(完整版)平面向量线性运算经典习题.doc

合集下载

高考100题平面向量:专题一 平面向量的线性运算

高考100题平面向量:专题一 平面向量的线性运算

【例 8】 【2016 学年辽宁沈阳二中高二 6 月月考】 在平行四边形 ABCD 中 AE 相交于 G 点,若 AB a , AD b ,则 AG ( A.





1 1 AB , AF AD ,CE 与 BF 3 4
II.考场精彩·真题回放

1 1 a a b , 2 2
【例 2】 【2015 全国新课标Ⅰ卷】设 D 为 ABC 所在平面内一点 BC 3CD ,则(



4 1 AB AC 3 3 1 4 B. AD AB AC 3 3 4 1 C. AD AB AC 3 3

2 1 a b 7 7
B.
2 3 a b 7 7
C.
3 1 a b 7 7
D.
4 2 a b 7 7 1 x b ,同理可设 4

【思路方法】 (1)将一个向量表示为另两个不共线的向量的线性关系,主要是利用平行四边形法则或三角形法 则,结合数乘向量、平面向量的基本定理来解决. (2)注意题目中中点与平行的应用.
【命题意图】本类题主要考查平面向量的加法运算及三角形法则、数乘向量,以及图形的识别能力、运算求解 能力.
【考试方向】这类试题在考查题型上,通常基本以选择题或填空题的形式出现,难度中偏下.
2.减法法则及几何意义 三角形法则:已知向量 a, b ,在平面上任取一点 O ,作 OA a , OB b ,则 BA a b . 考点二 向量的数乘运算及几何意义







实数 与向量 a 的乘积 a 是一个向量,且 | a || || a | .当 0 时, a 与 a 的方向相同;当 0 时, a 与 a 的方向相反.特别地,向量 a ( a 0 )与 b 共线,当且仅当有唯一一个实数 ,使 b a . 考点三 向量共线定理

平面向量题目及详细答案.doc

平面向量题目及详细答案.doc

A + 2 = 2mA2一cos2 a = m +22,设± = k代入方程组可得<mkm 4-2 = 2mk2m2 - cos2a = m + 2sina 平面向量高考经典试一、选择题1.(全国1文理)已知向量方=(-5,6),方= (6,5),则Z与方A.垂直B.不垂直也不平行C.平行且同向D.平行且反向解.己知向量a = (-5,6), & = (6,5), = —30 + 30 = 0,则U与片垂直,2、(山东文5)已知向量G = (1, 〃),b = (—1, 〃),若2a -b与b垂直,则a =( )A. 1B. y/2C. 2D. 4【分析】:2a-b = (3,n),由2a-b^jb垂直可得:(3,〃)・(—1,〃) = -3 + 〃2 =o=> 〃 = ±右,a = 2 o3、(广东文4理10)若向量履满足修|=|方|二1 3,5的夹角为60。

,则溢+混=解析:aa + a-b= l + lxlx—=—,2 24、(天津理10)设两个向量。

=(A + 2, /i? 一cos2Q)和方=(m, y + sin a),其中人,a为一一人实数.若。

=2上则-的取值范围是mA. [-6,1]B. [4,8]C. (-oo,l]D. [-1,6][分析】由« = (/! +2, A2 - cos2a) ,h = (tn,— + sin a = 2片,可得2去〃7化简得2k ] - cos2a = + 2sin cr,再化简得{2-kJ 2-k2 + 4 ] 一cos2a + ------ 2 sin。

= 0 再令一— = t代入上式得、k - 2) k — 2 k — 2(sin2。

一顶 + (16产 +18/ + 2) = 0 可得一(16产 +18, + 2)c [0,4]解不等式得Z G[-1,--]8(B)\bc^ = ba-bc则入= 2 (A)-■) 1 (B)- ■) (号2 (D)-- ■)解.在左ABC 中,己知D 是AB 边上一点,若AD=2DB , cB=-G5 + XCB,则3CD = CA + AD = CA+-^B = CA + -(CB-CA)=-CA^-CB , 4X=-,选 A 。

平面向量的线性运算(含答案)

平面向量的线性运算(含答案)

平面向量的线性运算一、单选题(共10道,每道10分)1.设P是△ABC所在平面内的一点,,则( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:向量数乘的运算及其几何意义2.设D,E,F分别是△ABC的三边AB,BC,CA的中点,则等于( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:向量数乘的运算及其几何意义3.在△ABC中,,P是CR的中点,若,则m+n等于( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:向量数乘的运算及其几何意义4.如图,在△ABC中,,若,则的值是( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:向量数乘的运算及其几何意义5.已知点P是△ABC内一点,且,则的值是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:向量数乘的运算及其几何意义6.设M是平行四边形ABCD的对角线的交点,O为任意一点(不与M重合),则等于( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:向量数乘的运算及其几何意义7.若M是△ABC的重心,O为任意一点,,则n的值是( )A.0B.1C.2D.3答案:D解题思路:试题难度:三颗星知识点:向量数乘的运算及其几何意义8.在△ABC中,,,点P在AM上且满足,则的值是( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:向量数乘的运算及其几何意义9.设P是等边△ABC所在平面内的一点,满足,若AB=1,则的值是( )A.4B.3C.2D.1答案:B解题思路:试题难度:三颗星知识点:平面向量数量积的运算10.如图,BC,DE是半径为1的圆O的两条直线,,则的值是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:平面向量数量积的运算。

平面向量线性练习题

平面向量线性练习题

平面向量线性练习题平面向量线性练习题在学习平面向量的线性运算时,练习题是非常重要的一部分。

通过解答这些题目,我们能够巩固和加深对平面向量的理解,提高解题能力。

下面,我将为大家介绍一些常见的平面向量线性练习题。

1. 向量加法与减法题目:已知向量a = (3, 4)和b = (-2, 1),求向量c = a + b和向量d = a - b。

解析:向量加法和减法是平面向量的基本运算。

对于向量a和向量b,向量c = a + b的计算方法是将a的x分量与b的x分量相加,将a的y分量与b的y分量相加;向量d = a - b的计算方法是将a的x分量与b的x分量相减,将a的y分量与b的y分量相减。

根据题目中给出的向量a和向量b的数值,我们可以得到向量c = (3 + (-2), 4 + 1) = (1, 5),向量d = (3 - (-2), 4 - 1) = (5, 3)。

2. 向量的数量积题目:已知向量a = (2, -3)和向量b = (4, 5),求向量a与向量b的数量积。

解析:向量的数量积也称为点积或内积,计算方法是将两个向量的对应分量相乘,并将所得乘积相加。

根据题目中给出的向量a和向量b的数值,我们可以得到a·b = 2 * 4 + (-3) * 5 = 8 - 15 = -7。

3. 向量的数量积与夹角题目:已知向量a = (3, 4)和向量b = (5, -2),求向量a与向量b的夹角。

解析:向量的夹角可以通过向量的数量积来计算。

设向量a与向量b的夹角为θ,则有cosθ = (a·b) / (|a| * |b|),其中|a|和|b|分别表示向量a和向量b的模。

根据题目中给出的向量a和向量b的数值,我们可以得到a·b = 3 * 5 + 4 * (-2) =15 - 8 = 7,|a| = √(3^2 + 4^2) = √(9 + 16) = √25 = 5,|b| = √(5^2 + (-2)^2) = √(25 + 4) = √29。

平面向量的线性运算基础训练题(有详解)

平面向量的线性运算基础训练题(有详解)

平面向量的线性运算基础训练题(有详解) 一、单选题 1.在△ABC 中,M 是BC 的中点.若AB =a ,BC =b ,则AM =( ) A .1()2a b + B .1()2a b - C .12a b + D .12a b + 2.在梯形ABCD 中,已知AB CD ∥,2AB DC =,点P 在线段BC 上,且2BP PC =,则( )A .2132AP AB AD =+ B .1223AP AB AD =+C .32AD AP AB =- D .23AD AP AB =- 3.如图,ABC ∆中,,,AD DB AE EC CD ==与BE 交于F ,设AB a →=,AC b →=,AF xa yb →=+,则(),x y 为( ) A .11,33⎛⎫ ⎪⎝⎭ B .22,33⎛⎫ ⎪⎝⎭ C .11,22⎛⎫ ⎪⎝⎭ D .21,32⎛⎫ ⎪⎝⎭ 4.如图,在平行四边形ABCD 中,点E F 、满足2,2BE EC CF FD ==,EF 与AC 交于点G ,设AG GC λ=,则λ=( ) A .97 B .74 C .72 D .92( ) A .0 B .-1 C .-2 D .±1 6.在ABC ∆中,O 为其内部一点,且满足30OA OC OB ++=,则A O B ∆和AOC ∆的面积比是( ) A .3:4 B .3:2 C .1:1 D .1:3 7.已知圆C 的方程为22(1)(1)2x y -+-=,点P 在直线3y x =+上,线段AB 为圆C 的直径,则PA PB ⋅的最小值为() A .2 B .52 C .3 D .728.设点O 在ABC ∆的内部,且2340OA OB OC ++=,若ABC ∆的面积是27,则AOC ∆的面积为( )A .9B .8C .152 D .79.O 是平面上一定点,,,A B C 是平面上不共线的三个点,动点P 满足:,[0,)||||AB AC OP OA AB AC λλ⎛⎫=++∈+∞ ⎪ ⎪⎝⎭,则P 的轨迹一定通过ABC ∆的( )A .内心B .垂心C .重心D .外心 10.已知 O 是平面上一定点,A ,B ,C 是平面上不共线的三个点,动点 P 满足 AB AC OP OA AB AC λ⎛⎫=++ ⎪⎝⎭∣∣∣∣,()0,λ∈+∞ .则 P 点的轨迹一定通过 ABC 的( )A .外心B .内心C .重心D .垂心11.设D 为所在平面内一点,,若,则( )A .2B .3C .D .12.设M 是平行四边形ABCD 的对角线的交点,O 为任意一点(且不与M 重合),则OA OB OC OD +++等于( )A .OMB .2OMC .3OMD .4OM13.已知22a =,3b =,a ,b 的夹角为4π,如图所示,若52AB a b =+,A .152B .2C .7D .8 14.在中,设,,为线段的中点,则( )A .B .C .D . 15.如图,边长为2的正方形ABCD 中,P ,Q 分别是边BC ,CD 的中点,若=x +y ,则x =( ) A .2 B . C . D . 16.如图,在等腰梯形中,,于点,则( )A .B .C .D . 17.若为所在平面内任一点,且满足,则的形状为 A .等边三角形 B .直角三角形 C .等腰三角形 D .等腰直角三角形第II卷(非选择题)未命名二、填空题18.已知()()2,5,10,3A B--,点P在直线AB上,且13PA PB=-,则点P的坐标是_____.19.如图所示,已知在矩形中,,设,,.则______.20.如图,在矩形中,,,点为的中点,点在直线上.若,则的值为__________.21.在ABC∆所在的平面内有一点P,若2PA PC AB PB+=-,那么PBC∆的面积与ABC∆的面积之比是_____________.22.在平行四边形ABCD中,点E是AD的中点,点F是CD的中点,记,BE a AC b==,用,a b表示AB,则AB=_________.23.已知点O为△ABC内一点,+2+3=,则=_________。

平面向量线性运算经典习题

平面向量线性运算经典习题

平面向量习题(高三下小专题一)1.设点M 是线段BC 的中点,点A 在直线BC 外,24BC = ,||||,AB AC AB AC +=- 则|AM |=A.8B.4C.2D.12.已知ABC ∆中,点D 在BC 边上,且2,,CD DB CD r AB s AC ==+ 则r s +的值是A.23 B.43 C.3- D.03.平面向量,a b 共线的充要条件是A.,a b 方向相同B.,a b 两向量中至少有一个为0C.存在λ∈R ,使λb =aD.存在不全为零的实数12,λλ,使12λλa +b =04.已知,,O A B 是平面上的三个点,直线AB 上有一点C ,满足20,AC CB += 则OC 等于.2.22112..3333A OA OB B OA OBC OA OBD OB --+--+ 5.设,,DEF 分别是ABC ∆的三边,,BC CA AB 上的点,2,2,2,DC BD CE EA AF FB === 则AD BE CF++ 与BCA.反向平行B.同向平行C.不平行D.无法判断6.,a b 是不共线的向量,AB λ= a +b ,AC μ= a +b ,(,λμ∈R ),那么,,A B C 三点共线的充要条件为A.2λμ+=B.1λμ-=C.1λμ=-D.1λμ=7.设+++=()() AB CD BC DA a ,而b 是一非零向量,则下列各结论:①//a b ;②+=a b a ;③+=a b b ;④+<+a b a b ,其中正确的是A.①②B.③④C.②④D.①③8.若a b c =+化简3(2)2(3)2()a b b c a b +-+-+A.a B.b C.c D.以上都不对9.在ABC ∆中,,,D E F 分别,,BC CA AB 的中点,点M 是ABC ∆的重心,则-+等于A.B.MD 4C.MF 4D.ME410.已知O 为ABC ∆的外心,1cos 3A =,若AO AB AC αβ=+ ,则αβ+的最大值为:A.13 B.12 C.23 D.3411.在边长为的正六边形ABCDEF 中,动圆O 的半径为1,圆心在线段CD (含端点)上运动,P 是圆O 上设向量AP mAB nAF =+ (,m n 为实数)则m n +的取值范围是(A)(1,2](B)[5,6](C)[2,5](D)[3,5]12.若点O 是ABC ∆所在平面内的一点,且满足|||2|OB OC OB OC OA -=+- ,则ABC ∆的形状为________.13.如图,平面内有三个向量OA 、OB 、,OC 其中OA 与OB 的夹角为120 ,OA 与OC 的夹角为30 ,且|OA |=|OB |1=,|OC |=OC =OA λ+ OBμ (,λμ∈R ),则λμ+的值为________.14.如图,在ABC ∆中,点O 是BC 的中点,过点O 的直线分别交直线,AB AC 于不同的两点,M N ,若,,AB mAM AC nAN == 则m n +的值为________.15.已知O 为ABC ∆的外心,6,10,AB AC AO xAB y AC ===+ ,且2105x y +=,则cos ABC ∠=.16.若,a b 是两个不共线的非零向量,t ∈R ,若,a b 起点相同,t 为何值时,()1,3t +a b,a b 三向量的终点在一条直线上?.17.设,a b 是不共线的两个非零向量,(1)若2,3,3OA OB OC =-=- =a b a +b a b ,求证:,,A B C 三点共线;(2)若8k +a b 与2k +a b 共线,求实数k 的值.18.如图所示,ABC ∆中,点M 是BC 的中点,点N 在AC 边上,且2AN NC =,AM 与BN 相交于点P ,求:AP PM 的值.。

(完整版)平面向量练习题集答案(可编辑修改word版)

(完整版)平面向量练习题集答案(可编辑修改word版)

a •aa •a平面向量练习题集答案典例精析题型一向量的有关概念【例1】下列命题:①向量AB 的长度与BA 的长度相等;②向量a 与向量b 平行,则 a 与 b 的方向相同或相反;③两个有共同起点的单位向量,其终点必相同;④向量AB 与向量CD 是共线向量,则A、B、C、D 必在同一直线上.其中真命题的序号是.【解析】①对;零向量与任一向量是平行向量,但零向量的方向任意,故②错;③显然错;AB 与CD 是共线向量,则A、B、C、D 可在同一直线上,也可共面但不在同一直线上,故④错.故是真命题的只有①.【点拨】正确理解向量的有关概念是解决本题的关键,注意到特殊情况,否定某个命题只要举出一个反例即可.【变式训练1】下列各式:①|a|=;②(a •b) •c=a •(b •c);③OA -OB =BA ;④在任意四边形ABCD 中,M 为AD 的中点,N 为BC 的中点,则AB +DC =2 MN ;⑤a=(cos α,sin α),b=(cos β,sin β),且a 与 b 不共线,则(a+b)⊥(a-b).其中正确的个数为( )A.1B.2C.3D.4【解析】选D.| a|=正确;(a •b) •c≠a •(b •c);OA -OB =BA 正确;如下图所示,MN = MD + DC + CN 且MN = MA + AB + BN ,两式相加可得2 MN =AB +DC ,即命题④正确;因为a,b 不共线,且|a|=|b|=1,所以a+b,a-b 为菱形的两条对角线,即得(a+b)⊥(a-b).所以命题①③④⑤正确.题型二与向量线性运算有关的问题【例2】如图,ABCD 是平行四边形,AC、BD 交于点O,点M 在线段DO上,且 DM = 1 DO ,点 N 在线段 OC 上,且ON = 1OC ,设 AB =a , AD =b ,试用 a 、b 表示 AM , AN ,33MN .【解析】在▱ABCD 中,AC ,BD 交于点 O ,1 1 1所以 DO = DB = ( AB - AD )= (a -b ),2 2 2 AO = OC =1 AC =1( AB + AD )=1+b ).(a2 2 2 1 1又 DM = DO , ON = OC ,3 31所以 AM = AD + DM =b + DO31 1 1 5 =b + × (a -b )= a + b ,3 2 6 6AN = AO + ON = OC 1+ OC34 4 1 2 = OC = × (a +b )= (a +b ). 3 3 2 3所以 MN = AN - AM 2 1 5 1 1 = (a +b )-( a + b )= a - b . 3 6 6 2 6【点拨】向量的线性运算的一个重要作用就是可以将平面内任一向量由平面内两个不共线的向量表示,即平面向量基本定理的应用,在运用向量解决问题时,经常需要进行这样的变形.【变式训练 2】O 是平面 α 上一点,A 、B 、C 是平面 α 上不共线的三点,平面 α 内的动点 P 满足OP =1OA +λ( AB + AC ),若 λ= 时,则 PA • ( PB + PC )的值为 .2【解析】由已知得OP - OA =λ( AB + AC ),1 1即 AP =λ( AB + AC ),当 λ= 时,得 AP = ( AB + AC ),2 2所以 2 AP = AB + AC ,即 AP - AB = AC - AP , 所以 = ,所以 + = + =0,所以 PA • ( PB + PC )= PA • 0=0,故填 0. 题型三 向量共线问题【例 3】 设两个非零向量 a 与 b 不共线.(1) 若 AB =a +b , BC =2a +8b , CD =3(a -b ), 求证:A ,B ,D 三点共线;(2)试确定实数 k ,使 k a +b 和 a +k b 共线.【解析】(1)证明:因为 AB =a +b , BC =2a +8b , CD =3(a -b ), 所以 BD = BC + CD =2a +8b +3(a -b )=5(a +b )=5 AB , 所以 , 共线.又因为它们有公共点 B , 所以 A ,B ,D 三点共线. (2)因为 k a +b 和 a +k b 共线, 所以存在实数 λ,使 k a +b =λ(a +k b ), 所以(k -λ)a =(λk -1)b .因为 a 与 b 是不共线的两个非零向量,所以 k -λ=λk -1=0,所以 k 2-1=0,所以 k =±1.【点拨】(1)向量共线的充要条件中,要注意当两向量共线时,通常只有非零向量才能表示与之共线的其他向量,要注意待定系数法的运用和方程思想.(2)证明三点共线问题,可用向量共线来解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线.【变式训练 3】已知 O 是正三角形 BAC 内部一点, OA +2 OB +3 OC =0,则△ OAC 的面积与△OAB 的面积之比是()3 A.2 2 B.3 1 C.2D.3【解析】如图,在三角形 ABC 中, OA +2 OB +3 OC =0,整理可得OA + OC +2( OB + OC )=0.1令三角形 ABC 中 AC 边的中点为 E ,BC 边的中点为 F ,则点 O 在点 F 与点 E 连线的 处,即 OE =2OF .31 h h 1设三角形 ABC 中 AB 边上的高为 h ,则 S △OAC =S △OAE +S △OEC = • OE • ( + )= OE ·h ,2 2 2 21 1 1S △OAB = AB • h = AB ·h ,2 2 42由于 AB =2EF ,OE = EF ,所以 AB =3OE ,3 1S △ OAC OE • h 2 所以 = 2 = .故选 B.S △ OAB 总结提高1 AB • h 341. 向量共线也称向量平行,它与直线平行有区别,直线平行不包括共线(即重合)的情形,而向量平行则包括共线(即重合)的情形.2. 判断两非零向量是否平行,实际上就是找出一个实数,使这个实数能够和其中一个向量把另外一个向量表示出来.3. 当向量 a 与 b 共线同向时,|a +b |=|a |+|b |;当向量 a 与 b 共线反向时,|a +b |=||a |-|b ||; 当向量 a 与 b 不共线时,|a +b |<|a|+|b |.典例精析题型一 平面向量基本定理的应用【例 1】如图▱ABCD 中,M ,N 分别是 DC ,BC 中点.已知 AM =a , AN =b ,试用 a ,b 表示 AB , AD 与 AC【解析】易知 AM = AD + DM1= AD + AB ,21AN = AB + BN = AB + AD ,2⎧AD + 1 AB = a , ⎪即⎨⎪AB + ⎩ 2 1AD = b . 2 2 2所以 AB = (2b -a ), AD = (2a -b ).3 32所以 AC = AB + AD = (a +b ).3【点拨】运用平面向量基本定理及线性运算,平面内任何向量都可以用基底来表示.此处方程思想的运用值得仔细领悟.【变式训练1】已知D 为△ABC 的边BC 上的中点,△ABC 所在平面内有一点P ,满足 PA + BP + CP =| PD |0,则1 等于( )1A.3B.2C.1D.2【解析】由于 D 为 BC 边上的中点,因此由向量加法的平行四边形法则,易知 PB + PC =2 PD ,因| PD |此结合 PA + BP + CP =0 即得 PA =2 PD ,因此易得 P ,A ,D 三点共线且 D 是 PA 的中点,所以即选 C.题型二 向量的坐标运算【例 2】 已知 a =(1,1),b =(x ,1),u =a +2b ,v =2a -b . (1)若 u =3v ,求 x ;(2)若 u ∥v ,求 x . 【解析】因为 a =(1,1),b =(x ,1),所以 u =(1,1)+2(x ,1)=(1,1)+(2x ,2)=(2x +1,3), v =2(1,1)-(x ,1)=(2-x ,1).=1,⎪3 3 3⎨(1)u =3v ⇔(2x +1,3)=3(2-x ,1) ⇔(2x +1,3)=(6-3x ,3), 所以 2x +1=6-3x ,解得 x =1. (2)u ∥v ⇔(2x +1,3)=λ(2-x ,1)⎧2x +1 = (2 - x ),⇔ ⎩3 =⇔(2x +1)-3(2-x )=0⇔x =1.【点拨】对用坐标表示的向量来说,向量相等即坐标相等,这一点在解题中很重要,应引起重视. n π n π【变式训练 2】已知向量 a n =(cos 7 ,sin 7 )(n ∈N *),|b|=1.则函数 y =|a 1+b|2+|a 2+b|2+|a 3+b|2+…+|a 141+b|2 的最大值为.π【解析】设 b =(cos θ,sin θ),所以 y =|a 1+b|2+|a2+b|2+|a 3+b|2+…+|a 141+b|2=(a 1)2+b 2+2(cos7,sin π 141π 141π π 7)(cos θ,sin θ)+… +(a 141)2+b 2+2(cos 7 ,sin 7 )(cos θ,sin θ)=282+2cos(7-θ),所以 y 的最大值为 284. 题型三 平行(共线)向量的坐标运算【例 3】已知△ABC 的角 A ,B ,C 所对的边分别是 a ,b ,c ,设向量 m =(a ,b ),n =(sin B ,sin A ),p =(b -2,a -2). (1)若 m ∥n ,求证:△ABC 为等腰三角形; π(2) 若 m ⊥p ,边长 c =2,角 C =3,求△ABC 的面积.【解析】(1)证明:因为 m ∥n ,所以 a sin A =b sin B . 由正弦定理,得 a 2=b 2,即 a =b .所以△ABC 为等腰三角形. (2)因为 m ⊥p ,所以 m ·p =0,即 a (b -2)+b (a -2)=0,所以 a +b =ab .由余弦定理,得 4=a 2+b 2-ab =(a +b )2-3ab , 所以(ab )2-3ab -4=0. 所以 ab =4 或 ab =-1(舍去). 1 1 3 所以 S △ABC = ab sin C = ×4× = 3.2 2 2 【点拨】设 m =(x 1,y 1),n =(x 2,y 2),则 ①m ∥n ⇔x 1y 2=x 2y 1;②m ⊥n ⇔x 1x 2+y 1y 2=0.【变式训练 3】已知 a ,b ,c 分别为△ABC 的三个内角 A ,B ,C 的对边,向量 m =(2cos C -1,-2),n =(cos C ,cos C +1).若 m ⊥n ,且 a +b =10,则△ABC 周长的最小值为()A.10-5B.10+5C.10-2D.10+2 1 【解析】由 m ⊥n 得 2cos 2C -3cos C -2=0,解得 cos C =- 或cos C =2(舍去),所以 c 2=a 2+b 2-2ab cos 2C =a 2+b 2+ab =(a +b )2-ab =100-ab ,由 10=a +b ≥2 ab ⇒ab ≤25,所以 c 2≥75,即 c ≥5 3,所以 a +b +312 4 ×2 3 c ≥10+5 3,当且仅当 a =b =5 时,等号成立.故选 B.典例精析题型一 利用平面向量数量积解决模、夹角问题 【例 1】 已知 a ,b 夹角为 120°,且|a |=4,|b |=2,求: (1)|a +b |;(2)(a +2b ) ·(a +b );(3) a 与(a +b )的夹角 θ.【解析】(1)(a +b )2=a 2+b 2+2a ·b 1 =16+4-2×4×2× =12,2 所以|a +b |=2 3.(2)(a +2b ) ·(a +b )=a 2+3a ·b +2b 2 1 =16-3×4×2× +2×4=12.21(3)a ·(a +b )=a 2+a ·b =16-4×2× =12.2 所以 cos θ= a • (a + b ) = = | a || a + b |3 ,所以 2 πθ=6.【点拨】利用向量数量积的定义、性质、运算律可以解决向量的模、夹角等问题.【变式训练 1】已知向量 a ,b ,c 满足:|a|=1,|b|=2,c =a +b ,且 c ⊥a ,则 a 与 b 的夹角大小是 .【解析】由 c ⊥a ⇒c ·a =0⇒a 2+a ·b =0, 1所以 cos θ=- ,所以 θ=120°.2题型二 利用数量积来解决垂直与平行的问题【例 2】 在△ABC 中, AB =(2,3), AC =(1,k ),且△ABC 的一个内角为直角,求 k 的值.【解析】①当∠A =90°时,有 AB · AC =0, 2 所以 2×1+3·k =0,所以 k =- ;3②当∠B =90°时,有 AB · BC =0,又 BC = AC - AB =(1-2,k -3)=(-1,k -3), 11 所以 2×(-1)+3×(k -3)=0⇒k = 3 ;③当∠C =90°时,有 AC · BC =0, 所以-1+k ·(k -3)=0, 所以 k 2-3k -1=0⇒k =3 ±213.2 113 ±13所以k 的取值为-,或.3 3 2【点拨】因为哪个角是直角尚未确定,故必须分类讨论.在三角形中计算两向量的数量积,应注意方向及两向量的夹角.【变式训练2】△ABC 中,AB=4,BC=5,AC=6,求AB ·BC +BC ·CA +CA ·AB .【解析】因为2 AB ·BC +2 BC ·CA +2 CA ·AB=( AB ·BC +CA ·AB )+( CA ·AB +BC ·CA )+( BC ·CA +BC ·AB )( AB +BC )+BC ·( CA +AB )( BC +CA )+CA ·=AB ·C B=AB ·BA +C A ·AC +BC ·=-42-62-52=-77.77所以AB ·BC +BC ·CA +CA ·AB =-.2题型三平面向量的数量积的综合问题π,构成一个平面斜坐标系,e1,e2分别是与Ox,Oy 同向【例3】数轴Ox,Oy 交于点O,且∠xOy=3的单位向量,设P 为坐标平面内一点,且OP =x e1+y e2,则点P 的坐标为(x,y),已知Q(-1,2). (1)求| OQ |的值及OQ 与Ox 的夹角;(2)过点Q 的直线l⊥OQ,求l 的直线方程(在斜坐标系中).1e2=,【解析】(1)依题意知,e1·2且OQ =-e1+2e2,所以OQ 2=(-e1+2e2)2=1+4-4e1·e2=3.所以| OQ |=3.e1=-e21+2e1•e2=0.又OQ ·e1=(-e1+2e2) ·所以OQ ⊥e1,即OQ 与Ox 成90°角.(2)设l 上动点P(x,y),即OP =x e1+y e2,又OQ ⊥l,故OQ ⊥ QP ,(-e1+2e2)=0.即[(x+1)e1+(y-2)e2] ·1所以-(x+1)+(x+1)-(y-2) ·+2(y-2)=0,2所以y=2,即为所求直线l 的方程.【点拨】综合利用向量线性运算与数量积的运算,并且与不等式、函数、方程、三角函数、数列、解析几何等相交汇,体现以能力立意的命题原则是近年来高考的命题趋势.k 2+a 2k 4 k 2+a 2k 4 k 2+a 2k 4 k 2+a 2k 4 k + k 2+a 2k 4 k + k 2+a 2k 4 【变式训练 3】在平面直角坐标系 xOy 中,点 A (5,0).对于某个正实数 k ,存在函数 f (x )=ax 2(a >0),使得OP =λ • (OAOQ+ | OQ |)(λ 为常数),其中点 P ,Q 的坐标分别为(1,f (1)),(k ,f (k )),则 k 的取值范围为()A.(2,+∞)B.(3,+∞)C.(4,+∞)D.(8,+∞)【解析】如图所示,设OA= OM ,| OA |OQ= ON , OM + ON = OG ,则OP =λ OG .因为 P (1,a ), | OQ | kak 2kak 2Q (k ,ak 2), OM =(1,0), ON =(, ), OG =( +1, ),则直线 OG 的ak 2 ak 2方程为 y = x ,又OP =λ OG ,所以 P (1,a )在直线 OG 上,所以 a = ,所以 a 2=1-2k . 因为| OP |=1+a 2>1,所以 1 2 0,所以 k >2. 故选 A.- > k。

平面向量中的线性问题专题(附答案)

平面向量中的线性问题专题(附答案)

平面向量中的线性问题题型一 平面向量的线性运算及应用例1 (1)(2015·课标全国Ⅰ)设D 为△ABC 所在平面一点,BC →=3CD →,则( ) A.AD →=-13AB →+43AC →B.AD →=13AB →-43AC →C.AD →=43AB →+13AC →D.AD →=43AB →-13AC →(2)如图所示,在△ABC 中,D ,F 分别是AB ,AC 的中点,BF 与CD 交于点O ,设AB →=a ,AC →=b ,试用a ,b 表示向量AO →.(3)OA →=λOB →+μOC →(λ,μ为实数),若A 、B 、C 三点共线,则λ+μ=1.变式训练1 (1)如图,两块全等的直角边长为1的等腰直角三角形拼在一起,若AD →=λAB →+kAC →,则λ+k 等于( )A.1+ 2B.2- 2C.2D.2+2(2)在梯形ABCD 中,AB ∥CD ,AB =2CD ,M ,N 分别为CD ,BC 的中点,若AB →=λAM →+μAN →,则λ+μ=________.题型二 平面向量的坐标运算例2 (1)(2015·)已知向量a =(2,1),b =(1,-2),若m a +n b =(9,-8)(m ,n ∈R ),则m -n 的值为________.(2)平面给定三个向量a =(3,2),b =(-1,2),c =(4,1),请解答下列问题: ①求满足a =m b +n c 的实数m ,n ; ②若(a +k c )∥(2b -a ),数k ;③若d 满足(d -c )∥(a +b ),且|d -c |=5,求d .变式训练2 (1)(2014·)在平面直角坐标系中,O 为原点,A (-1,0),B (0,3),C (3,0),动点D 满足|CD →|=1,则|OA →+OB →+OD →|的最大值是________.(2)已知向量OA →=(3,-4),OB →=(6,-3),OC →=(5-m ,-3-m ),若点A 、B 、C 能构成三角形,则实数m 满足的条件是________.高考题型精练1.(2015·)设向量a =(2,4)与向量b =(x,6)共线,则实数x 等于( ) A.2 B.3 C.4 D.62.(2015·)△ABC 是边长为2的等边三角形,已知向量a ,b 满足AB →=2a ,AC →=2a +b ,则下列结论正确的是( ) A.|b |=1 B.a ⊥b C.a ·b =1D.(4a +b )⊥BC →3.已知A (-3,0),B (0,2),O 为坐标原点,点C 在∠AOB ,|OC |=22,且∠AOC =π4,设OC →=λOA →+OB →(λ∈R ),则λ的值为( ) A.1 B.13 C.12 D.234.(2014·课标全国Ⅰ)设D ,E ,F 分别为△ABC 的三边BC ,CA ,AB 的中点,则EB →+FC →等于( )A.BC →B.12AD →C.AD →D.12BC →6.如图,平面有三个向量OA →,OB →,OC →,其中OA →与OB →的夹角为120°,OA →与OC →的夹角为30°,且|OA →|=2,|OB →|=32,|OC →|=23,若OC →=λOA →+μOB →(λ,μ∈R ),则( )A.λ=4,μ=2B.λ=83,μ=32C.λ=2,μ=43D.λ=32,μ=437.向量a ,b ,c 在正方形网格中的位置如图所示,若c =λa +μb (λ,μ∈R ),则λμ=________.8.已知A (-3,0),B (0,3),O 为坐标原点,C 在第二象限,且∠AOC =30°,OC →=λOA →+OB →,则实数λ的值为______.9.(2014·)已知向量a ,b 满足|a |=1,b =(2,1),且λa +b =0(λ∈R ),则|λ|=________. 10.(2014·)设0<θ<π2,向量a =(sin 2θ,cos θ),b =(cos θ,1),若a ∥b ,则tan θ=________.11.(2015·)在△ABC 中,点M ,N 满足AM →=2MC →,BN →=NC →.若MN →=xAB →+yAC →,则x =________,y =________.12.已知点O 为坐标原点,A (0,2),B (4,6),OM →=t 1OA →+t 2AB →. (1)求点M 在第二或第三象限的充要条件;(2)求证:当t 1=1时,不论t 2为何实数,A 、B 、M 三点都共线; (3)若t 1=a 2,求当OM →⊥AB →且△ABM 的面积为12时a 的值.平面向量中的线性问题题型一 平面向量的线性运算及应用例1 (1)(2015·课标全国Ⅰ)设D 为△ABC 所在平面一点,BC →=3CD →,则( ) A.AD →=-13AB →+43AC →B.AD →=13AB →-43AC →C.AD →=43AB →+13AC →D.AD →=43AB →-13AC →答案 A解析 ∵BC →=3CD →,∴AC →-AB →=3(AD →-AC →), 即4AC →-AB →=3AD →,∴AD →=-13AB →+43AC →.(2)如图所示,在△ABC 中,D ,F 分别是AB ,AC 的中点,BF 与CD 交于点O ,设AB →=a ,AC →=b ,试用a ,b 表示向量AO →.解 由D ,O ,C 三点共线,可设 DO →=k 1DC →=k 1(AC →-AD →)=k 1⎝⎛⎭⎪⎫b -12a=-12k 1a +k 1b (k 1为实数),BO →=k 2BF →=k 2(AF →-AB →)=k 2(12b -a )=-k 2a +12k 2b (k 2为实数),①又BO →=BD →+DO →=-12a +(-12k 1a +k 1b )=-12(1+k 1)a +k 1b ,②由①②,得-k 2a +12k 2b =-12(1+k 1)a +k 1b ,即12(1+k 1-2k 2)a +⎝ ⎛⎭⎪⎫12k 2-k 1b =0. 又a ,b 不共线,所以⎩⎪⎨⎪⎧ 12(1+k 1-2k 2)=0,12k 2-k 1=0⇒⎩⎪⎨⎪⎧k 1=13,k 2=23.所以BO →=-23a +13b .所以AO →=AB →+BO →=a +⎝ ⎛⎭⎪⎫-23a +13b =13(a +b ).点评 平面向量的线性运算应注意三点: (1)三角形法则和平行四边形法则的运用条件.(2)证明三点共线问题,可用向量共线来解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线.(3)OA →=λOB →+μOC →(λ,μ为实数),若A 、B 、C 三点共线,则λ+μ=1.变式训练1 (1)如图,两块全等的直角边长为1的等腰直角三角形拼在一起,若AD →=λAB →+kAC →,则λ+k 等于( )A.1+ 2B.2- 2C.2D.2+2(2)在梯形ABCD 中,AB ∥CD ,AB =2CD ,M ,N 分别为CD ,BC 的中点,若AB →=λAM →+μAN →,则λ+μ=________. 答案 (1)A (2)45解析 根据向量的基本定理可得AD →=AC →+CD →=AC →+(ED →-EC →)=AC →+(2AC →-22BC →)=AC →+2AC →-22(AC →-AB →)=⎝ ⎛⎭⎪⎫1+22·AC →+22AB →. 所以λ=22,k =1+22. 所以λ+k =1+ 2.故选A. (2)依题意得AM →=AB →+BC →+CM →=AB →+BC →-14AB →=34AB →+BC →, AN →=AB →+BN →=AB →+12BC →;又AB →=λAM →+μAN →,于是有AB →=λ⎝ ⎛⎭⎪⎫34AB →+BC →+μ⎝ ⎛⎭⎪⎫AB →+12BC →=⎝ ⎛⎭⎪⎫34λ+μ·AB →+⎝⎛⎭⎫λ+μ2BC →;又AB →与BC →不共线,因此有⎩⎪⎨⎪⎧34λ+μ=1,λ+μ2=0,由此解得λ=-45,μ=-2λ,所以λ+μ=-λ=45.题型二 平面向量的坐标运算例2 (1)(2015·)已知向量a =(2,1),b =(1,-2),若m a +n b =(9,-8)(m ,n ∈R ),则m -n 的值为________. 答案 -3解析 ∵a =(2,1),b =(1,-2),∴m a +n b =(2m +n ,m -2n )=(9,-8),即⎩⎨⎧2m +n =9,m -2n =-8,解得⎩⎨⎧m =2,n =5,故m -n =2-5=-3.(2)平面给定三个向量a =(3,2),b =(-1,2),c =(4,1),请解答下列问题: ①求满足a =m b +n c 的实数m ,n ; ②若(a +k c )∥(2b -a ),数k ;③若d 满足(d -c )∥(a +b ),且|d -c |=5,求d . 解 ①由题意得(3,2)=m (-1,2)+n (4,1),∴⎩⎨⎧-m +4n =3,2m +n =2,得⎩⎪⎨⎪⎧m =59,n =89.②a +k c =(3+4k,2+k ),2b -a =(-5,2), ∵(a +k c )∥(2b -a ),∴2×(3+4k )-(-5)(2+k )=0,∴k =-1613.③设d =(x ,y ),d -c =(x -4,y -1),a +b =(2,4),由题意得⎩⎨⎧4(x -4)-2(y -1)=0,(x -4)2+(y -1)2=5, 解得⎩⎨⎧ x =3,y =-1或⎩⎨⎧x =5,y =3.∴d =(3,-1)或d =(5,3).点评 (1)两平面向量共线的充要条件有两种形式:①若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件是x 1y 2-x 2y 1=0;②若a ∥b (a ≠0),则b =λa .(2)向量共线的坐标表示既可以判定两向量平行,也可以由平行求参数.当两向量的坐标均非零时,也可以利用坐标对应成比例来求解.(3)向量的坐标运算主要是利用加法、减法、数乘运算法则进行.若已知有向线段两端点的坐标,则应先求出向量的坐标,解题过程中要注意方程思想的运用及正确使用运算法则. 变式训练2 (1)(2014·)在平面直角坐标系中,O 为原点,A (-1,0),B (0,3),C (3,0),动点D 满足|CD →|=1,则|OA →+OB →+OD →|的最大值是________.(2)已知向量OA →=(3,-4),OB →=(6,-3),OC →=(5-m ,-3-m ),若点A 、B 、C 能构成三角形,则实数m 满足的条件是________. 答案 (1)7+1 (2)m ≠12解析 (1)设D (x ,y ),由CD →=(x -3,y )及|CD →|=1知(x -3)2+y 2=1,即动点D 的轨迹为以点C为圆心的单位圆.又O A →+OB →+OD →=(-1,0)+(0,3)+(x ,y )=(x -1,y +3),∴|OA →+OB →+OD →|=(x -1)2+(y +3)2.问题转化为圆(x -3)2+y 2=1上的点与点P (1,-3)间距离的最大值. ∵圆心C (3,0)与点P (1,-3)之间的距离为(3-1)2+(0+3)2=7, 故(x -1)2+(y +3)2的最大值为7+1.(2)因为OA →=(3,-4),OB →=(6,-3),OC →=(5-m ,-3-m ), 所以AB →=(3,1),BC →=(-m -1,-m ).由于点A 、B 、C 能构成三角形,所以AB →与BC →不共线, 而当AB →与BC →共线时,有3-m -1=1-m ,解得m =12,故当点A 、B 、C 能构成三角形时实数m 满足的条件是m ≠12.高考题型精练1.(2015·)设向量a =(2,4)与向量b =(x,6)共线,则实数x 等于( ) A.2 B.3 C.4 D.6 答案 B解析 a =(2,4),b =(x,6),∵a ∥b ,∴4x -2×6=0, ∴x =3.2.(2015·)△ABC 是边长为2的等边三角形,已知向量a ,b 满足AB →=2a ,AC →=2a +b ,则下列结论正确的是( ) A.|b |=1 B.a ⊥b C.a ·b =1 D.(4a +b )⊥BC →答案 D解析 在△ABC 中,由BC →=AC →-AB →=2a +b -2a =b ,得|b |=2.又|a |=1,所以a ·b =|a||b |cos120°=-1,所以(4a +b )·BC →=(4a +b )·b =4a ·b +|b |2=4×(-1)+4=0,所以(4a +b )⊥BC →,故选D.3.已知A (-3,0),B (0,2),O 为坐标原点,点C 在∠AOB ,|OC |=22,且∠AOC =π4,设OC →=λOA →+OB →(λ∈R ),则λ的值为( ) A.1 B.13 C.12 D.23答案 D解析 过C 作CE ⊥x 轴于点E (图略). 由∠AOC =π4,知|OE |=|CE |=2,所以OC →=OE →+OB →=λOA →+OB →,即OE →=λOA →, 所以(-2,0)=λ(-3,0),故λ=23.4.(2014·课标全国Ⅰ)设D ,E ,F 分别为△ABC 的三边BC ,CA ,AB 的中点,则EB →+FC →等于( ) A.BC → B.12AD → C.AD →D.12BC →答案 C解析 如图,EB →+FC →=EC →+CB →+FB →+BC → =EC →+FB →=12(AC →+AB →)=12·2AD →=AD →. 5.设向量a ,b 满足|a |=25,b =(2,1),则“a =(4,2)”是“a ∥b ”成立的( ) A.充要条件 B.必要不充分条件 C.充分不必要条件 D.既不充分也不必要条件答案 C解析 若a =(4,2),则|a |=25,且a ∥b 都成立; ∵a ∥b ,设a =λb =(2λ,λ),由|a |=25,知 4λ2+λ2=20,∴λ2=4,∴λ=±2, ∴a =(4,2)或a =(-4,-2).因此“a =(4,2)”是“a ∥b ”成立的充分不必要条件.6.如图,平面有三个向量OA →,OB →,OC →,其中OA →与OB →的夹角为120°,OA →与OC →的夹角为30°,且|OA →|=2,|OB →|=32,|OC →|=23,若OC →=λOA →+μOB →(λ,μ∈R ),则( )A.λ=4,μ=2B.λ=83,μ=32C.λ=2,μ=43D.λ=32,μ=43答案 C解析 设与OA →,OB →同方向的单位向量分别为a ,b , 依题意有OC →=4a +2b ,又OA →=2a ,OB →=32b ,则OC →=2OA →+43OB →,所以λ=2,μ=43.7.向量a ,b ,c 在正方形网格中的位置如图所示,若c =λa +μb (λ,μ∈R ),则λμ=________.答案 4解析 以向量a 和b 的交点为原点建直角坐标系(图略),则a =(-1,1),b =(6,2),c =(-1,-3),根据c =λa +μb ⇒(-1,-3)=λ(-1,1)+μ(6,2)有-λ+6μ=-1,λ+2μ=-3,解之得λ=-2且μ=-12,故λμ=4.8.已知A (-3,0),B (0,3),O 为坐标原点,C 在第二象限,且∠AOC =30°,OC →=λOA →+OB →,则实数λ的值为______. 答案 1 解析 由题意知OA →=(-3,0),OB →=(0,3),则OC →=(-3λ,3),由∠AOC =30°知以x 轴的非负半轴为始边,OC 为终边的一个角为150°,∴tan 150°=3-3λ,即-33=-33λ,∴λ=1. 9.(2014·)已知向量a ,b 满足|a |=1,b =(2,1),且λa +b =0(λ∈R ),则|λ|=________.答案 5解析 ∵λa +b =0,∴λa =-b ,∴|λa |=|-b |=|b |=22+12=5,∴|λ|·|a |= 5.又|a |=1,∴|λ|= 5.10.(2014·)设0<θ<π2,向量a =(sin 2θ,cos θ),b =(cos θ,1),若a ∥b ,则tan θ=________. 答案 12 解析 因为a ∥b ,所以sin 2θ=cos 2θ,2sin θcos θ=cos 2θ.因为0<θ<π2,所以cos θ>0,得2sin θ=cos θ,tan θ=12. 11.(2015·)在△ABC 中,点M ,N 满足AM →=2MC →,BN →=NC →.若MN →=xAB →+yAC →,则x =________,y =________.答案 12 -16解析 MN →=MC →+CN →=13AC →+12CB → =13AC →+12(AB →-AC →)=12AB →-16AC →, ∴x =12,y =-16. 12.已知点O 为坐标原点,A (0,2),B (4,6),OM →=t 1OA →+t 2AB →.(1)求点M 在第二或第三象限的充要条件;(2)求证:当t 1=1时,不论t 2为何实数,A 、B 、M 三点都共线;(3)若t 1=a 2,求当OM →⊥AB →且△ABM 的面积为12时a 的值.(1)解 OM →=t 1OA →+t 2AB →=t 1(0,2)+t 2(4,4)=(4t 2,2t 1+4t 2).当点M 在第二或第三象限时,有⎩⎨⎧4t 2<0,2t 1+4t 2≠0,故所求的充要条件为t 2<0且t 1+2t 2≠0.(2)证明 当t 1=1时,由(1)知OM →=(4t 2,4t 2+2).∵AB →=OB →-OA →=(4,4), AM →=OM →-OA →=(4t 2,4t 2)=t 2(4,4)=t 2AB →, ∴不论t 2为何实数,A 、B 、M 三点共线.(3)解 当t 1=a 2时,OM →=(4t 2,4t 2+2a 2).又AB →=(4,4),OM →⊥AB →,∴4t 2×4+(4t 2+2a 2)×4=0,∴t 2=-14a 2,故OM →=(-a 2,a 2). 又|AB →|=42,点M 到直线AB :x -y +2=0的距离d =|-a 2-a 2+2|2=2|a 2-1|. ∵S △ABM =12,∴12|AB|·d=12×42×2|a2-1|=12,解得a=±2,故所求a的值为±2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面向量线性运算经典习题
1. uuuur uuur uuur uuur uuur
设点 M是线段 BC的中点 , 点 A 在直线 BC外 , BC2 =4,| AB AC| |AB AC |,则
| uuuur
) A.8 B.4C.2 D.1
AM |=(
uuur uuur uuur uuur uuur
2. 已知△ABC中, 点 D在 BC边上, 且CD 2DB ,CD r AB sAC , 则r+s 的值是( )
A. 2
B.
4
C.-3
D.0
3 3
3.平面向量 a,b 共线的充要条件是 ( )
A.a,b 方向相同
B.a,b 两向量中至少有一个为0
C. 存在λ∈ R,使 b=λa
D. 存在不全为零的实数λ 1,λ 2,使λ1a+λ 2b=0
4. 已知 O?A?B 是平面上的三个点
uuur uuur uuur
, 直线 AB上有一点 C, 满足2 AC CB 0, 则OC 等于( )
uuur uuur uuur uuur A.2OA OB B. OA 2OB
2 uuur 1 uuur
D. 1 uuur 2 uuur
C. OA OB OA OB
3 3 3 3
uuur uuur uuur uuur uuur uuur 5. 设 D?E?F 分别是△ ABC 的三边 BC、CA、AB上的点 , DC 2BD , CE 2EA, AF 2FB, 则uuur uuur uuur uuur
AD BE CF 与 BC()
A. 反向平行
B. 同向平行
C. 不平行
D.无法判断
uuur uuur
6. 已知 a,b 是不共线的向量, AB=λa+b,AC =a+μb,( λ, μ∈ R), 那么A、B、C 三点共线的充要条件为 ( )
A. λ+μ=2
B. λ - μ=1
C.λμ=-1
D.λμ =1
uuur uuur uuur uuur
a //
b ;②
7.设( AB CD ) (BC DA ) a,而b是一非零向量,则下列各结论:①
a b a ;③ a b b ;④ a b a b ,其中正确的是()
A .①②B.③④C.②④ D .①③
8.若a b c 化简3(a2b) 2(3b c) 2(a b)()
A .a B.b C.c D.以上都不对
9.在△ ABC 中, D、 E、 F 分别 BC 、 CA 、 AB 的中点,点 M 是△ ABC 的重心,则
MA MB MC等于()
A.O B.4MD C.4MF D.4ME
10. 若点 O是△ ABC所在平面内的一点
uuur uuur uuur uuur uuur
, 且满足|OB OC | |OB OC
2OA | ,则△ABC的

状为 ________.
uuur uuur uuur uuur uuur
11.如图 , 平面内有三个向量OA ? OB ? OC ,其中OA与OB的夹
uuur uuur uuur uuur uuur
角为 120°,OA与OC的夹角为30°, 且 | OA |=| OB |=1,| OC
uuur uuur uuur
( λ, μ∈ R), 则λ+μ的值为
|= 2 3,若OC =λOA μ OB
________.
12.如图 , 在△ ABC中, 点 O是 BC的中点 , 过点 O的直线分别交直线 AB,AC于
uuur uuuur uuur uuur
不同的两点M,N, 若AB mAM , AC nAN , 则m+n的值为________.
13.若 a,b 是两个不共线的非零向量,t∈ R,若 a,b 起点相同, t 为何值
1
时, a, tb, 3(a+ b)三向量的终点在一条直线上?

14. 设 a、 b 是不共线的两个非零向量,
uuur uuur uuur
(1) 若OA2a b,OB 3a b, OC =a-3b, 求证 :A 、 B、C 三点共线 ;
(2)若 8a+kb 与 ka+2b 共线 , 求实数 k 的值 .
15.如图所示 , △ABC 中 , 点 M是 BC的中点 , 点 N 在 AC边上 , 且 AN=2NC,AM与 BN相交于点P, 求 AP:PM的值 .。

相关文档
最新文档