浙教版八年级数学下册《第6章反比例函数》检测题含答案
浙教版下学期八年级数学(下册)第六章 反比例函数单元测试卷及答案

浙教版下学期八年级数学(下册)第六章 反比例函数单元测试卷班级__________姓名____________总分___________一、选择题 1.在反比例函数1ky x-=的图象的每一条曲线上,y 都随x 的增大而增大,则k 的值可以是( )A. -1B. 0C. 1D. 2 2.函数y=2x+1与函数k y x =的图象相交于点(2, m),则下列各点不在函数ky x =的图象上的是( )A. (-2,-5)B. (52,4) C. (-1,10) D. (5,2) 3.已知函数1y x=的图象如图所示,当x ≥-1时,y 的取值范围是( )A. y <-1B. y ≤-1C. y ≤-1或y >0D. y <-1或y ≥0 4.如图,矩形ABOC 的面积为3,反比例函数ky x=的图象过点A ,则k=( )A. 3B. 1.5-C. 3-D. 6- 5.在函数(0)ky k x=>的图象上有三点A 1(1x , 1y ),A 2(2x , 2y ),A 3(3x , 3y ),已知1230x x x <<<,则下列各式中,正确的是( )A. 123y y y <<B. 321y y y <<C. 213y y y <<D. 312y y y << 6.函数y=kx-k 与y=-kx在同一坐标系中的大致图象是( )7.如图,两个反比例函数C 1:y=1k x 和C 2:y=2kx在第一象限内的图象如图,P 在C 1上作PC 、PD 垂直于坐标轴,垂线与C 2交点为A 、B ,则下列结论,其中正确的是( )①△ODB 与△OCA 的面积相等;②四边形PAOB 的面积等于k 1- k 2;③PA 与PB 始终相等;④当点A 是PC 的中点时,点B 一定是PD 的中点A. ①②B. ②④C. ①②④D. ①③④ 8.下列函数 (1)y=2x-1 (2)y=-2x (3)y=2k x - (4)y=3(0)x x->中, y 随x 增大而增大的有( )A. (1) (3) (4)B. (1) (2)C. (1) (4)D. (2) (4) 9.函数()1ay a x =-是反比例函数,则此函数图象位于( )A. 第一、三象限B. 第二、四象限C. 第一、四象限D. 第二、三象限 10.如图,反比例函数k x y =(k >0)与一次函数1y x b 2=+的图象相交于两点A (1x ,1y ),B (2x ,2y ),线段AB 交y 轴与C ,当|1x -2x |=2且AC = 2BC 时,k 、b 的值分别为( )A. k =12,b =2 B. k =49,b =1 C. k =13,b =13 D. k =49,b =13二、填空题11.若点(4,m )在反比例函数8y x=(x≠0)的图象上,则m 的值是 . 12.已知y+1与x-3成反比例,且当x=7时,y=-2,则y 关于x 的函数解析式为________________. 13.函数()1240(0)y x x y x x=≥=>,的图象如右图所示,则结论:①两函数图象的交点A 的坐标为()22,; ②当2x >时, 21y y >;③当1x =时, 3BC =; ④当x 逐渐增大时,1y 随着x 的增大而增大, 2y 随着x 的增大而减小.其中正确结论的序号是 .14.如图, △P 1OA 1与△P 2A 1A 2是等腰直角三角形,点1P 、2P 在函数4(0)y x x=>的图象上,斜边1OA 、12A A 都在x 轴上,则点2A 的坐标是____________.15.如图,函数y=4x和y=8x在第一象限的图像,点P1,P2,P3,……,P2011都是曲线上的点,它们的横坐标分别为x1,x2,x3,……,x2011,纵坐标分别为1,3,5,7……,是连续的2011个奇数,过各个P点作y的平行线,与另一双曲线交点分别是Q1(x1,y1),Q2(x2,y2),Q3(x3,y3),……,Q2012(x2012,y2012),则y2012=___________16.在y轴右侧且平行于y轴的直线l被反比例函数1yx=(0x>)与函数12yx=+(0x>)所截,当直线l向右平移4个单位时,直线l被两函数图象所截得的线段扫过的面积为__________平方单位.三、解答题17.若a是b+3的反比例函数,且当b=3时a=1,求:(l)a关于b的函数关系式;(2)当b=0时a的值.18.已知y是x的反比例函数,且当x=-4时,y=12,(1)求这个反比例函数关系式和自变量x的取值范围;(2)求当x=6时函数y的值.19.某人骑自行车以每时10km的速度由A地到达B 地,路上用了6小时.(1)写出时间t与速度v之间的关系式.(2)如果返程时以每时12km的速度行进,利用上述关系式求路上要用多少时间?20.如图,直线y x m =+与双曲线ky x=相交于A (2,1)、B 两点.(1)求m 及k 的值;(2)不解关于x 、y 的方程组,{ ,y x m k y x=+=直接写出点B 的坐标;(3)直线24y x m =-+经过点B 吗?请说明理由.21.水产公司有一种海产品共2 104千克,为寻求合适的销售价格,进行了8天试销,试销情况如下:观察表中数据,发现可以用反比例函数刻画这种海产品的每天销售量y(千克)与销售价格x(元/千克)之间的关系.现假定在这批海产品的销售中,每天的销售量y(千克)与销售价格x(元/千克)之间都满足这一关系.(1)写出这个反比例函数的解析式,并补全表格;(2)在试销8天后,公司决定将这种海产品的销售价格定为150元/千克,并且每天都按这个价格销售,那么余下的这些海产品预计再用多少天可以全部售出?(3)在按(2)中定价继续销售15天后,公司发现剩余的这些海产品必须在不超过2天内全部售出,此时需要重新确定一个销售价格,使后面两天都按新的价格销售,那么新确定的价格最高不超过每千克多少元才能完成销售任务?22.某气球内充满了一定质量的气球,当温度不变时,气球内气球的压力p(千帕)是气球的体积V(米2)的反比例函数,其图象如图所示(千帕是一种压强单位)(1)写出这个函数的解析式;(2)当气球的体积为0.8立方米时,气球内的气压是多少千帕;(3)当气球内的气压大于144千帕时,气球将爆炸,为了安全起见,气球的体积应不小于多少立方米。
八年级数学下册《第六章 反比例函数》练习题-附答案(浙教版)

八年级数学下册《第六章反比例函数》练习题-附答案(浙教版) 一、选择题1.反比例函数y=15x中的k值为( )A.1B.5C.15D.02.反比例函数y=-2x的图象在( )A.第一、二象限B.第一、三象限C.第二、三象限D.第二、四象限3.若点A(-1,y1),B(1,y2),C(3,y3)在反比例函数y=-3x的图象上,则y1,y2,y3的大小关系是( )A.y1<y2<y3B.y2<y3<y1C.y3<y2<y1D.y2<y1<y34.已知点P(-12,2)在反比例函数y=kx(k≠0)的图象上,则k的值是( )A.-12B.2C.1D.-15.如图,A,C是函数y=1x的图象上任意两点,过点A作y轴的垂线,垂足为B,过点C作y轴的垂线,垂足为D,记Rt△AOB的面积为S1,Rt△COD的面积为S2,则( )A.S1>S2B.S1<S2C.S1=S2D.S1和S2的大小关系不能确定6.如图,直线y=14x与双曲线y=4x相交于点(-4,-1)和(4,1),则不等式14x>4x的解集为( )A.-4<x<0或x>4B.x<-4或0<x<4C.-4<x<4且x≠0D.x<-4或x>47.在体育中考中,王亮进行了1000米跑步测试,他的跑步速度v(米/分)与测试时间t(分)的函数图象是( )8.一块蓄电池的电压为定值,使用此蓄电池为电源时,电流I(A)与电阻R(Ω)之间的函数关系如图所示,若以此蓄电池为电源的用电器限制电流不得超过10 A,则此用电器的可变电阻应( )A.不小于4.8 ΩB.不大于4.8 ΩC.不小于14 ΩD.不大于14 Ω9.如图,菱形ABCD的两个顶点B、D在反比例函数y=kx的图象上,对角线AC与BD的交点恰好是坐标原点O,已知点A(1,1),∠ABC=60°,则k的值是( ) A.﹣5 B.﹣4 C.﹣3 D.﹣210.如图,在第一象限的点A既在双曲线y=12x上,又在直线y=2x﹣2上,且直线y=2x﹣2与x轴相交于点B,C(0,b)、D(0,b+2),当四边形ABCD周长取得最小值时,b=( )A.12B.34C.1D.52 二、填空题11.若y =1x 2n -5是反比例函数,则n =________.12.若反比例函数y =的图象位于第一、三象限,则正整数k 的值是 .13.如图,过x 轴正半轴上的任意一点P 作y 轴的平行线交反比例函数y =2x 和y =-4x 的图象于A ,B 两点,C 是y 轴上任意一点,则△ABC 的面积为________.14.已知点A(-2,y 1),B(-1,y 2)和C(3,y 3)都在反比例函数y =3x 的图象上,则y 1,y 2,y 3的大小关系为____________(用“<”连接).15.小明家离学校1.5 km ,小明步行上学需x min ,那么小明步行速度y(单位:m/min)可以表示为y =1500x ;水平地面上重1500 N 的物体,与地面的接触面积为x m 2,那么该物体对地面的压强y(单位:N/m 2)可以表示为y =1500x ……,函数关系式y =1500x还可以表示许多不同情境中变量之间的关系,请你再列举一例:____________________________________________________________.16.如图,在平面直角坐标系中,反比例函数y =2x (x >0)的图象与正比例函数y =kx ,y =1k x(k>1)的图象分别交于点A ,B ,若∠AOB =45°,则△AOB 的面积是______.三、解答题17.已知y=y1+y2,y1与x2成正比例,y2与x成反比例,且当x=1时,y=3;当x=-1时,y=1.求当x=-12时,y的值.18.已知反比例函数y=kx(k为常数,k≠0)的图象经过点A(2,3).(1)求这个函数的解析式;(2)判断点B(-1,6),C(3,2)是否在这个函数的图象上,并说明理由;(3)当-3<x<-1时,求y的取值范围.19.如图,在平面直角坐标系中,一次函数y=kx+b与反比例函数y=mx(m≠0)的图象交于点A(3,1),且过点B(0,﹣2).(1)求反比例函数和一次函数的表达式;(2)如果点P是x轴上一点,且△ABP的面积是3,求点P的坐标.20.一辆汽车匀速通过某段公路,所需时间t(单位:h)与行驶速度v(单位:km/h)满足函数关系:t=kv,其图象为如图所示的一段曲线,且端点为A(40,1)和B(m,0.5).(1)求k和m的值;(2)若行驶速度不得超过60 km/h,则汽车通过该路段最少需要多少时间?21.如图,反比例函数y=kx的图象与一次函数y=kx+b的图象交于A,B两点,点A的坐标为(2,6),点B的坐标为(n,1).(1)求反比例函数与一次函数的表达式;(2)点E为y轴上一个动点,若S△AEB=5,求点E的坐标.22.如图,已知正方形OABC的面积为4,点O是坐标原点,点A在x轴上,点C在y轴上,点B在函数y=kx(x>0,k>0)的图象上,点P(m,n)是函数y=kx(x>0,k>0)的图象上任意一点.过点P分别作x轴、y轴的垂线,垂足分别为点E,F.若设矩形OEPF和正方形OABC不重合部分的面积为S.求当S>1时,求m的取值范围.23.如图,四边形ABCD为正方形.点A的坐标为(0,2),点B的坐标为(0,﹣3),反比例函数y=kx的图象经过点C,一次函数y=ax+b的图象经过点A、C(1)求反比例函数与一次函数的解析式;(2)求点P是反比例函数图象上的一点,△OAP的面积恰好等于正方形ABCD的面积,求P点的坐标.24.如图,在平面直角坐标系xOy中,一次函数y=x+b的图象经过点A(-2,0),与反比例函数y=kx(x>0)的图象交于B(a,4).(1)求一次函数和反比例函数的表达式;(2)设M是直线AB上一点,过M作MN∥x轴,交反比例函数y=kx(x>0)的图象于点N,若以A,O,M,N为顶点的四边形为平行四边形,求点M的坐标.参考答案1.C2.D3.B.4.D5.C6.A7.C8.A9.C. 10.A. 11.答案为:3. 12.答案为:1. 13.答案为:3. 14.答案为:y 2<y 1<y 3.15.答案为:体积为1500 cm 3的圆柱底面积为x cm 2,那么圆柱的高y cm 可以表示为y =1500x(答案不唯一,正确合理均可). 16.答案为:2.17.解:依题意,设y 1=k 1x 2,y 2=k 2x则y =y 1+y 2=k 1x 2+k 2x.∵当x =1时,y =3;当x =-1时,y =1 ∴⎩⎨⎧k 1+k 2=3,k 1-k 2=1,解得⎩⎨⎧k 1=2k 2=1, ∴y =2x 2+1x.当x=-12时,y=12-2=-32.18.解:(1)∵反比例函数y=kx的图象经过点A(2,3)把点A的坐标代入解析式,得3=k2,解得k=6.∴这个函数的解析式为y=6 x .(2)点B不在这个函数的图象上,点C在这个函数的图象上.理由:分别把点B,C的坐标代入y=6 x可知点B的坐标不满足函数解析式,点C的坐标满足函数解析式∴点B不在这个函数的图象上,点C在这个函数的图象上. (3)∵当x=-3时,y=-2;当x=-1时,y=-6.又由k>0,知当x<0时,y随x的增大而减小∴当-3<x<-1时,-6<y<-2.19.解:(1)∵反比例函数y=mx(m≠0)的图象过点A(3,1)∴m=3.∴反比例函数的表达式为y=3 x .∵一次函数y=kx+b的图象过点A(3,1)和B(0,﹣2). ∴,解得:∴一次函数的表达式为y=x﹣2;(2)令y=0,∴x﹣2=0,x=2∴一次函数y=x﹣2的图象与x轴的交点C的坐标为(2,0). ∵S△ABP=31 2PC×1+12PC×2=3.∴PC=2∴点P的坐标为(0,0)、(4,0).20.解:(1)将(40,1)代入t=kv,得1=k40,解得k=40.函数关系式为:t=40 v.当t=0.5时,0.5=40m,解得m=80.所以,k=40,m=80.(2)令v=60,得t=4060=23.结合函数图象可知,汽车通过该路段最少需要23小时.21.解:(1)把点A(2,6)代入y=kx,得m=12,则y=12x.把点B(n,1)代入y=12x,得n=12,则点B的坐标为(12,1).由直线y=kx+b过点A(2,6),点B(12,1)得,解得则所求一次函数的表达式为y=﹣x+7.(2)如图,直线AB与y轴的交点为P,设点E的坐标为(0,m),连接AE,BE 则点P的坐标为(0,7).∴PE=|m﹣7|.∵S△AEB =S△BEP﹣S△AEP=5∴×|m﹣7|×(12﹣2)=5.∴|m﹣7|=1.∴m1=6,m2=8.∴点E的坐标为(0,6)或(0,8).22.解:∵正方形OABC 的面积为4∴OA =AB =2∴B 点坐标为(2,2).∵点B 在函数y =k x(x >0,k >0)的图象上 ∴把B(2,2)代入y =k x中,得k =4. ∴反比例函数的解析式为y =4x. ∵P(m ,n)在y =4x上 ∴mn =4∴n =4m. ∵S =AE ·PE +CB ·CF∴S =(m -2)·n +2(2-n)=mn -2n +4-2n =mn -4n +4=8-16m. ∵S >1,∴16m<7. ∵x >0∴m 的取值范围m >167. 23.解:(1)∵点A 的坐标为(0,2),点B 的坐标为(0,﹣3)∴AB =5∵四边形ABCD 为正方形∴点C的坐标为(5,﹣3).∵反比例函数y=kx的图象经过点C∴解得k=﹣15∴反比例函数的解析式为y=﹣;∵一次函数y=ax+b的图象经过点A,C ∴,解得∴一次函数的解析式为y=﹣x+2;(2)设P点的坐标为(x,y).∵△OAP的面积恰好等于正方形ABCD的面积∴12×OA•|x|=52∴12×2•|x|=25,解得x=±25.当x=25时,y=﹣35;当x=﹣25时,y=35.∴P点的坐标为(25,﹣35)或(﹣25,35).24.解:(1)∵一次函数y=x+b的图象经过点A(-2,0) ∴0=-2+b,解得b=2∴一次函数的表达式为y=x+2.∵一次函数y=x+2的图象与反比例函数y=kx(x>0)的图象交于B(a,4)∴4=a+2,解得a=2,∴B(2,4)∴4=k2,解得k=8∴反比例函数的表达式为y=8x(x>0).(2)∵点A(-2,0),∴OA=2.设点M(m-2,m),点N(8m,m)当MN∥AO且MN=AO时,四边形AONM是平行四边形|8m-(m-2)|=2且m>0解得m=22或m=23+2∴点M的坐标为(22-2,22)或(23,23+2).。
浙教版八年级下《第6章反比例函数》单元测试含答案解析(初中 数学试卷)

《第6章反比例函数》一、填空题1.已知反比例函数的解析式为,则m的取值范围是.2.在反比例函数y=﹣中,自变量x的取值范围是.3.如果y与y1成正比例,y1与x成反比例,且y关于x的函数图象经过点(,﹣1),那么y关于x的函数解析式是.二、选择题4.如果x=3,y=4适合解析式,那么下列也适合的一组数据是()A.x=2,y=6 B.x=﹣2,y=6 C.x=4,y=﹣3 D.x=3,y=﹣45.用电器的输出功率P与通过的电流I、用电器的电阻R之间的关系是P=I2R,下面说法正确的是()A.P为定值,I与R成反比例B.P为定值,I2与R成反比例C.P为定值,I与R成正比例D.P为定值,I2与R成正比例6.对于反比例函数,当自变量x的值从3增加到6时,函数值减少了1,则函数的解析式为()A. B. C. D.三、解答题7.已知y是关于x的反比例函数,当x=1时,y=3;当x=m时,y=﹣2.(1)求该反比例函数的解析式;(2)若一次函数y=3x+b过点(m,﹣2),求一次函数的解析式.8.已知点A(2,﹣3),P(3,),Q(﹣5,b)都在反比例函数的图象上.(1)求此反比例函数的解析式;(2)求的值.9.已知y=y1+y2,y1与x成正比例,y2与x﹣2成反比例,且当x=1时,y=﹣1;当x=3时,y=5.求y与x的函数关系式.10.学校课外生物小组的同学们准备自己动手,用旧围栏建一个面积固定的矩形饲养场,小强提出矩形两条邻边的长分别为6m和8m,小伟认为这样太浪费围栏,可能有更节省材料的方案.设矩形的一边长为x(m),与它相邻的一边长为y(m).(1)求y关于x的函数表达式,并指出比例系数的实际意义;(2)你能帮小伟找到一种比小强更节省材料的方案吗(要求两邻边不相等)?(3)如果矩形两邻边相等,那么需要多长的旧围栏?(4)如果矩形的一条边长x变大,那么另一条边的长会有什么变化?11.一家名牌上衣专卖店4月份的经营目标是盈利6 000元.(1)写出专卖店4月份每件上衣的利润y(元)关于所需售出的上衣件数x(件)的函数解析式;(2)如果每件上衣的利润是50元,要完成经营目标,该商店4月份至少要卖出多少件上衣?(3)若经理只要求达到5 000元利润,每售出一件上衣,售货员要提成2元,在每件上衣50元利润不变的前提下,营业员至少需要卖出多少件上衣才能完成任务?12.水产公司有一种海产品共2104千克,为寻求合适的销售价格,进行了8天试销,试销情况如下:观察表中数据,发现可以用反比例函数刻画这种海产品的每天销售量y (千克)与销售价格x(元/千克)之间的关系.现假定在这批海产品的销售中,每天的销售量y(千克)与销售价格x(元/千克)之间都满足这一关系.(1)写出这个反比例函数的解析式,并补全表格;(2)在试销8天后,公司决定将这种海产品的销售价格定为150元/千克,并且每天都按这个价格销售,那么余下的这些海产品预计再用多少天可以全部售出?第1天第2天第3天第4天第5天第6天第7天第8天售价x(元/千克)400250240200150125120销售量y(千克)304048608096100 13.将x=代入反比例函数y=﹣中,所得函数值记为y1,又将x=y1+1代入函数中,所得函数值记为y2,再将x=y2+1代入函数中,所得函数值记为y3…如此继续下去,求y2014的值.《第6章反比例函数》参考答案与试题解析一、填空题1.已知反比例函数的解析式为,则m的取值范围是m≠.【考点】反比例函数的定义.【分析】根据y=,(k是常数,k≠0)是反比例函数,可得答案.【解答】解:比例函数的解析式为,2m﹣1≠0m≠,故答案为:m.【点评】本题考查了反比例函数,y=,(k是常数,k≠0)是反比例函数.2.在反比例函数y=﹣中,自变量x的取值范围是x≠0.【考点】反比例函数的定义.【分析】根据反比例函数的意义,可得分母不能为0,可得答案.【解答】解:反比例函数y=﹣中,自变量x的取值范围是x≠0,故答案为:x≠0.【点评】本题考查了分式的定义,分母不能为0.3.如果y与y1成正比例,y1与x成反比例,且y关于x的函数图象经过点(,﹣1),那么y关于x的函数解析式是y=﹣.【考点】待定系数法求反比例函数解析式.【分析】根据题意设y=ay1(a≠0),y1=(b≠0).由此易得y=,然后把点(,﹣1)代入函数关系式,可以求得ab的值.【解答】解:根据题意设y=ay1(a≠0),y1=(b≠0).则y=.∵y关于x的函数图象经过点(,﹣1),∴﹣1=,解得,ab=﹣,∴y关于x的函数解析式是:y=﹣.故答案是:y=﹣.【点评】本题考查了待定系数法求反比例函数解析式.注意y与x的函数关系式中的ab 作为整体来解答的.二、选择题4.如果x=3,y=4适合解析式,那么下列也适合的一组数据是()A.x=2,y=6 B.x=﹣2,y=6 C.x=4,y=﹣3 D.x=3,y=﹣4【考点】反比例函数图象上点的坐标特征.【分析】先把x=3,y=4代入反比例函数y=求出m2﹣1的值,再对各选项进行逐一判断即可.【解答】解:∵x=3,y=4适合解析式,∴m2﹣1=3×4=12,A、∵2×6=12,∴此点在反比例函数y=的图象上,故本选项正确;B、∵(﹣2)×6=﹣12≠12,∴此点不在反比例函数y=的图象上,故本选项错误;C、∵(﹣3)×4=﹣12≠12,∴此点不在反比例函数y=的图象上,故本选项错误;D、∵3×(﹣4)=﹣12≠12,∴此点不在反比例函数y=的图象上,故本选项错误.故选A.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.5.用电器的输出功率P与通过的电流I、用电器的电阻R之间的关系是P=I2R,下面说法正确的是()A.P为定值,I与R成反比例B.P为定值,I2与R成反比例C.P为定值,I与R成正比例D.P为定值,I2与R成正比例【考点】反比例函数的定义.【专题】跨学科.【分析】在本题中,P=I2R,即I2和R的乘积为定值,所以根据反比例的概念应该是I2和R成反比例,而并非I与R成反比例.【解答】解:根据P=I2R可以得到:当P为定值时,I2与R的乘积是定值,所以I2与R 成反比例.故选:B.【点评】本题渗透初中物理中“电流”有关的知识,当P为定值时,I2与R成反比例.把I2看作一个整体时,I2与R成反比例,而不是I与R成反比例,这是易忽略的地方,应引起注意.6.对于反比例函数,当自变量x的值从3增加到6时,函数值减少了1,则函数的解析式为()A. B. C. D.【考点】待定系数法求反比例函数解析式.【分析】分别计算出自变量为3和6的函数值,利用它们的差为1得到﹣=1,然后解此方程求出k即可得到反比例函数解析式.【解答】解:当x=3时,y==;当x=6时,y==,而函数值减少了1,∴﹣=1,解得k=6,所以反比例函数解析式为y=.故选A.【点评】本题考查了用待定系数法求反比例函数解析式:(1)设出含有待定系数的反比例函数解析式y=(k为常数,k≠0);(2)把已知条件(自变量与函数的对应值)代入解析式,得到待定系数的方程;(3)解方程,求出待定系数;(4)写出解析式.三、解答题7.已知y是关于x的反比例函数,当x=1时,y=3;当x=m时,y=﹣2.(1)求该反比例函数的解析式;(2)若一次函数y=3x+b过点(m,﹣2),求一次函数的解析式.【考点】待定系数法求反比例函数解析式;待定系数法求一次函数解析式.【专题】计算题.【分析】(1)设反比例解析式为y=,将x=1,y=3代入求出k的值,即可确定出反比例解析式;(2)将x=m,y=﹣2代入反比例解析式求出m的值,确定出(m,﹣2),代入一次函数求出b的值,即可确定出一次函数解析式.【解答】解:(1)设反比例解析式为y=,将x=1,y=3代入得:k=3,则反比例解析式为y=;(2)将x=m,y=﹣2代入反比例解析式得:﹣2m=3,即m=﹣,将(﹣,﹣2)代入一次函数解析式得:﹣2=﹣+b,即b=,则一次函数解析式为y=3x+.【点评】此题考查了待定系数法求反比例与一次函数解析式,熟练掌握待定系数法是解本题的关键.8.已知点A(2,﹣3),P(3,),Q(﹣5,b)都在反比例函数的图象上.(1)求此反比例函数的解析式;(2)求的值.【考点】待定系数法求反比例函数解析式.【专题】计算题.【分析】(1)设反比例函数解析式y=,然后把A点坐标代入求出k即可;(2)分别把P点和Q点坐标代入(1)中的解析式,求出a和b的值,然后代入中计算即可.【解答】解:(1)设反比例函数解析式y=,把A(2,﹣3)代入得k=2×(﹣3)=﹣6,所以反比例函数解析式为y=﹣;(2)把P(3,)代入y=﹣得3×=﹣6,解得a=﹣4,把Q(﹣5,b)代入y=﹣得﹣5b=﹣6,解得b=,所以=﹣4+×=﹣3.【点评】本题考查了用待定系数法求反比例函数解析式:(1)设出含有待定系数的反比例函数解析式y=(k为常数,k≠0);(2)把已知条件(自变量与函数的对应值)代入解析式,得到待定系数的方程;(3)解方程,求出待定系数;(4)写出解析式.9.已知y=y1+y2,y1与x成正比例,y2与x﹣2成反比例,且当x=1时,y=﹣1;当x=3时,y=5.求y与x的函数关系式.【考点】待定系数法求反比例函数解析式;二元一次方程的解.【专题】待定系数法.【分析】根据正比例和反比例函数的定义设表达式,再根据给出自变量和函数的对应值求出待定的系数则可.【解答】解:设y1=k1x(k1≠0),y2=∴y=k1x+∵当x=1时,y=﹣1;当x=3时,y=5,∴.所以.所以y=x+.【点评】本题考查了正比例和反比例函数的定义,并且考查了二元一次方程组的解法,难度稍大.10.学校课外生物小组的同学们准备自己动手,用旧围栏建一个面积固定的矩形饲养场,小强提出矩形两条邻边的长分别为6m和8m,小伟认为这样太浪费围栏,可能有更节省材料的方案.设矩形的一边长为x(m),与它相邻的一边长为y(m).(1)求y关于x的函数表达式,并指出比例系数的实际意义;(2)你能帮小伟找到一种比小强更节省材料的方案吗(要求两邻边不相等)?(3)如果矩形两邻边相等,那么需要多长的旧围栏?(4)如果矩形的一条边长x变大,那么另一条边的长会有什么变化?【考点】反比例函数的应用.【分析】(1)利用矩形面积固定进而得出y与x的关系式;(2)利用边长越接近相等,面积不变时,周长越小,进而得出答案;(3)利用一元二次方程的解法得出答案;(4)利用反比例函数增减性得出答案.【解答】解:(1)∵矩形两条邻边的长分别为6m和8m,∴矩形的面积为:6×8=48(cm2),∵设矩形的一边长为x(m),与它相邻的一边长为y(m),∴y=,比例系数即为矩形的面积;(2)当x=7时,y=,∵2(7+)=27<2(6+8),∴这是一种比小强更节省材料的方案;(3)当矩形两邻边相等,则x=,解得:x=±4(负数不合题意舍去),∴需要旧围栏的长为:4×4=16(m);(4)∵y=,48>0,∴矩形的一条边长x变大,那么另一条边的长会变小.【点评】此题主要考查了反比例函数的应用以及反比例函数增减性和一元二次方程的解法等知识,得出y与x的函数关系式是解题关键.11.一家名牌上衣专卖店4月份的经营目标是盈利6 000元.(1)写出专卖店4月份每件上衣的利润y(元)关于所需售出的上衣件数x(件)的函数解析式;(2)如果每件上衣的利润是50元,要完成经营目标,该商店4月份至少要卖出多少件上衣?(3)若经理只要求达到5 000元利润,每售出一件上衣,售货员要提成2元,在每件上衣50元利润不变的前提下,营业员至少需要卖出多少件上衣才能完成任务?【考点】反比例函数的应用.【专题】应用题.【分析】(1)根据盈利=单件利润×售量,可得y与x的函数关系式;(2)将y=50,代入可得x的值;(3)卖出一件上衣的净利润为48元,再由总利润为5000元,可求出需要卖出的数量.【解答】解:(1)由题意得,xy=6000,∴y=.(2)当y=50时,x=120.(3)设卖a件,能完成任务,则(50﹣2)a=5000,解得:a≈104.2.答:营业员至少需要卖出105件上衣才能完成任务.【点评】本题考查了反比例函数的应用,解答本题的关键是根据盈利=单件利润×售量,得出函数关系式.12.水产公司有一种海产品共2104千克,为寻求合适的销售价格,进行了8天试销,试销情况如下:观察表中数据,发现可以用反比例函数刻画这种海产品的每天销售量y (千克)与销售价格x(元/千克)之间的关系.现假定在这批海产品的销售中,每天的销售量y(千克)与销售价格x(元/千克)之间都满足这一关系.(1)写出这个反比例函数的解析式,并补全表格;(2)在试销8天后,公司决定将这种海产品的销售价格定为150元/千克,并且每天都按这个价格销售,那么余下的这些海产品预计再用多少天可以全部售出?第1天第2天第3天第4天第5天第6天第7天第8天售价x(元/千克)400250240200150125120销售量y(千克)304048608096100【考点】反比例函数的应用.【专题】阅读型;图表型.【分析】首先根据题意,可以用反比例函数刻画这种海产品的每天销售量y与销售价格x之间的关系,且根据图表可得数据,将数据代入用待定系数法可得反比例函数的关系式;进一步求解可得答案.【解答】解:(1)函数解析式为;填表如下:第1天第2天第3天第4天第5天第6天第7天第8天售价x(元/千克)400300250240200150125120销售量y(千克)30404850608096100(2)2104﹣(30+40+48+50+60+80+96+100)=1600,即8天试销后,余下的海产品还有1600千克,当x=150时,=80.1600÷80=20,所以余下的这些海产品预计再用20天可以全部售出.【点评】本题考查反比例函数的定义、性质与运用,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式,进一步根据题意求解答案.13.将x=代入反比例函数y=﹣中,所得函数值记为y1,又将x=y1+1代入函数中,所得函数值记为y2,再将x=y2+1代入函数中,所得函数值记为y3…如此继续下去,求y2014的值.【考点】反比例函数的定义.【专题】规律型.【分析】根据将x=代入反比例函数y=﹣中,可得y1,再根据又将x=y1+1代入函数中,所得函数值记为y2,再将x=y2+1代入函数中,可得规律,根据规律,可得答案.【解答】解:y1=﹣,y2=2,y3=﹣,y4=﹣…每三个出现相同的一次,2014÷3=671 (1).【点评】本题考查了反比例函数的定义,计算得出规律是解题关键.。
浙教版数学八下第六章《反比例函数》检测题及答案

第6章 反比例函数 检测题(时间:90分钟,满分:100分)一、选择题(每小题3分,共30分)1.在下列选项中,是反比例函数关系的为( )A.在直角三角形中,30°角所对的直角边与斜边之间的关系B.在等腰三角形中,顶角与底角之间的关系C.圆的面积与它的直径之间的关系D.面积为20的菱形,其中一条对角线与另一条对角线之间的关系 2.(2012·哈尔滨中考)如果反比例函数的图象经过点(-1,-2),则k 的值是( ) A.2B.-2C.-3D.33.在同一坐标系中,函数xky =和3+=kx y 的图象大致是( )4.当k >0,x <0时,反比例函数x k y =的图象在( )A.第一象限B.第二象限C.第三象限D.第四象限 5.购买只茶杯需15元,则购买一只茶杯的单价与的关系式为( ) A.x y 15= (取实数) B. x y 15= (取整数) C. x y 15=(取自然数) D. xy 15= (取正整数) 6.若反比例函数1232)12(---=k kx k y 的图象位于第二、四象限,则k 的值是( )A. 0B.0或1C.0或2D.47.如图,A 为反比例函数xk y =图象上一点,AB 垂直于x 轴B 点,若S △AOB =3,则k 的值为 ( ) A.6 B.3C.23D.不能确定8.已知点、、都在反比例函数4y x=的图象上,则的大小关系是( ) A. B. C.D.9.正比例函数与反比例函数1x的图象相交于A 、C 两点,AB ⊥x 轴于点B ,CD ⊥x 轴于点D (如图),则四边形ABCD 的面积为( ) A.1 B.32C.2D.5210.(2012·福州中考)如图所示,过点C (1,2)分别作x 轴、y 轴的平行线,交直线y =-x +6于A 、B 两点,若反比例函数y=(x >0)的图象与△ABC 有公共点,则k 的取值范围是( ) A.2≤k ≤9 B.2≤k ≤8 C.2≤k ≤5D.5≤k ≤8二、填空题(每小题3分,共24分)11.已知与成反比例,且当时,,那么当时, .12.(2012·山东潍坊中考)点P 在反比例函数(k ≠0)的图象上,点Q (2,4)与点P关于y 轴对称,则反比例函数的解析式为 .13.已知反比例函数xm y 33-=,当______m 时,其图象的两个分支在第一、三象限内;当______m 时,其图象在每个象限内y 随x 的增大而增大.14.若反比例函数xk y 3-=的图象位于第一、三象限内,正比例函数x k y )92(-=的图象过第二、四象限,则k 的整数值是________.15.现有一批救灾物资要从A 市运往B 市,如果两市的距离为500千米,车速为每小时千米,从A 市到B 市所需时间为小时,那么与之间的函数关系式为_________,是的________函数.16.(2012·河南中考)如图所示,点A 、B 在反比例函数(k >0,x >0)的图象上,过点A 、B 作x 轴的垂线,垂足分别为M 、N ,延长线段AB 交x 轴于点C ,若OM =MN =NC ,△AOC 的面积为6,则k 的值为 . 17.已知反比例函数4y x=,则当函数值 时,自变量x 的取值范围是___________.18.在同一直角坐标系中,正比例函数x k y 1=的图象与反比例函 数xk y 2=的图象有公共点,则21k k 0(填“>”、“=”或“<”). 三、解答题(共46分)19.(6分)已知一次函数kx y =与反比例函数xy 3=的图象都经过点A (m ,1).求: (1)正比例函数的解析式;(2)正比例函数与反比例函数的图象的另一个交点的坐标. 20.(6分)如图,正比例函数12y x =的图象与反比例函数ky x=(0)k ≠在第一象限的图象交于A 点,过A 点作x 轴的垂线,垂足为M ,已知△的面积为1.(1)求反比例函数的解析式;(2)如果B 为反比例函数在第一象限图象上的点(点B 与点A 不重合), 且B 点的横坐标为1,在x 轴上求一点P ,使PA PB +最小.21.(6分)如图所示是某一蓄水池的排水速度h )与排完水池中的水所用的时间t(h )之间的函数关系图象.(1)请你根据图象提供的信息求出此蓄水池的蓄水量; (2)写出此函数的解析式;(3)若要6 h 排完水池中的水,那么每小时的排水量应该是多少? (4)如果每小时排水量是,那么水池中的水要用多少小时排完?22.(7分)若反比例函数xky =与一次函数42-=x y 的图象都经过点A (a ,2). (1)求反比例函数xky =的解析式; (2) 当反比例函数xky =的值大于一次函数42-=x y 的值时,求自变量x 的取值范围.23.(7分)(2012·天津中考)已知反比例函数y=(k 为常数,k ≠1).(1)其图象与正比例函数y=x 的图象的一个交点为P ,若点P 的纵坐标是2,求k 的值; (2)若在其图象的每一支上,y 随x 的增大而减小,求k 的取值范围;(3)若其图象的一支位于第二象限,在这一支上任取两点 A (x 1,y 1)、B (x 2,y 2),当y 1>y 2时,试比较x 1与x 2的大小.24.(7分)如图,已知直线1y x m =+与x 轴、y 轴分别交于点A 、B ,与反比例函数2k y x=(x)的图象分别交于点C 、 D ,且C 点的坐标为(1-,2).⑴分别求出直线AB 及反比例函数的解析式; ⑵求出点D 的坐标;⑶利用图象直接写出:当x 在什么范围内取值时,1y >2y .25.(7分)制作一种产品,需先将材料加热达到60 ℃后,再进行操作.设该材料温度为y(℃),从加热开始计算的时间为x(min).据了解,当该材料加热时,温度y与时间x成一次函数关系;停止加热进行操作时,温度y与时间x成反比例关系(如图).已知该材料在操作加热前的温度为15 ℃,加热5分钟后温度达到60 ℃.(1)分别求出将材料加热和停止加热进行操作时,y与x的函数关系式;(2)根据工艺要求,当材料的温度低于15 ℃时,须停止操作,那么从开始加热到停止操作,共经历了多少时间?第6章 反比例函数 检测题参考答案1.D2. D 解析:把(-1,-2)代入得-2=,∴ k =3.3.A 解析:由于不知道k 的符号,此题可以分类讨论,当时,反比例函数xky =的图象在第一、三象限,一次函数3+=kx y 的图象经过第一、二、三象限,可知A 项符合;同理可讨论当时的情况.4. C 解析:当时,反比例函数的图象在第一、三象限.当时,函数图象在第三象限,所以选C. 5.D6.A 解析:因为反比例函数的图象位于第二、四象限,所以,即.又,所以或(舍去).所以,故选A.7.A8.D 解析:因为反比例函数4y x=的图象在第一、三象限, 且在每个象限内y 随x 的增大而减小,所以. 又因为当时,,当时,,所以,,故选D.9.C 解析:联立方程组 得A (1,1),C ().所以,所以.10. A 解析:当反比例函数图象经过点C 时,k =2;当反比例函数图象与直线AB 只有一个交点时,令-x +6=,得x 2-6x +k =0,此时方程有两个相等的实数根,故Δ=36-4k =0,所以k =9,所以k 的取值范围是2≤k ≤9,故选A.11.6 解析:因为 与成反比例,所以设,将,代入得,所以,再将代入得.12. y =- 解析:设点P (x,y ),∵ 点P 与点Q (2,4)关于y 轴对称,则P (-2,4),∴ k=xy=-2×4=-8.∴ y=-. 13.14.4 解析:由反比例函数xk y 3-=的图象位于第一、三象限内,得,即.又正比例函数x k y )92(-=的图象过第二、四象限,所以,所以.所以的整数值是4. 15.反比例16. 4 解析:设点A (x ,),∵ OM =MN =NC ,∴ AM =,OC =3x .由S △AOC =OC ·AM =·3x ·=6,解得k =4. 17.或18.>19.解:(1)因为反比例函数xy 3=的图象经过点A (m ,1), 所以将A (m ,1)代入xy 3=中,得m =3.故点A 坐标为(3,1). 将A (3,1)代入kx y =,得31=k ,所以正比例函数的解析式为3x y =. (2)由方程组⎪⎩⎪⎨⎧==,3,3xy x y 解得所以正比例函数与反比例函数的图象的另 一个交点的坐标为(-3, -1). 20. 解:(1) 设A 点的坐标为(a ,b ), 则kb a=.∴ ab k =. ∵112ab =,∴ 112k =.∴ 2k =.∴ 反比例函数的解析式为2y x=. (2) 由⎪⎪⎩⎪⎪⎨⎧==x y xy 212, 得或 ∴ A 为.设A 点关于x 轴的对称点为C ,则C 点的坐标为.如要在x 轴上求一点P ,使PA+PB 最小,即最小,则P 点应为BC和x 轴的交点,如图所示. 令直线BC 的解析式为y mx n =+. ∵ B 为(1,2),∴2,12.m n m n =+⎧⎨-=+⎩∴3,5.m n =-⎧⎨=⎩∴ BC 的解析式为35y x =-+.当0y =时,53x =.∴ P 点坐标为.21.分析: (1)观察图象易知蓄水池的蓄水量; (2)与之间是反比例函数关系,所以可以设,依据图象上点(12,4)的坐标可以求得与之间的函数关系式. (3)求当h 时的值.(4)求当h 时,t 的值.解:(1)蓄水池的蓄水量为12×4=48().(2)函数的解析式为.(3).(4)依题意有,解得(h ).所以如果每小时排水量是 5 ,那么水池中的水将要9.6小时排完.22.解:(1)因为的图象过点A (),所以.因为x ky =的图象过点A (3,2),所以,所以x y 6=.(2) 求反比例函数x y 6=与一次函数42-=x y 的图象的交点坐标,得到方程:xx 642=-,解得.所以另外一个交点是(-1,-6).画出图象,可知当或时,426->x x. 23. 分析:(1)显然P 的坐标为(2,2),将P (2,2)代入y =即可.(2)由k -1>0得k >1.(3)利用反比例函数的增减性求解. 解:(1)由题意,设点P 的坐标为(m ,2), ∵ 点P 在正比例函数y =x 的图象上, ∴ 2=m ,即m =2.∴ 点P 的坐标为(2,2). ∵ 点P 在反比例函数 y =的图象上,∴ 2=,解得k =5.(2)∵ 在反比例函数y =图象的每一支上,y 随x 的增大而减小,∴ k -1>0,解得k >1. (3)∵ 反比例函数y =图象的一支位于第二象限,∴ 在该函数图象的每一支上,y 随x 的增大而增大.∵ 点A (x 1,y 1)与点B (x 2,y 2)在该函数的第二象限的图象上,且y 1>y 2, ∴ x 1>x 2.点拨:反比例函数的图象和性质是解反比例函数题目的基础. 24.解:(1)将C 点坐标(1-,2)代入1y x m =+,得,所以13y x =+;将C 点坐标(1-,2)代入2k y x=,得.所以22y x=-. (2)由方程组解得所以D 点坐标为(-2,1).(3)当1y >2y 时,一次函数图象在反比例函数图象上方,此时x 的取值范围是21x -<<-. 25.解:(1)当时,为一次函数,设一次函数解析式为,由于一次函数图象过点(0,15),(5,60), 所以解得所以.当时,为反比例函数,设函数关系式为,由于图象过点(5,60),所以.综上可知y 与x 的函数关系式为⎪⎩⎪⎨⎧≥<≤+=).5(300),50(159x xx x y(2)当y =15时,,所以从开始加热到停止操作,共经历了20分钟.。
浙教版八年级数学下册第6章《反比例函数》检测题含答案

第6章检测题(时间:100分钟满分:120分)一、精心选一选(每小题3分,共30分)1。
已知反比例函数y=错误!的图象经过点(3,2),那么下列四个点中,也在这个函数图象上的是( B )A。
(3,-2) B。
(-2,-3) C。
(1,-6) D。
(-6,1)2.有以下判断:①圆面积公式S=πr2中,面积S与半径r成正比例;②运动的时间与速度成反比例;③当电压不变时,电流强度和电阻成反比例;④圆柱体的体积公式V=πr2h 中,当体积V不变时,圆柱的高h与底面半径r的平方成反比例,其中错误的有( B )A.1个B.2个C.3个D.4个3。
a,b是实数,点A(2,a),B(3,b)在反比例函数y=-错误!的图象上,则( A )A.a<b<0 B。
b<a<0 C。
a<0<b D.b<0<a4.如图,市煤气公司计划在地下修建一个容积为104m3的圆柱形煤气储存室,则储存室的底面积S(单位:m2)与其深度d(单位:m)的函数图象大致是( A )5.一次函数y=ax+a(a为常数,a≠0)与反比例函数y=错误!(a为常数,a≠0)在同一平面直角坐标系内的图象大致为( C )6.如图,正比例函数y1=k1x的图象与反比例函数y2=错误!的图象相交于A,B两点,其中点A的横坐标为2,当y1>y2时,x的取值范围是( D )A。
x<-2或x>2 B.x<-2或0<x<2C。
-2<x<0或0<x<-2 D.-2<x<0或x>2,第6题图) ,第7题图),第8题图) ,第9题图) 7。
如图,点A在双曲线y=错误!上,点B在双曲线y=错误!(k≠0)上,AB∥x轴,分别过点A,B向x轴作垂线,垂足分别为D,C,若矩形ABCD的面积是8,则k的值为( A )A。
12 B。
10 C。
8 D.68.如图,在平面直角坐标系中,▱OABC的顶点A的坐标为(-4,0),顶点B在第二象限,∠BAO=60°,BC交y轴于点D,DB∶DC=3∶1、若函数y=错误!(k>0,x>0)的图象经过点C,则k的值为( D )A、错误!B、错误!C、错误!D、错误!9.如图,A,B两点在反比例函数y=错误!的图象上,C,D两点在反比例函数y=错误!的图象上,AC⊥y轴于点E,BD⊥y轴于点F,AC=2,BD=1,EF=3,则k1-k2的值是( D )A。
浙教版八年级数学下册第六章 反比例函数练习(包含答案)

第六章 反比例函数一、单选题1.下列选项中的函数,y 关于x 成反比例函数的是()A .12y x =+B .13y x =C .21y x =D .2x y = 2.已知y 与x 成反比例,且当2x =时,3y =,则y 关于x 的函数解析式是( ) A .6y x = B .1 6y x = C .6y x = D .26y x-= 3.已知反比例函数k y x=经过点()2,3A -,当3y <时自变量x 的取值范围为( ) A .2x <- B .2x >C .2x <-或0x >D .2x >或0x < 4.关于反比例函数y =﹣3x,下列说法错误的是( ) A .图象经过点(1,﹣3)B .图象分布在第一、三象限C .图象关于原点对称D .图象与坐标轴没有交点5.反比例函数y=-3x -1的图象上有P 1(x 1,-2),P 2(x 2,-3)两点,则x 1与x 2的大小关系是( ) A .x 1<x 2 B .x 1=x 2 C .x 1>x 2 D .不确定 6.如图,直角三角形的直角顶点在坐标原点,∠OAB=30°,若点A 在反比例函数y=6x(x >0)的图象上,则经过点B 的反比例函数解析式为( )A .y=﹣6xB .y=﹣4xC .y=﹣2xD .y=2x7.如图,直线l⊥x 轴于点P ,且与反比例函数y 1=1k x(x >0)及y 2=2k x (x >0)的图象分别交于点A ,B ,连接OA ,OB ,已知△OAB 的面积为2,则k 1﹣k 2的值为( )A .2B .3C .4D .﹣48.在矩形ABCD 中,E 点为AB 上的一点,AB =8,AD =6,连接CE ,作DF ⊥CE 于F 点,令CE =x ,DF =y ,下列关于y 与x 的函数关系图象大致是( )A .B .C .D .9.近视镜镜片的焦距y (单位:米)是镜片的度数x (单位:度)的函数,下表记录了一组数据,在下列函数中,符合表格中所给数据的是:( )A .y=1100xB .y=100xC .y=﹣1200x+32D .y=21131940008008x x -+ 10.如图,矩形OABC 的顶点A 、C 分别在x 轴、y 轴上,顶点B 在第一象限,AB=1.将线段OA 绕点O 按逆时针方向旋转600得到线段OP ,连接AP ,反比例函数y=k x过P 、B 两点,则k 的值为( )A .23BC .43 D二、填空题11.已知反比例函数13m y x-=(m 为常数)的图象在一、三象限,则m 的取值范围为_____. 12.如果点1(3,)A y 、2(4,)B y 在反比例函数2y x=的图象上,那么1y _____2y .(填“>”、“<”或“=”) 13.如图,在平面直角坐标系中,菱形OABC 的面积为20,点B 在y 轴上,点C 在反比函数k y x=的图像上,则k 的值为________.14.某医药研究所开发一种新药,成年人按规定的剂量服用,服药后每毫升血液中的含药量y (毫克)与时间t (小时)之间的函数关系近似满足如图所示曲线,当每毫升血液中的含药量不少于0.5毫克时治疗有效,则服药一次治疗疾病有效的时间为______小时.三、解答题15.己知y -1与x+2成反比例函数关系,且当x=-1时,y=3.求:(1)y 与x 的函数关系式;(2)当x=0时,y 的值.16.如图,在平面直角坐标系中,一次函数1y k x b =+的图像与反比例函数2k y x=的图像交于(4,2),(2,)A B n --两点,与x 轴交于点C . (1)求2,k n 的值;(2)请直接写出不等式21k k x b x+<的解集; (3)将x 轴下方的图像沿x 轴翻折,点A 落在点A '处,连接,A B A C '',求A BC '∆的面积.17.小芳从家骑自行车去学校,所需时间y (min )与骑车速度x (/m min )之间的反比例函数关系如图.(1)小芳家与学校之间的距离是多少?(2)写出y 与x 的函数表达式;(3)若小芳7点20分从家出发,预计到校时间不超过7点28分,请你用函数的性质说明小芳的骑车速度至少为多少?18.长为300m 的春游队伍,以/v m s ()的速度向东行进,如图1和图2,当队伍排尾行进到位置O 时,在排尾处的甲有一物品要送到排头,送到后立即返回排尾,甲的往返速度均为2/v m s (),当甲返回排尾后,他及队伍均停止行进.设排尾从位置O 开始行进的时间为t s (),排头与O 的距离为S m 头().(1)当2v 时,解答:①求S 头与t 的函数关系式(不写t 的取值范围);①当甲赶到排头位置时,求S 头的值;在甲从排头返回到排尾过程中,设甲与位置O 的距离为S m 甲(),求S 甲与t 的函数关系式(不写t 的取值范围)(2)设甲这次往返队伍的总时间为T s (),求T 与v 的函数关系式(不写v 的取值范围),并写出队伍在此过程中行进的路程答案1.B 2.C 3.C 4.B 5.C 6.C7.C 8.B 9.B 10.D11.m<13.12.>13.-10 14.7.87515.(1)y=2x2++1;(2)y=2.16.(1)k2=−8,n=4;(2)−2<x<0或x>4;(3)8.17.(1)1400m;(2)1400yx=;(3)小芳的骑车速度至少为175/m min.18.(1)①2300头=S t+;②41200S t+=-甲;(2)T与v的函数关系式为:400Tv=,此时队伍在此过程中行进的路程为400m。
浙教版数学八年级下第六章反比例函数单元检测试卷及答案

浙教版数学八年级下第六章反比例函数单元检测试卷班级_____________考号______________姓名_______________总分_________________一、选择题(10小题,每题3分,共30分)1.下列函数是反比例函数的是( )A.y=-1 B.y= C.y= D.y=2.已知y与x成反比例,当y=2时,x=-,则y关于x的函数表达式是( )A.y=-x B.y=- C.y=-2x D.y=3.如图,反比例函数y=(x<0)的图象经过点P,则k的值为( )A.-7 B.-6 C.7 D.64.对于反比例函数y=-图象对称性的叙述错误的是( )A.关于原点对称 B.关于直线y=x对称C.关于直线y=-x对称 D.关于x轴对称5.若点(﹣2,y1)、(1,y2)、(3,y3)都在反比例函数的图象上,则y1,y2,y3的大小关系是()A.y1<y3<y2 B.y2<y1<y3 C.y1<y2<y3 D.y2<y3<y16.下列各选项中所列举的两个变量之间的关系,是反比例函数关系的是( )A.直角三角形中,30°角所对的直角边长y与斜边长x之间的关系B.等腰三角形中顶角与底角之间的关系C.圆的面积S与它的直径d之间的关系D.面积为20 cm2的菱形,其中一条对角线长y与另一条对角线长x之间的关系7.一次函数y=ax+a(a为常数,a≠0)与反比例函数y= (a为常数,a≠0)在同一平面直角坐标系内的图像大致为( )A. B. C. D.8.近视眼镜的度数y(度)与镜片焦距x(m)成反比例,已知200度近视眼镜镜片的焦距为0.5 m,则y 与x的函数关系式为( )A.y= B.y= C.y= D.y=9.随着私家车的增加,城市的交通也越老越拥挤,通常情况下,某段高架桥上车辆的行驶速度y(千米/时)与高架桥上每百米拥有车的数量x(辆)的关系如图所示,当x≥10时,y与x成反比例函数关系,当车行驶速度低于20千米/时,交通就会拥堵,为避免出现交通拥堵,高架桥上每百米拥有车的数量x应该满足的范围是()A.x≤40 B.x≥40 C.x>40 D.x<4010.函数和在第一象限内的图象如图所示,点是的图象上一动点,作轴于点,交的图象于点,作轴于点,交的图象于点,给出如下结论:①与的面积相等;②与始终相等;③四边形的面积大小不会发生变化;④,其中正确的结论序号是()A.①②③ B.②③④ C.①③④ D.①②④二、填空题(8小题,每题3分,共24分)11.已知函数(n是常数),当n=____时,此函数是反比例函数.12.一次函数y=ax+b和反比例函数y=bx在同一坐标系内的大致图象如上图所示,则a___0,b___0.13.已知y与x成反比例,并且当x=2时,y=-1,则当y=3时,x的值是________.14.在下列函数表达式中,x均表示自变量:①y=;②y=-2x-1;③xy=2;④y=.其中y是x 的反比例函数有____个.15.若函数的图象在其所在的每一象限内,函数值 y随自变量 x的增大而增大,则 m的取值范围是________16.有一个可以改变体积的密闭容器内装有一定质量的二氧化碳,当改变容器的体积时,气体的密度也会随之改变,密度(单位:)是体积(单位:)的反比例函数,它的图象如图所示,当时,气体的密度是________.17.反比例函数y=图象上三个点的坐标为(x1,y1),(x2,y2),(x3,y3),若x1<x2<0<x3,则y1,y2,y3的大小关系是_____________.18.如图,四边形是平行四边形,,点在轴的负半轴上,将绕点逆时针旋转得到,经过点,点恰好落在轴的正半轴上,若点在反比例函数的图象上,则的值为_____.三、解答题(8小题,共66分)19.在平面直角坐标系xOy中,反比例函数y=的图象与y=的图象关于x轴对称,且过点A(m,3),求m的值.20.已知y是关于x的反比例函数,当x=1时,y=3; 当x=m时,y=-2.(1)求该反比例函数的表达式;(2)若一次函数y=3x+b的图象过点(m,-2),求一次函数的表达式.21.码头工人每天往一艘轮船上装载30吨货物,装载完毕恰好用了8天时间.(1)轮船到达目的地开始卸货,平均卸货速度v(单位:吨/天)与卸货天数t之间有怎样的函数关系?(2)由于遇到紧急情况,要求船上货物不超过5天卸货完毕,那么平均每天至少要缷货多少吨?22.已知,如图:反比例函数y=的图象经过点A(﹣3,b)过点A作x轴的垂线,垂足为B,S△AOB=3.(1)求k,b的值;(2)若一次函数y=ax+1的图象经过点A,且与x轴交于M,求AM的长.23.如图,在平面直角坐标系中,过点A(-2,0)作y轴的平行线交反比例函数y=的图象于点B,AB=.(1)求反比例函数的表达式;(2)若P(x1,y1),Q(x2,y2)是该反比例函数图象上的两点,且x1<x2时,y1>y2,指出点P,Q各位于哪个象限?并简要说明理由.24.如图,四边形ABCD为正方形,点A的坐标为(0,1),点B的坐标为(0,﹣2),反比例函数k yx =的图象经过点C,一次函数y ax b=+的图象经过A、C两点.(1)求反比例函数与一次函数的解析式;(2)求反比例函数与一次函数的另一个交点M的坐标;(3)若点P是反比例函数图象上的一点,△OAP的面积恰好等于正方形ABCD的面积,求P点的坐标.25.已知:如图所示,在平面直角坐标系中,函数(,是常数)的图象经过点、点,其中,直线交轴于点.过点作轴的垂线,垂足为,过点作轴的垂线,垂足为,与相交于点,连接.(1)若的面积为,求点的坐标;(2)求证:四边形为平行四边形;(3)若,求直线的函数解析式.26.如图1,已知直线y=﹣x+m与反比例函数y=的图象在第一象限内交于A、B两点(点A在点B 的左侧),分别与x、y轴交于点C、D,AE⊥x轴于E.(1)若OE•CE=12,求k的值.(2)如图2,作BF⊥y轴于F,求证:EF∥CD.(3)在(1)(2)的条件下,EF=, AB=2,P是x轴正半轴上的一点,且△PAB是以P为直角顶点的等腰直角三角形,求P点的坐标.参考答案一、选择题1.C 2.D 3.B 4.D 5.D 6.D 7.C 8.A 9.A 10.C二、填空题11.1 12.<> 13. 14.3 15. m<-2 16. 417.18.三解答题19.解:∵反比例函数的图象与的图象关于x轴对称,∴反比例函数的解析式为,∵反比例函数过点A(m,3),∴解得m=−2.20.解:(1)设反比例解析式为,将x=1,y=3代入得:k=3,则反比例解析式为(2)将x=m,y=−2代入反比例解析式得:即将代入一次函数解析式得:即则一次函数解析式为21.解:(1)设轮船上的货物总量为k吨,根据已知条件得k=30×8=240,所以v关于t的函数表达式为v=(2)∵v=,∴t=,∵t≤5,∴≤5,解得v≥48.即平均每天至少要卸货48吨22.解:(1)∵S△A0B=|x•y|=|k|=3,∴|k|=6,∵反比例函数图象位于第二、四象限,∴k<0,∴k=﹣6,∵反比例函数y=的图象经过点A(﹣3,b),∴k=﹣3×b=﹣6,解得b=2;(2)把点A(﹣3,2)代入一次函数y=ax+1得,﹣3a+1=2,解得a=﹣,∴一次函数解析式为y=﹣x+1,令y=0,则﹣x+1=0,解得x=3,所以,点M的坐标为(3,0),∴AM===2.23.解:(1)由题意B(﹣2,),把B (﹣2,)代入y=中,得到k=﹣3,∴反比例函数的解析式为y=﹣;(2)结论:P 在第二象限,Q 在第四象限, 理由:∵k=﹣3<0,∴反比例函数y 在每个象限y 随x 的增大而增大,∵P (x 1,y 1)、Q (x 2,y 2)是该反比例函数图象上的两点,且x 1<x 2时,y 1>y 2, ∴P 、Q 在不同的象限,∴P 在第二象限,Q 在第四象限.24.解:(1)∵点A 的坐标为(0,1),点B 的坐标为(0,﹣2),∴AB=1+2=3,∵四边形ABCD 为正方形,∴Bc=3,∴C (3,﹣2),把C (3,﹣2)代入ky x=,得k=3×(﹣2)=﹣6,∴反比例函数解析式为6y x =-,把C (3,﹣2),A (0,1)代入y ax b =+,得321a b b +=-⎧⎨=⎩,解得:11a b =-⎧⎨=⎩,∴一次函数解析式为1y x =-+;(2)解方程组16y x y x =-+⎧⎪⎨=-⎪⎩,得:32x y =⎧⎨=-⎩或23x y =-⎧⎨=⎩,∴M 点的坐标为(﹣2,3); (3)设P (t ,6t -),∵△OAP 的面积恰好等于正方形ABCD 的面积,∴12×1×|t|=3×3,解得t=18或t=﹣18,∴P 点坐标为(18,13-)或(﹣18,13).25.解:(1)将A(1,4)代入函数中,得:m=4,所以y;∵S△ABD BD•AM a(4﹣b)=4.∵B(a,b)在函数y的图象上,∴ab=4,∴a=3,b,即:点B(3,);(2)∵函数y(x>0,m是常数)的图象经过点A(1,4),∴m=4.∵B(a,b)在双曲线上,∴ab=4.∵直线AB过点A(1,4),B(a,b),且ab=4,设直线AB解析式为y=ex+f,∴,解得:e=-b,f=b+4,∴直线AB解析式为y=﹣bx+b+4,∴E(0,b+4).∵BD⊥y轴,AC⊥x轴,∴D(0,b),∴DE=b+4﹣b=4.∵A(1,4),∴AC=4,∴DE=AC.∵DE∥AC,∴四边形ACDE为平行四边形;(3)设直线AB的函数解析式为y=kx+b.∵CD∥AB,AD=BC,∴四边形ABCD为平行四边形或等腰梯形.情况1:四边形ABCD为平行四边形,则DM=MB,∴a﹣1=1,a=2,∴B(2,2).∵A(1,4)、B(2,2)在直线AB上,∴直线AB解析式为:y=﹣2x+6;情况2:四边形ABCD为等腰梯形,则AC=BD,∴a=4,∴B(4,1).∵A(1,4)、B(4,1)在直线AB上,直线AB解析式为:y=﹣x+5.综上所述:直线AB的函数解析式为y=﹣2x+6或y=﹣x+5.26.解:(1)设OE=a,则A(a,﹣a+m),∵点A在反比例函数图象上,∴a(﹣a+m)=k,即k=﹣a2+am,由一次函数解析式可得C(2m,0),∴CE=2m﹣a,∴OE.CE=a(2m﹣a)=﹣a2+2am=12,∴k=(﹣a2+2am)=×12=6;(2)连接AF、BE,过E、F分别作FM⊥AB,EN⊥AB,∴FM∥EN,∵AE⊥x轴,BF⊥y轴,∴AE⊥BF,S△AEF=AE•OE=,S△BEF=BF•OF=,∴S△AEF=S△BEF,∴FM=EN,∴四边形EFMN是矩形,∴EF∥CD;(3)由(2)可知,EF=AD=BC=,∴CD=4,由直线解析式可得OD=m,OC=2m,∴OD=4,又EF∥CD,∴OE=2OF,∴OF=1,0E=2,∴DF=3,∴AE=DF=3,∵AB=2,∴AP=,∴EP=1,∴P(3,0).。
浙教版八年级数学下册单元测试卷附答案第六章反比例函数

浙教版八年级数学下册单元测试卷附答案第六章反比例函数一、选择题(共14小题;共56分)1. 小华以每分钟字的速度书写,分钟写了字,则与的函数关系为A. B. C. D.2. 下列关系式中,是的反比例函数的是A. B. C. D.3. 某村耕地总面积为公顷,且该村人均耕地面积(单位:公顷/人)与总人口(单位:人)的函数图象如图所示,则下列说法正确的是A. 该村人均耕地面积随总人口的增多而增多B. 该村人均耕地面积与总人口成正比例C. 若该村人均耕地面积为公顷,则总人口有人D. 当该村总人口为人时,人均耕地面积为公顷4. 一司机驾驶汽车从甲地去乙地,他以平均千米/小时的速度用了个小时到达乙地,当他按原路匀速返回时,汽车的速度千米/小时与时间小时的函数关系是A. B. C. D.5. 若双曲线经过点,则的值为A. B. C. D.6. 反比例函数的图象上有两点,,若,则下列结论正确的是A. B. C. D.7. 已知点,,都在反比例函数的图象上,则A. B. C. D.8. 已知点在反比例函数的图象上,那么这个函数图象一定经过点D.9. 已知力所做的功是焦(功力物体在力的方向上通过的距离),则力与物体在力的方向上通过的距离之间的函数图象大致是A. B.C. D.10. 若反比例函数的图象过点,则一次函数的图象过A. 第一、二、四象限B. 第一、三、四象限C. 第二、三、四象限D. 第一、二、三象限11. 下列四个点中,有三个点在同一反比例函数的图象上,则不在这个函数图象上的点是A.12. 如图,菱形的顶点的坐标为.顶点在轴的正半轴上,反比例函数的图象经过顶点,则的值为A. B. C. D.13. 下列各变量之间的关系属于反比例函数关系的有①当路程一定时,汽车行驶的平均速度与行驶时间之间的关系;②当电压一定时,电路中的电阻与通过的电流强度之间的函数关系;③当矩形面积一定时,矩形的两边与之间的函数关系;④当受力一定时,物体所受到的压强与受力面积之间的函数关系.A. ①②③B. ②③④C. ①③④D. ①②③④14. 【测试】如图,正比例函数的图象与反比例函数的图象交于、两点,点在轴负半轴上,,的面积为.则的值为C. D.二、填空题(共10小题;共45分)15. 已知反比例函数,这个函数的自变量的取值范围是.当时,函数的值是;当时,自变量的值是.16. 有关部门计划修建的铁路长千米,则铺轨天数(天)关于日铺轨量(千米/天)的函数表达式是.17. 下列关于的函数中,哪些是反比例函数?若是反比例函数,写出它的比例系数.18. 若一个反比例函数的图象经过和,则这个反比例函数的表达式为.19. 在的三个顶点中,可能在反比例函数的图象上的点是.20. 学校食堂现存千克大米,每天用去千克,可以维持天.(1)写出与的函数关系;(2)若每天用去千克可维持天;(3)若要至少维持天,每天至多可用去千克.21. 如图,在平面直角坐标系中,过点分别作轴、轴的垂线与反比例函数的图象交于,两点,则四边形的面积为22. 如图,一块长方体大理石板的,,三个面上的边长如图所示,如果大理石板的面向下放在地上时地面所受压强为帕,则把石板面向下放在地上地面所受压强是帕.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第6章检测题(时间:100分钟 满分:120分)一、精心选一选(每小题3分,共30分) 1.已知反比例函数y =kx的图象经过点(3,2),那么下列四个点中,也在这个函数图象上的是( B )A .(3,-2)B .(-2,-3)C .(1,-6)D .(-6,1)2.有以下判断:①圆面积公式S =πr 2中,面积S 与半径r 成正比例;②运动的时间与速度成反比例;③当电压不变时,电流强度和电阻成反比例;④圆柱体的体积公式V =πr 2h 中,当体积V 不变时,圆柱的高h 与底面半径r 的平方成反比例,其中错误的有( B )A .1个B .2个C .3个D .4个3.a ,b 是实数,点A(2,a),B(3,b)在反比例函数y =-2x的图象上,则( A )A .a <b <0B .b <a <0C .a <0<bD .b <0<a4.如图,市煤气公司计划在地下修建一个容积为104 m 3的圆柱形煤气储存室,则储存室的底面积S(单位:m 2)与其深度d(单位:m )的函数图象大致是( A )5.一次函数y =ax +a(a 为常数,a ≠0)与反比例函数y =ax(a 为常数,a ≠0)在同一平面直角坐标系内的图象大致为( C )6.如图,正比例函数y 1=k 1x 的图象与反比例函数y 2=k2x的图象相交于A ,B 两点,其中点A 的横坐标为2,当y 1>y 2时,x 的取值范围是( D )A .x <-2或x >2B .x <-2或0<x <2C .-2<x <0或0<x <-2D .-2<x <0或x >2,第6题图) ,第7题图) ,第8题图),第9题图)7.如图,点A 在双曲线y =4x 上,点B 在双曲线y =kx (k ≠0)上,AB ∥x 轴,分别过点A ,B 向x 轴作垂线,垂足分别为D ,C ,若矩形ABCD 的面积是8,则k 的值为( A )A .12B .10C .8D .68.如图,在平面直角坐标系中,▱OABC 的顶点A 的坐标为(-4,0),顶点B 在第二象限,∠BAO =60°,BC 交y 轴于点D ,DB ∶DC =3∶1.若函数y =kx(k >0,x >0)的图象经过点C ,则k 的值为( D )A.33 B.32 C.233D. 3 9.如图,A ,B 两点在反比例函数y =k1x 的图象上,C ,D 两点在反比例函数y =k2x的图象上,AC ⊥y 轴于点E ,BD ⊥y 轴于点F ,AC =2,BD =1,EF =3,则k 1-k 2的值是( D )A .6B .4C .3D .210.函数y =4x 和y =1x 在第一象限内的图象如图,点P 是y =4x 的图象上一动点,PC ⊥x 轴于点C ,交y =1x 的图象于点A ,PD ⊥y 轴于点D ,交y =1x 的图象于点B.给出如下结论:①△ODB 与△OCA 的面积相等;②PA 与PB 始终相等;③四边形PAOB 的面积大小不会发生变化;④CA =13AP.其中所有正确结论的序号是( C )A .①②③B .②③④C .①③④D .①②④,第10题图) ,第12题图) ,第13题图),第16题图)二、细心填一填(每小题4分,共24分)11.在下列函数表达式中,x 均表示自变量:①y =x2;②y =-2x -1;③xy =2;④y =-4x.其中y 是x 的反比例函数有__3__个. 12.有一个可以改变体积的密闭容器内装有一定质量的二氧化碳,当改变容器的体积时,气体的密度也会随之改变,密度ρ(单位:kg /m 3)是体积V(单位:m 3)的反比例函数,它的图象如图所示,当V =2 m 3时,气体的密度是__4__kg/m 3.13.如图,点A 是反比例函数图象上一点,过点A 作AB ⊥y 轴于点B ,点C ,D 在x 轴上,且BC ∥AD ,四边形ABCD 的面积为3,则这个反比例函数的表达式为__y =-3x__.14.点(a -1,y 1),(a +1,y 2)在反比例函数y =kx(k >0)的图象上,若y 1<y 2,则a 的取值范围是__-1<a <1__.15.已知△ABC 的三个顶点为A(-1,-1),B(-1,3),C(-3,-3) ,将△ABC 向右平移m(m >0 )个单位后,△ABC 某一边的中点恰好落在反比例函数y =3x 的图象上,则m 的值为__0.5或4__.16.如图,已知点A ,C 在反比例函数y =a x 的图象上,点B ,D 在反比例函数y =bx 的图象上,a >b >0,AB ∥CD ∥x 轴,AB ,CD 在x 轴的两侧,AB =34,CD =32,AB 与CD 间的距离为6,则a -b 的值是__3__.三、耐心做一做(共66分) 17.(6分)某种型号热水器的容量为180升,设其工作时间为y 分钟,每分钟的排水量为x 升.(1)写出y 关于x 的函数表达式和自变量x 的取值范围; (2)如果热水器可连续工作的时间不超过1小时,那么每分钟的排水量应控制在什么范围内?解:(1)y =180x(x >0)(2)当0<y ≤60时,x ≥3(升/分钟)18.(6分)已知y =y 1+y 2,y 1与(x -1)成正比例,y 2与(x +1)成反比例,当x =0时,y =-3,当x =1时,y =-1.(1)求y 关于x 的函数表达式; (2)求当x =-12时y 的值.解:(1)y =x -1-2x +1 (2)y =-11219.(6分)若反比例函数y =kx 与一次函数y =2x -4的图象都经过点A(a ,2).(1)求反比例函数y =kx的表达式;(2)当反比例函数y =kx的值大于一次函数y =2x -4的值时,求自变量x 的取值范围.解:(1)y =6x (2)x <-1或0<x <320.(8分)如图,在平面直角坐标系中,点A(3,1),B(2,0),O(0,0),反比例函数y =k x图象经过点A.(1)求k 的值;(2)将△AOB 绕点O 逆时针旋转60°,得到△COD ,其中点A 与点C 对应,试判断点D 是否在该反比例函数的图象上?解:(1)k =3 (2)易知△BOD 是等边三角形,可得D (1,3),由(1)k =3,∴y =3x,当x =1时,y =3,∴点D 在该反比例函数的图象上21.(8分)如图,在平面直角坐标系中,过点A(-2,0)作y 轴的平行线交反比例函数y =kx 的图象于点B ,AB =32.(1)求反比例函数的表达式;(2)若P(x 1,y 1),Q(x 2,y 2)是该反比例函数图象上的两点,且x 1<x 2时,y 1>y 2,指出点P ,Q 各位于哪个象限?并简要说明理由.解:(1)由题意B (-2,32),把B (-2,32)代入y =kx 中,得到k =-3,∴反比例函数的表达式为y =-3x(2)结论:P 在第二象限,Q 在第四象限.理由:∵k =-3<0,∴反比例函数y 在每个象限y 随x 的增大而增大,∵P (x 1,y 1),Q (x 2,y 2)是该反比例函数图象上的两点,且x 1<x 2时,y 1>y 2,∴P ,Q 在不同的象限,∴P 在第二象限,Q 在第四象限22.(10分)小明家饮水机中原有水的温度为20 ℃,通电开机后,饮水机自动开始加热[此过程中水温y(℃)与开机时间x(分)满足一次函数关系],当加热到100 ℃时自动停止加热,随后水温开始下降[此过程中水温y(℃)与开机时间x(分)成反比例关系],当水温降至20 ℃时,饮水机又自动开始加热…,重复上述程序(如图所示),根据图中提供的信息,解答下列问题:(1)当0≤x ≤8时,求水温y(℃)与开机时间x(分)的函数表达式;(2)求图中t 的值;(3)若小明在通电开机后即外出散步,请你预测小明散步45分钟回到家时,饮水机内的温度约为多少℃?解:(1)函数表达式为:y =10x +20 (2)t =40 (3)∵45-40=5≤8,∴当x =5时,y =10×5+20=70,答:小明散步45分钟回到家时,饮水机内的温度约为70 ℃23.(10分)如图,设反比例函数的表达式为y =3kx(k >0). (1)若该反比例函数与正比例函数y =2x 的图象有一个交点的纵坐标为2,求k 的值; (2)若该反比例函数与过点M(-2,0)的直线l :y =kx +b 的图象交于A ,B 两点,如图所示,当△ABO 的面积为163时,求直线l 的表达式.解:(1)由题意得交点坐标为(1,2),把(1,2)代入y =3k x ,得到3k =2,∴k =23(2)把M (-2,0)代入y =kx +b ,可得b =2k ,∴y =kx +2k ,由⎩⎪⎨⎪⎧y =3k x ,y =kx +2k ,消去y得到x 2+2x -3=0,解得x =-3或1,∴B (-3,-k ),A (1,3k ),∵△ABO 的面积为163,∴12·2·3k +12·2·k =163,解得k =43,∴直线l 的解析式为y =43x +8324.(12分)如图,四边形ABCD 为正方形,点A 的坐标为(0,1),点B 的坐标为(0,-2),反比例函数y =kx的图象经过点C ,一次函数y =ax +b 的图象经过点A ,C 两点.(1)求反比例函数与一次函数的表达式;(2)求反比例函数与一次函数的另一个交点M 的坐标;(3)若点P 是反比例函数图象上的一点,△OAP 的面积恰好等于正方形ABCD 的面积,求P 点的坐标.解:(1)∵点A 的坐标为(0,1),点B 的坐标为(0,-2),∴AB =1+2=3,∵四边形ABCD 为正方形,∴BC =3,∴C (3,-2),把C (3,-2)代入y =kx 得k =3×(-2)=-6,∴反比例函数表达式为y =-6x,把C (3,-2),A (0,1)代入y =ax +b 得a =-1,b =1,∴一次函数表达式为y =-x +1 (2)y =-x +1与y =-6x 联立解得⎩⎨⎧x =3y =-2或⎩⎨⎧x =-2y =3,∴M点的坐标为(-2,3) (3)设P (t ,-6t ),∵△OAP 的面积恰好等于正方形ABCD 的面积,∴12×1×|t|=3×3,解得t =18或t =-18,∴P 点坐标为(18,-13)或(-18,13)。