5|=a﹣1+a+5=2a+4,∴|a﹣1|+|a+5|的最小值为6,当a≤﹣5时,|a﹣1|+|a+5|=1﹣a﹣a﹣5=﹣2a﹣4,∴|a﹣1|+|a+5|的最小值为6;当﹣5<a<1时,|a﹣1|+|a+5|=1﹣a+a+5=6,综上所述,|a﹣1|+|a+5|的最小值为6;∴|a﹣1|+|a+5|取最小值的所有整数a的和是﹣5﹣4﹣3﹣2﹣1+0+1=﹣14;故答案为:6,﹣14;②当a>1,则|a﹣1|﹣|a+5|=a﹣1﹣a﹣5=﹣6,故答案为:﹣6;③|a﹣1|+|a+2|+|a﹣4|+|a+5|的最小值是③分类讨论:当a≤﹣5;|a﹣1|+|a+2|+|a﹣4|+|a+5|=﹣a+1﹣a﹣2﹣a+4﹣a﹣5=﹣4a﹣2,∴当a=﹣5时,|a﹣1|+|a+2|+|a﹣4|+|a+5|的最小值为18;当﹣5<a≤﹣2;|a﹣1|+|a+2|+|a﹣4|+|a+5|=﹣a+1﹣a﹣2﹣a+4+a+5=﹣2a+8 当a=﹣2时,|a﹣1|+|a+2|+|a﹣4|+|a+5|的最小值为12;当﹣2<a≤1;|a﹣1|+|a+2|+|a﹣4|+|a+5|=﹣a+1+a+2﹣a+4+a+5=12;当1<a≤4;|a﹣1|+|a+2|+|a﹣4|+|a+5|=a﹣1+a+2﹣a+4+a+5=2a+10,当a=1时,|a﹣1|+|a+2|+|a﹣4|+|a+5|的最小值为12;当a>4时,|a﹣1|+|a+2|+|a﹣4|+|a+5|=a﹣1+a+2+a﹣4+a+5=4a+2,综上所述,|a﹣1|+|a+2|+|a﹣4|+|a+5|的最小值是12,故答案为:12.5.解:(1)①把笔尖放在数轴的原点处,先向负方向移动3个单位长度,再向正方向移动2个单位长度,这时笔尖的位置表示的数为(﹣3)+(+2)=﹣1.故选:D.②一机器人从数轴原点处O开始,第1次向负方向跳一个单位,紧接着第2次向正方向跳2个单位,第3次向负方向跳3个单位,第4次向正方向跳4个单位,…,依次规律跳,当它跳2019次时,落在数轴上的点表示的数是﹣1010.故答案为:﹣1010.(2)①∵对称中心是1,∴表示2019的点与表示﹣2017的点重合;②∵对称中心是1,AB=2019,∴则A点表示﹣1008.5,B点表示1010.5;③若数轴上折叠重合的两点的数分别为a,b,折叠中间点表示的数为(a+b).故答案为:D;﹣1010;﹣2017;﹣1008.5,1010.5;(a+b).6.解:(1)①把笔尖放在数轴的原点处,先向负方向移动3个单位长度,再向正方向移动2个单位长度,这时笔尖的位置表示的数为(﹣3)+(+2),故选D.②一机器人从数轴原点处O开始,第1次向负方向跳一个单位,紧接着第2次向正方向跳2个单位,第3次向负方向跳3个单位,第4次向正方向跳4个单位,…,依次规律跳,当它跳2017次时,落在数轴上的点表示的数是﹣1019,故答案为﹣1009.(2)①∵对称中心是1,∴表示2017的点与表示﹣2015的点重合,②∵对称中心是1,AB=2018,∴则A点表示﹣1008,B点表示1010,③若数轴上折叠重合的两点的数分别为a,b,折叠中间点表示的数为(a+b);故答案为﹣2015,﹣1008,1010,(a+b).7.解:(1)AB=﹣4﹣(﹣10)=6,运动1秒后,A表示﹣5,B表示﹣1,∴AB=﹣1+5=4.故答案为6,4.(2)运动t秒后,点A,点B运动的距离分别为5t,3t,故答案为5t,3t.(3)由题意:(5﹣3)t=6,∴t=3.(4)由题意:6+3t﹣5t=5或5t﹣(6+3t)=5,解得t=或,∴t的值为或秒时,线段AB的长为5.8.解:(1)∵从第二个数开始,每一个数与前一个数之比是一个常数2∴a2019=22019,a n=2n故答案为:22019,2n.(2)设S100=a1+a2+a3+…+a100①则2S100=a2+a3+…+a100+a101 ②∴②﹣①得:S100=a101﹣a1=2101﹣2∴a1+a2+a3+…+a100的值为:2101﹣2.(2)∵2n的个位数字分别为2,4,8,6,循环a101=2101,a2019=22019101÷4=25...1,(2019﹣100)÷4=479 (3)故m=a101+a102+a103+…+a2019,中的第一个数a101的末位数字为2每相邻4个一组数字求和的个位数字为0,末三项的个位数字为:2,4,8,其和为14 故m=a101+a102+a103+…+a2019的个位数字为:4.∴m的个位数字为4.9.解:(1)q=÷=;a20=或,a n=或;(2)①令S=1+5+52+53+54+…+520……①,等式两边同时乘以5,得5S=5+52+53+54+55+…+521……②,由②式减去①式,得4S=521﹣1,,∴;②令……①等式两边同时乘以,得……②,由②式减去①式,得,∴.故答案为:;或,或.10.解:(1)PA=t;PC=36﹣t;故答案为:t,36﹣t;(2)①有依题意有t+3(t﹣16)﹣16=20,解得:t=21,t﹣16=21﹣16=5.故当t=21,点P、Q相遇,此时点Q运动了5秒.故答案为:21,5;②当16≤t≤21时PQ=36﹣t﹣3(t﹣16)=84﹣4t;当21<t≤28时PQ=3(t﹣16)+t﹣36=4t﹣84.11.解:(1)∵2+4+6+18+20+22+34+36+38=180=9×20,∴图中方框内的9个数的和是中间的数的9倍.(2)设中间数为x,则另外8个数分别为:x﹣18,x﹣16,x﹣14,x﹣2,x+2,x+14,x+16,根据题意得:9x=360,解得:x=40,∴这9个数分别为:22,24,26,38,40,42,54,56,58.(3)假设能成立,设中间数为y,则另外8个数分别为:y﹣18,y﹣16,y﹣14,y﹣2,y+2,y+14,y+16,根据题意得:9y=1656,解得:y=184,∵184÷2÷8=11……4,∴184为第12行第4个数,∴这9个数为:166,168,170,182、184、186、198、200、202.又∵仅有100个数,∴202不存在,∴假设不成立,即方框内9个数的和不能为1656.(4)∵200÷2÷8=12……4,∴尾数200为第13行第4个数,∴a1=2+18+34+...+194==1274,a2=1274+2×13=1300,a3=1300+2×13=1326,a4=1326+2×13=1352,a5=10+26+42+ (186)=1176,a6=1176+2×12=1200,a7=1200+2×12=1224,a8=1224+2×12=1248,∴这8个数中,最大数为1352,最小数为1176,∴1352﹣1176=176.故答案为:176.12.解:(1)根据题中新定义得:(﹣2)⊕3=﹣2×32+2×(﹣2)×3+(﹣2)=﹣18﹣12﹣2=﹣32;(2)根据题中新定义得:a⊕3=a×32+2×a×3+a=16a,16a⊕1=16a×12+2×16a×1+16a=64a,已知等式整理得:64a=128,解得:a=2.13.解:(1)根据题中新定义得:(﹣2)⊕3=﹣2×32+2×(﹣2)×3+(﹣2)=﹣18﹣12﹣2=﹣32;(2)根据题中新定义得:⊕3=×32+2××3+=8(a+1),8(a+1)⊕(﹣)=8(a+1)×(﹣)2+2×8(a+1)×(﹣)+8(a+1)=2(a+1),已知等式整理得:2(a+1)=8,解得:a=3.14.解:(1)(﹣2)☆3=﹣2×32+2×(﹣2)×3+(﹣2)=﹣18﹣12﹣2=﹣32;(2)解:☆3=×32+2××3+=8(a+1)8(a+1)☆(﹣)=8(a+1)×(﹣)2+2×8(a+1)×(﹣)+8(a+1)=8解得:a=3;(3)由题意m=2x2+2×2x+2=2x2+4x+2,n=x×32+2×x×3+=4x,所以m﹣n=2x2+2>0.所以m>n.15.解:(1)∵ab<0,a+b<0,∴原点O的位置在点A与点B之间,且靠近点A.故答案为:C(2)①∵a﹣b=2,原点O的位置在点A与点B之间,且靠近点A,∴a<1,b<﹣1,故答案为:<、<;②∵a<1,b<﹣1,∴a﹣1<0,b+1<0,∴|a﹣1|+|b+1|=﹣a+1﹣b﹣1=﹣a﹣b.。
(必考题)初中七年级数学下册第五章《相交线与平行线》复习题(含答案解析)

一、选择题1.下列定理中,没有逆定理的是().A.两直线平行,同旁内角互补B.线段垂直平分线上的任意一点到这条线段两个端点的距离相等C.等腰三角形两个底角相等D.同角的余角相等D解析:D【分析】把一个命题的条件和结论互换就得到它的逆命题.再分析逆命题是否为真命题.【详解】解:A、逆命题是:同旁内角互补,两直线平行,是真命题,故本选项不符合题意;B、逆命题是:到线段两个端点的距离相等的点在这条线段的垂直平分线上,是真命题,故本选项不符合题意;C、逆命题是:如果三角形有两个角相等,那么这个三角形是等腰三角形,是真命题,故本选项不符合题意;D、逆命题是:如果两个角相等,那么这两个角是同一个角的余角,是假命题,故本选项符合题意.故选:D.【点睛】本题主要考查了互逆定理的知识,如果一个定理的逆命题是假命题,那这个定理就没有逆定理.2.下列命题:①相等的角是对顶角;②同角的余角相等;③垂直于同一条直线的两直线互相平行;④在同一平面内,如果两条直线不平行,它们一定相交;⑤同位角相等;⑥如果直线a∥b,b⊥c,那么a⊥c,其中真命题的个数是()A.4个B.3个C.2个D.以上都不对B解析:B【分析】利用对顶角的定义、余角的定义、两直线的位置关系等知识分别判断后即可确定正确的选项.【详解】解:①相等的角不一定是对顶角,故错误,是假命题;②同角的余角相等,正确,为真命题;③在同一平面内,垂直于同一条直线的两直线互相平行,故错误,是假命题;④在同一平面内,如果两条直线不平行,它们一定相交,正确,为真命题;⑤两直线平行,同位角相等,故错误,是假命题;⑥如果直线a ∥b ,b ⊥c ,那么a ⊥c ,正确,为真命题,故选:B .【点睛】本题考查了命题与定理的知识,解题的关键是了解对顶角的定义、余角的定义、两直线的位置关系等知识,属于基础题,难度不大.3.如图://AB DE ,50B ∠=︒,110D ∠=︒,BCD ∠的度数为( )A .160︒B .115︒C .110︒D .120︒D解析:D【分析】 如图(见解析),利用平行线的判定与性质、角的和差即可得.【详解】如图,过点C 作//CF AB ,//AB DE ,////AB DE CF ∴,,180BCF B DCF D ∴∠=∠∠+∠=︒,50,110B D ∠=︒∠=︒,50,18070BCF DCF D ∴∠=︒∠=︒-∠=︒,120BCD BCF DCF ∴∠=∠+∠=︒,故选:D .【点睛】本题考查了平行线的判定与性质、角的和差,熟练掌握平行线的判定与性质是解题关键. 4.如图,如果AB ∥EF ,EF ∥CD ,下列各式正确的是( )A.∠1+∠2−∠3=90°B.∠1−∠2+∠3=90°C.∠1+∠2+∠3=90°D.∠2+∠3−∠1=180°D解析:D【分析】根据平行线的性质,即可得到∠3=∠COE,∠2+∠BOE=180°,进而得出∠2+∠3-∠1=180°.【详解】∵EF∥CD∴∠3=∠COE∴∠3−∠1=∠COE−∠1=∠BOE∵AB∥EF∴∠2+∠BOE=180°,即∠2+∠3−∠1=180°故选:D.【点睛】本题考查了平行线的性质,两条直线平行:内错角相等;两直线平行:同旁内角互补.5.在同一平面内,有3条直线a,b,c,其中直线a与直线b相交,直线a与直线c平行,那么b与c的位置关系是()A.平行B.相交C.平行或相交D.不能确定B解析:B【分析】根据a∥c,a与b相交,可知c与b相交,如果c与b不相交,则c与b平行,故b与a 平行,与题目中的b与a相交矛盾,从而可以解答本题.【详解】解:假设b∥c,∵a∥c,∴a∥b,而已知a与b相交于点O,故假设b∥c不成立,故b与c相交,故选:B.【点睛】本题考查平行线的性质,解答本题的关键是明确题意,利用平行线的性质解答.6.如图,给出下列条件:①∠1=∠2:②∠3=∠4:③AB∥CE,且∠ADC=∠B:④AB∥CE,且∠BCD=∠BAD.其中能推出BC∥AD的条件为()A.①②B.②④C.②③D.②③④D解析:D【分析】根据平行线的判定条件,逐一判断,排除错误答案.【详解】解:①∵∠1=∠2,∴AB∥CD,不符合题意;②∵∠3=∠4,∴BC∥AD,符合题意;③∵AB∥CD,∴∠B+∠BCD=180°,∵∠ADC=∠B,∴∠ADC+∠BCD=180°,由同旁内角互补,两直线平行可得BC∥AD,故符合题意;④∵AB∥CE,∴∠B+∠BCD=180°,∵∠BCD=∠BAD,∴∠B+∠BAD=180°,由同旁内角互补,两直线平行可得BC∥AD,故符合题意;故能推出BC∥AD的条件为②③④.故选:D.【点睛】本题考查了平行线的判定,关键是掌握判定定理:同位角相等,两直线平行.内错角相等,两直线平行.同旁内角互补,两直线平行.7.如图,下列说法错误的是( )A.若a∥b,b∥c,则a∥c B.若∠1=∠2,则a∥c C.若∠3=∠2,则b∥c D.若∠3+∠5=180°,则a∥c C解析:C【解析】试题分析:根据平行线的判定进行判断即可.解:A、若a∥b,b∥c,则a∥c,利用了平行公理,正确;B 、若∠1=∠2,则a ∥c ,利用了内错角相等,两直线平行,正确;C 、∠3=∠2,不能判断b ∥c ,错误;D 、若∠3+∠5=180°,则a ∥c ,利用同旁内角互补,两直线平行,正确;故选C .考点:平行线的判定.8.如图,一副直角三角板图示放置,点C 在DF 的延长线上,点A 在边EF 上,//AB CD ,90ACB EDF ∠=∠=︒,则CAF ∠=( )A .10︒B .15︒C .20︒D .25︒B解析:B【分析】 根据平行线的性质可知,BAF=EFD=45∠∠ ,由BAC=30∠ 即可得出答案。
人教版初中七年级数学下册第七单元《平面直角坐标系》复习题(含答案解析)

一、选择题1.在直角坐标系中,ABC 的顶点()1,5A -,()3,2B ,()0,1C ,将ABC 平移得到A B C ''',点A 、B 、C 分别对应A '、B '、C ',若点()1,4A ',则点'C 的坐标( ) A .()2,0-B .()2,2-C .()2,0D .()5,1 2.已知点A (0,-6),点B (0,3),则A ,B 两点间的距离是( ) A .-9B .9C .-3D .3 3.下列各点中,在第二象限的是( ) A .()1,0 B .()1,1 C .()1,1- D .()1,1- 4.如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的坐标分别为(2,1)A -和(2,3)B --,那么第一架轰炸机C 的坐标是( )A .(2,3)-B .(2,1)-C .(2,1)--D .(3,2)- 5.如图,在ABC ∆中,90ACB ∠=︒,AC BC =,点C 的坐标为()2,0-,点B 的坐标为()1,4,则点A 的坐标为( )A .()6,3-B .()3,6-C .()4,3-D .()3,4- 6.已知点M (9,﹣5)、N (﹣3,﹣5),则直线MN 与x 轴、y 轴的位置关系分别为( )A .相交、相交B .平行、平行C .垂直相交、平行D .平行、垂直相交7.点()1,3M m m ++在x 轴上,则M 点坐标为( )A .()0,4-B .()4,0C .()2,0-D .()0,2-8.一只跳蚤在第一象限及x 轴、y 轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1)→(1,1)→(1,0)→(2,0)…],且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是( )A .(4,0)B .(5,0)C .(0,5)D .(5,5)9.如图,在平面直角坐标系中,、、A B C 三点的坐标分别是()()()1,2,4,2,2,1--,若以A B C D 、、、为顶点的四边形为平行四边形,则点D 的坐标不可能是( )A .()7,1-B .()3,1--C .()1,5D .()2,510.如图,在坐标平面内,依次作点()3,1P -关于直线y x =的对称点1P ,1P 关于x 轴对称点2P ,2P 关于y 轴对称点3P ,3P 关于直线y x =对称点4P ,4P 关于x 轴对称点5P ,5P 关于y 轴对称点6P ,…,按照上述变换规律继续作下去,则点2019P 的坐标为( )A .()1,3-B .()1,3C .()3,1-D .()1,3- 11.在平面直角坐标系xOy 中,对于点P (x ,y ),我们把点P ′(﹣y +1,x +1)叫做点P 的伴随点.已知点A 1的伴随点为A 2,点A 2的伴随点为A 3,点A 3的伴随点为A 4…,这样依次得到点A 1,A 2,A 3,…,A n ,若点A 1的坐标为(3,1),则点A 2019的坐标为( ) A .(0,﹣2) B .(0,4) C .(3,1) D .(﹣3,1) 12.若点(1,)A n -在x 轴上,则点(1,1)B n n +-在( ).A .第一象限B .第二象限C .第三象限D .第四象限 13.在平面直角坐标系中,将点A (﹣2,﹣2)先向右平移6个单位长度再向上平移5个单位长度得到点A ',则点A '的坐标是( )A .(4,5)B .(4,3)C .(6,3)D .(﹣8,﹣7) 14.在平面直角坐标系中,点()25,1N a -+一定在( )A .第一象限B .第二象限C .第三象限D .第四象限 15.已知点M (12,﹣5)、N (﹣7,﹣5),则直线MN 与x 轴、y 轴的位置关系分别为( )A .相交、相交B .平行、平行C .垂直相交、平行D .平行、垂直相交 二、填空题16.定义:在平面直角坐标系xOy 中,把从点P 出发沿纵或横方向到达点(至多拐一次弯)的路径长称为P ,Q 的“实际距离”.如图,若(1,1)P -,(2,3)Q ,则P ,Q 的“实际距离”为5,即5PS SQ +=或5PT TQ +=.环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A ,B ,C 三个小区的坐标分别为(2,2)A ,(4,2)B -,(2,4)C --,若点M 表示单车停放点,且满足M 到A ,B ,C 的“实际距离”相等,则点M 的坐标为______.17.已知点A (2a+5,a ﹣3)在第一、三象限的角平分线上,则a =_____.18.写一个第三象限的点坐标,这个点坐标是_______________.19.已知点()3,2P -,//MP x 轴,6MP =,则点M 的坐标为______.20.直角坐标系内,一动点按图中箭头所示方向依次运动,第1次从点(-1,0)运动到点(0,1),第2次运动到点(1,0),第3次运动到点(2,-2),……,按这样的运动规律,动点第2021次运动到的点的坐标为____________.21.如图,点A 的坐标(-2,3)点B 的坐标是(3,-2),则图中点C 的坐标是______.22.如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序按图中“→”方向排列,如()1,0,()2,0,()2,1,()1,1,1,2,()2,2根据这个规律,第2020个点的坐标为______.23.下图是利用平面直角坐标系画出的老北京一些地点的示意图,这个坐标系分别以正东和正北方向为x 轴和y 轴的正方向,如果表示右安门的点的坐标为(-2,-3),表示朝阳门的点的坐标为(3,2),那么表示西便门的点的坐标为___________________.24.如图,在平面直角坐标系上有点1,0A ,点A 第一次跳动至点()11,1A -,第二次点1A 向右跳到()22,1A ,第三次点2A 跳到()32,2A -,第四次点3A 向右跳动至点()43,2A ,…,依此规律跳动下去,则点2019A 与点2020A 之间的距离是___________.25.如图,已知A 1(1,2),A 2(2,2),A 3(3,0),A 4(4,﹣2),A 5(5,﹣2),A 6(6,0)…,按这样的规律,则点A 2020的坐标为______.26.若x ,y 为实数,且满足330x y -++=,则 A(x ,y)在第____象限三、解答题27.已知在平面直角坐标系中,ABC 三个顶点的坐标分别为:(3,1)A --,(2,4)B --,(1,3)C -.(1)作出ABC ;(2)若将ABC 向上平移3个单位后再向右平移2个单位得到111A B C △,请作出111A B C △.28.在平面直角坐标系中,点A 从原点O 出发,沿x 轴正方向按半圆形弧线不断向前运动,其移动路线如图所示,其中半圆的半径为1个单位长度,这时点1234,,,A A A A 的坐标分别为()()()()12340,0,1,12,03,1A A A A -,按照这个规律解决下列问题:()1写出点5678,,,,A A A A 的坐标;()2点2018A的位置在_____________(填“x轴上方”“x轴下方”或“x轴上”);()3试写出点n A的坐标(n是正整数).29.如图,中国象棋中对“象”的走法有一定的限制,只能走“田”字.若此时“象”的坐标为()--“帅”的坐标为()2,40,4-,建立直角坐标系并试写出此“象”下一步可能走到的各位置的坐标.30.如图,将△ABC向右平移4个单位长度,再向下平移2个单位长度,得到△A′B′C′.(1)请画出平移后的图形△A′B′C′.(2)写出△A′B'C'各顶点的坐标.(3)求出△A′B′C′的面积.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《一卷》一、选择题1﹒下列方程中,二元一次方程是()A﹒x+xy=8 B﹒y=12x-1 C﹒x+1x=2 D﹒x2+y-3=02﹒已知2x+3y=6,用含y的代数式表示x得()A﹒x=3-32y B﹒y=2-23x C﹒x=3-3y D﹒y=2-2x3﹒若方程组35223x y kx y k+=+⎧⎨+=⎩的解x,y的和为0,则k的值为()A﹒2B﹒3 C﹒4 D﹒54﹒若方程组2324x yax by+=⎧⎨+=⎩与方程组3ax byx y+=⎧⎨-=⎩有相同的解,则a,b的值分别为()A﹒1,2 B﹒1,0 C﹒13,-23D﹒-13,235﹒在等式y=kx+b中,当x=1时,y=2,当x=-1时,y=4,则k b的值是()A﹒-3B﹒3C﹒-1D﹒16﹒如图,是正方体的一种表面展开图,若这个正方体相对的两个面上的代数式的值相等,则x+y+a的值为()A﹒5B﹒6C﹒7D﹒8二、填空题7.方程2x+3y=17的正整数解为___________________________________.8.若关于x,y的二元一次方程组59x y kx y k+=⎧⎨-=⎩的解也是二元一次方程2x+3y=6的解,则k的值为___________.9. 在解方程组134ax bycx y-=⎧⎨-=⎩时,小明因看错了b的符号,从而求得的解为32xy=⎧⎨=⎩;小芳因看漏了c,求得的解为51xy=⎧⎨=⎩,则a+b+c的值为___________.三、解答题10.(10分)用合适的方法解下列方程组:(1)1132(1)6x yx y⎧+=⎪⎨⎪+-=⎩(2)2320235297x yx yy--=⎧⎪-+⎨+=⎪⎩<二卷>一、选择题4、如图4,有一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )A .30° B .25° C .20°D .15°图4 图5 图6 5、某商品的商标可以抽象为如图5所示的三条线段,其中AB ∥CD ,∠EAB=45°,则∠FDC 的度数是( )A .30︒ B .45︒ C .60︒ D .75︒6、如图6,已知直线a ∥b,∠1=40°,∠2=60°,则∠3等于 A.100° B.60° C .40° D.20° 二、填空题11.已知三条不同的直线a ,b ,c 在同一平面内,下列四个命题: ①如果a ∥b ,a ⊥c ,那么b ⊥c ; ②如果b ∥a ,c ∥a ,那么b ∥c ; ③如果b ⊥a ,c ⊥a ,那么b ⊥c ; ④如果b ⊥a ,c ⊥a ,那么b ∥c . 其中真命题的是 .(填写所有真命题的序号)13.如图,C 岛在A 岛的北偏东50o 方向,C 岛在B 岛的北偏西40o 方向,则从C 岛看A ,B 两岛的视角∠ACB 等于 .《三卷》一、选择题:1、下列说法错误的是( )A.5是25的算术平方根 B.1是1的一个平方根C. 的平方根是-4D.0的平方根与算术平方根都是02、下列说法正确的是()A.没有平方根B.=C.1的平方根是1D.立方根等于本身的数是0、和3、若a2=4,b2=9,且ab<0,则a﹣b的值为()A.﹣2 B.±5 C.5 D.﹣54、满足的整数x是( )A.﹣2,﹣1,0,1,2,3B.﹣1,0,1,2,3C.﹣2,﹣1,0,1,2,3D.﹣1,0,1,25、设n为正整数,且,则n的值为(). A.9 B.8 C.7 D.66、已知=1.147,=2.472,=0.5325,则的值是()A.24.72B.53.25C.11.47D.114.77. 下列说法:①一个数的平方根一定有两个;②一个正数的平方根一定是它的算术平方根;③负数没有立方根.其中正确的个数有()A.0个B.1个C.2个D.3个8.如图,在数轴上标注了四段范围,则表示的点落在()A.段①B.段② C.段③ D.段④9.如果x2=2,有;当x3=3时,有,想一想,从下列各式中,能得出的是()A.x2=±20 B.x20=2 C.x±20=20 D.x3=±2010.已知a=,b=,c=,则下列大小关系正确的是()A.a>b>c B.c>b>a C.b>a>c D.a>c>b11.有下列说法①无理数一定是无限不循环小数②算术平方根最小的数是零③﹣6是(﹣6)2的一个算术平方根④﹣=其中正确的是()A.①②③B.②③④C.①②④D.①③④12.比较2,,的大小,正确的是()A.B.2C.2D.<213.下列说法:①﹣2是4的平方根;②16的平方根是4;③﹣125的平方根是15;④0.25的算术平方根是0.5;⑤的立方根是±;⑥的平方根是9,其中正确的说法是()A.1个B.2个C.3个D.4个二、填空题14.若a=b2﹣3,且a的算术平方根为1,则b的值是.15.已知≈2.078,≈20.78,则y=.16.若的值在两个整数a与a+1之间,则a=.17.若一个实数的算术平方根等于它的立方根,则这个数是.18.数轴上有A、B、C三个点,B点表示的数是1,C点表示的数是,且AB=BC,则A点表示的数是.二、填空题:19、的相反数是________.20、的平方根是.21、如果a的平方根是±2,那么= .三、解答题:22.求x的值: 23、求x的值:-25=024、计算:; 25.26、如图,化简.27、己知2a-1的平方根是±3,3a+2b+4的立方根是3,求a+b的平方根.28.已知x 是的整数部分,y 是的小数部分,求x (﹣y )的值.29.计算:(1)+×﹣÷(2)3+|﹣3|﹣(﹣3)2﹣(﹣1)30.已知+|y ﹣2|=0,且与互为相反数,求yz ﹣x 的平方根.31.(6分)已知x x x y 93113+---=,求323-+y x 的平方根.《四卷》一、选择题(每题2分,共30分) 1、 下列各数中,不是无理数的是( )。
A.7 B. 0.5 C. 2π D. ⋅⋅⋅⋅⋅⋅151151115.02、 已知点P (a ,b ),ab >0,a +b <0,则点P 在( )。
A. 第一象限B. 第二象限C. 第三象限D. 第四象限 3、 点P (m +3,m +1)在直角坐标系的x 轴上,则点P 坐标为( )。
A. (0,-2)B. (2,0)C. (4,0)D. (0,-4) 4、 如果点M 到x 轴和y 轴的距离相等,则点M 横、纵坐标的关系是( )。
A. 相等B. 互为相反数C. 互为倒数D. 相等或互为相反数 5、 将某图形的横坐标都减去2,纵坐标不变,则该图形( )。
A. 向右平移2个单位B. 向左平移2个单位C. 向上平移2个单位D. 向下平移2个单位 6、 和数轴上的点一一对应的是( )。
A. 整数B. 有理数C. 无理数D. 实数7、 点P 位于x 轴下方,y 轴左侧,距离x 轴4个单位长度,距离y 轴2个单位长度,那么点P 的坐标是( )。
A. (4,2) B. (-2,-4) C. (-4,-2) D. (2,4) 8、 已知点P (x ,x ),则点P 一定( )。
A. 在第一象限B. 在第一或第四象限C. 在x 轴上方D. 不在x 轴下方9、 若x ,y 为实数,且022=-++y x ,则2017⎪⎪⎭⎫ ⎝⎛y x 的值为( )。
A. 1B. -1C. 2D. -210、已知点A (2,-3),线段AB 与坐标轴没有交点,则点B 的坐标可能是( )。
A. (-1,-2)B. (3,-2)C. (1,2)D. (-2,3) 11、下列说法正确的是( )。
A. 实数-2a 是负数 B.a a =2C. a -一定是正数D. 实数-a 的绝对值是a二、填空题(每题3分,共18分)12、在电影票上,如果将“8排4号”记作(8,4),那么(10,15)表示___________。
13、已知x 轴上点P 到y 轴的距离是3,则点P 坐标是______。
14、如图,点A ,B 的坐标分别为(1,2)、(4,0),将△AOB 沿x轴向右平移,得到△CDE ,已知DB =1,则点C 的坐标为____。
三、解答题:(共52分)15、计算题(每题4分,共16分)(1)()23222+--- (2)⎪⎭⎫⎝⎛-7717 (3)33809.04181--++- (4)()1223232--+---16、(6分)已知x,y满足x xxy28916162 2---+-=,求xy的平方根。
17、(8分)如图,在平面直角坐标系中,A(-4,0),B(6,0),C(2,4),D(-3,2)。
(1)求四边形ABCD的面积;(2)若点P是y轴上一点,且三角形ABP的面积等于四边形ABCD面积的一半,求P点坐标。
《五卷》1、.点M在y轴的左侧,到x轴、y轴的距离分别是3和5,则点M的坐标是()A. (-5,3)B. (-5,-3)C. (5,3)或(-5,3)D. (-5,3)或(-5,-3) 2.已知坐标平面内点M(a,b)在第三象限,那么点N(b,-a)在()A. 第一象限B. 第二象限C. 第三象限D. 第四象3.在平面直角坐标系中,将点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(-3,2)重合,则点A的坐标是()A. (2,5)B. (-8,5)C. (-8,-1)D. (2,-1)4.如图,线段OB,OC,OA的长度分别是1,2,3,且OC平分∠AOB. 若将A点表示为(3,30°),B点表示为(1,120°),则C点可表示为.5.在平面直角坐标系中,点A的坐标为(-1,3),线段AB∥x轴,且AB=4,则点B的坐标为.6.已知点P的坐标为(2-a,3a+6),且点P到两坐标轴的距离相等,则a= .7.如图,△ABC 在直角坐标系中, (1)请写出△ABC 各点的坐标; (2)求出△ABC 的面积;(3)若把△ABC 向上平移2个单位,再向右平移2个单位得到△A'B'C',在图中画出△ABC 变化位置,并写出A'、B'、C'的坐标.8.已知如图,四边形ABCD 的四个顶点的坐标分别为A (0,0)、B (9,0)、C (7,5)、D (2,7).(1)试计算四边形ABCD 的面积. (2)若将该四边形各顶点的横坐标都加2,纵坐标都加3,其面积怎么变化?为什么?9.如图所示,在平面直角坐标系中,点A ,B 的坐标分别为A(a ,0),B(b ,0),且a , b 满足 |a +2|+b -4=0,点C 的坐标为(0,3).(1)求a ,b 的值及S 三角形ABC ; (2)若点M 在x 轴上,且S 三角形ACM=13S三角形ABC,试求点M 的坐标.《一卷》一、选择题1﹒解答:因为方程x+xy=8中含未知数项的最高次数为2,所以A项不是二元一次方程;因为y=12x-1符合二元一次方程的定义,所以B项是二元一次方程;因为方程y=12x-1不是整式方程,所以C项不是二元一次方程;因为方程x2+y-3=0中含未知数项的最高次数为2,所以D项不是二元一次方程.故选:B.2﹒解答:移项得:2x=6-3y,两边同时乘以12得:x=3-32y,故选:A.3﹒解答:解方程组35223x y kx y k+=+⎧⎨+=⎩,得264x ky k=-⎧⎨=-⎩,∵x,y的和为0,∴2k-6+(4-k)=0,∴k=2,故选:A.4﹒解答:∵方程组2324x yax by+=⎧⎨+=⎩与方程组3ax byx y+=⎧⎨-=⎩有相同的解,∴23x yx y+=⎧⎨-=⎩,解得:11xy=⎧⎨=⎩,∴243a ba b+=⎧⎨+=⎩,解得:12ab=⎧⎨=⎩,故选:A.5﹒解答:把x=1,y=2和x=-1,y=4代入等式y=kx+b,得:24k bk b+=⎧⎨-+=⎩,解得:13kb=-⎧⎨=⎩,∴k b=(-1)3=-1,故选:C.6﹒解答:由题意,得2551y xx y=-⎧⎨-=+⎩,解得:31xy=⎧⎨=⎩,易得a=3,所以x+y+a=3+1+3=7.故选:C.二、填空题7.解答:方程2x+3y=17可化为y=1723x-,∵x,y均为正整数,∴17-2x>0,且为3的倍数,当x=1时,y=5,当x=4时,y=3,当x=7时,y=1,∴方程2x+3y=17的正整数解为15xy=⎧⎨=⎩,43xy=⎧⎨=⎩,71xy=⎧⎨=⎩.故答案为:15xy=⎧⎨=⎩,43xy=⎧⎨=⎩,71xy=⎧⎨=⎩.8.解答:59x y kx y k+=⎧⎨-=⎩①②,①+②得:2x=14k,则x=7k,把x=7k代入①得:7k+y=5k,则y=-2k,将x=7k,y=-2k代入2x+3y=6得:14k-6k=6,解得:k=34.故答案为:34.9.解答:134ax bycx y-=⎧⎨-=⎩①②∵小明看错了b的符号,但方程②没错,∴可把32xy=⎧⎨=⎩代入②得:3c-2=4,则c=2,把32xy=⎧⎨=⎩代入ax+by=13得:3a+2b=13③∵小芳因看漏了c,但方程①没错,∴可把51xy=⎧⎨=⎩代入①得:5a-b=13④,联立③④得:3213513a ba b+=⎧⎨-=⎩,解得:32ab=⎧⎨=⎩,∴a+b+c=3+2+2=7.故答案为:7.三、解答题10、解答:(1)化简并整理,得:3 32 4x yx y-=-⎧⎨-=⎩①②,由①得:x=3y-3③,把③代入②得:2(3y-3)-y=4,解得:y=53,把y=53代入③得:x=3×53-3=2,所以原方程组的解是253xy=⎧⎪⎨=⎪⎩.(2)解法一:化简并整理,得:23 221158x yx y-=⎧⎨+=⎩①②,②-①得:14y=56,解得:y=4,把y=4代入①得:2x-3×4=2,解得:x=7,所以原方程组的解是74xy=⎧⎨=⎩.解法二:2320235297x yx yy--=⎧⎪⎨-++=⎪⎩①②,由①得:2x-3y=2 ③,把③代入②得:25297y++=,解得:y=4,把y=4代入①得:2x-3×4-2=0,解得:x=7,所以原方程组的解是74 xy=⎧⎨=⎩.《二卷》一、选择题4、B 5、B 6、A二、填空题11. ①②④13.90o《三卷》1、C;2、D3、B4、A5、C6、C7【解答】解:∵负数没有平方根,一个正数有两个平方根,0只有一个平方根是0,∴①错误;∵一个正数有两个平方根,它们互为相反数,而一个正数的算术平方根只有一个,∴②错误;∵一个负数有一个负的立方根,∴③错误;即正确的个数是0个,故选A.8.【解答】解:∵≈1.414,∴2≈2.828,∴2.8<2<2.9,故选:C.9.【解答】解:根据题意,可知x20=2,能得出.故选B.10.【解答】解:∵a==,b==,c==,且<<,∴>>,即a>b>c,故选A.11.【解答】解:①无理数一定是无限不循环小数,正确;②算术平方根最小的数是零,正确;③﹣6是(﹣6)2的一个平方根,故错误;④﹣=,正确;正确的是:①②④.故选:C.12.解:∵2=,∴2;∵,∴,∴<.故选:A.13.【解答】解①﹣2是4的平方根,正确;②16的平方根是±4,故错误;③﹣125的平方根是﹣5,故错误;④0.25的算术平方根是0.5,正确;⑤的立方根是,故错误;⑥=9,9的平方根是±3,故错误;其中正确的说法是:①④,共2个,故选:B.二、填空题14.【解答】解:∵1的算术平方根是1,∴a=1.∴b2﹣3=1,即b2=4.∴b=±2.故答案为:±2.15.【解答】解:∵≈2.078,≈20.78,∴y=8996,16.【解答】解:∵的值在两个整数a与a+1之间,4<<5,∴5<<6,∴a=5.17.【解答】解:1的算术平方根是1,1额立方根是1,0的算术平方根是0,0的立方根是0,即算术平方根等于立方根的数只有1和0,故答案为:0和1.18.【解答】解:设A 点表示x ,∵B 点表示的数是1,C 点表示的数是,且AB=BC ,∴1﹣x=﹣1.解得:x=2﹣ ,故答案为:2﹣. 19、答案为: 20、答案为:±2; 21、答案为:2.22、答案为:x=-8; 23、答案为:x=23/6或x=13/6; 24、答案为:9;25、答案为:0;26、解:由数轴可知:b <a <0,c >0,|c|>|b|>|a|,∴a+b <0,c ﹣a >0,b+c <0,=﹣a+a+b+c ﹣a+b+c=2b+2c ﹣a.27、,,,结果. 28.【解答】解:∵3<<4,∴的整数部分x=3,小数部分y=﹣3, ∴﹣y=3,∴x (﹣y )=3×3=9.29.【解答】解:(1)+×﹣÷=9+4﹣×(﹣)=13+=14; (2)3+|﹣3|﹣(﹣3)2﹣(﹣1)=3+3﹣﹣18﹣2+=3﹣17. 30.【解答】解:∵+|y ﹣2|=0,∴x +1=0,y ﹣2=0,∴x=﹣1,y=2. ∵且与互为相反数,∴1﹣2z +3z ﹣5=0,解得z=4.∴yz ﹣x=2×4﹣(﹣1)=9, ∴yz ﹣x 的平方根是±3.《四卷》一、选择题(每题2分,共30分)1、 B2、C3、B4、D5、B6、D7、B8、D9、B 10、B 11、B二.填空题(每题3分,共18分)12__10排15号__。