七年级上册数学《有理数》数轴和相反数知识点整理

合集下载

七年级数学上册必考重点知识点有理数43个知识点

七年级数学上册必考重点知识点有理数43个知识点

七年级数学上册必考重点知识点有理数43个知识点1.整数的概念:正整数、负整数和零。

2.数轴的概念和使用。

3.整数的比较和大小关系。

4.整数的相反数和绝对值。

5.整数的加法与减法。

6.整数的加减法性质。

7.整数的乘法与除法。

8.乘积的正负性。

9.除法的性质。

10.乘方的概念和运算。

11.乘方的特例:0、1和负整数指数。

12.平方根的概念和运算。

13.数的正负的乘方。

14.有理数的概念和表示。

15.有理数的四则运算。

16.有理数的加减乘除法性质。

17.加减乘除法的混合运算。

18.小数的概念和表示。

19.有限小数和循环小数的概念。

20.小数的相加与相减。

21.有理数的乘法和除法。

22.有理数乘除运算的性质。

23.百分数的概念和表示。

24.百分数与小数的相互转换。

25.百分数的增减。

26.百分数的倍数和倍数的百分数。

27.分数的概念和表示。

28.真分数、假分数和带分数的概念。

29.分数的大小比较和性质。

30.分数的相加和相减。

31.分数的相乘和相除。

32.倒数的概念和运算。

33.分数化简与约分。

34.分数的混合运算。

35.分数方程的解法。

36.分数不等式的解法。

37.分数的小数表示。

38.循环小数与无理数的概念。

39.循环小数与分数的相互转换。

40.循环小数的加减乘除法。

41.百分数的小数表示。

42.百分数的应用。

43.有理数的运算问题的解法。

以上是七年级数学上册必考的43个知识点,学生可以通过对这些知识点的理解和掌握,提高自己的数学水平,更好地应对考试和日常学习中的数学问题。

七年级数学上册“有理数”知识点梳理

七年级数学上册“有理数”知识点梳理

七年级上册数学“有理数”知识点导图知识点一、正数和负数(1)大于0的数叫作正数,正数有时在数字前面加“﹢”号,读作“正”例:1,2,3,+4,+5,+6,+7都是正数(2)正数前面加上“﹣”的数叫作负数,“﹣”读作“负”例:﹣1,﹣2,﹣3,﹣4,﹣5,﹣6,﹣7都是负数(3)正数和负数可以表示“相反”的意思例:向前走5米记为﹢5米,则向后走5米记为﹣5米;向右走5米记为﹢5米,则向左走5米记为﹣5米;(4)0既不是正数,也不是负数,它是正数和负数的分界,0不止是表示“没有”例:0℃所表示的是一个确定的温度,不是表示没有温度习题1:指出下列数哪些是正数,哪些是负数1;3;﹣5;﹣7;﹢9;﹣2;﹢4;6;﹣8;0知识点二、有理数(1)可以写成分数形式的数称为有理数;例:11,﹣12,13,2,﹣3,4都是有理数(2)可以写成正分数形式的数为正有理数;例:11,13,2,4都是正有理数(3)可以写成负分数形式的数为负有理数;例:﹣12,﹣3,都是负有理数习题2:指出下列数哪些是有理数,哪些是正有理数,哪些是负有理数1;2;﹣3;﹣5;π;7;﹣9;13;﹣15知识点三、数轴(1)规定了原点、正方向和单位长度的直线叫作数轴(2)在直线上任取一个点表示数0,这个点叫作原点(3)通常规定直线上从原点向右 (或上)为正方向,从原点向左 (或下)为负方向(4)选取适当的长度为单位长度,直线上从原点向右,每隔一个单位长度取一个点,依次表示12,3,...;从原点向左,用类似方法依次表示-1,-2,-3,...例:习题3:用数轴表示下列各点A (1);B (﹣2);C (1);D (2.5);E (﹣3)知识点四、相反数(1)仅有符号不同的两个数,称这两个数互为相反数。

0的相反数是0例:1和﹣1;12和﹣12;0和0互为相反数习题4:写出下列个数的相反数2;4;﹣6;﹣8;﹣110;0知识点五、绝对值(1)数轴上表示数α的点与原点的距离叫作数α的绝对值,记作|α|(2)一个正数的绝对值是它本身;例:|1|=1;|2|=2;|3|=3(3)一个负数的绝对值是它的相反数;例:|﹣1|=1;|﹣2|=2;|﹣3|=3(4)0的绝对值是0例:|0|=0习题5:写出下列各数的绝对值10;﹣11;112;﹣113;0知识点六、有理数的大小比较(1)正数大于0,0大于负数,正数大于负数例:1>0;0>﹣1;1>﹣1(2)两个负数,绝对值大的反而小例:|﹣1|=1,|﹣2|=2,2>1,所以﹣1>﹣2;|﹣3|=3,|﹣4|=4,4>3,所以﹣3>﹣4习题6:比较下列各数的大小7与8;9与﹣10;﹣11和﹣12;0与13;0与﹣14习题参考答案习题1:指出下列数哪些是正数,哪些是负数1;3;﹣5;﹣7;﹢9;﹣2;﹢4;6;﹣8;0正数:1;3;﹢9;﹢4;6负数:﹣5;﹣7;﹣2;﹣8习题2:指出下列数哪些是有理数,哪些是正有理数,哪些是负有理数 1;2;﹣3;﹣5;π;7;﹣9;13;﹣15有理数:1;2;﹣3;﹣5;7;﹣9;13;﹣15正有理数:1;2; 7; 13;负有理数:﹣3;﹣5;﹣9;﹣15习题3:用数轴表示下列各点A (1);B (﹣2);C (1);D (2.5);E (﹣3)习题4:写出下列个数的相反数2;4;﹣6;﹣8;﹣110;0 2和﹣2;4和﹣4;﹣6和6;﹣8和8;﹣110和110;0和0习题5:写出下列各数的绝对值10;﹣11;112;﹣113;0 |10|=10;|﹣11|=11;|112|=112;|﹣113|=113;|0|=0习题6:比较下列各数的大小7与8;9与﹣10;﹣11和﹣12;0与13;0与﹣14 7>8;9>﹣10;﹣11>﹣12;0<13;0>﹣14。

2019年沪科版七年级数学上册第1章 有理数、数轴、相反数、绝对值讲义

2019年沪科版七年级数学上册第1章 有理数、数轴、相反数、绝对值讲义

2019年沪科版7(上)有理数——数轴、相反数、绝对值【要点梳理】要点一、正数与负数像+3、+1.5、12+、+584等大于0的数,叫做正数;像-3、-1.5、12-、-584等在正数前面加“-”号的数,叫做负数.要点诠释:(1)一个数前面的“+”“-”是这个数的性质符号,“+”常省略,但“-”不能省略. (2)用正数和负数表示具有相反意义的量时,哪种为正可任意选择,但习惯把“前进、上升”等规定为正,而把“后退、下降”等规定为负.(3)0既不是正数也不是负数,它是正数和负数的“分水岭”.要点二、有理数的分类(1)按定义分类:(2)按性质符号分类:要点诠释:(1)有理数都可以写成分数的形式,整数也可以看作是分母为1的数.(2)分数与有限小数、无限循环小数可以互化,所以有限小数和无限循环小数可看作分数,但无限不循环小数不是分数,例如π.(3)正数和零统称为非负数;负数和零统称为非正数;正整数、0、负整数统称整数.【典型例题】1.下面说法中正确的是( ).A.非负数一定是正数.B.有最小的正整数,有最小的正有理数.C.a-一定是负数. D .正整数和正分数统称正有理数.2.请把下列各数填入它所属于的集合的大括号里.1, 0.0708, -700, -3.88, 0, 3.14159265,723-,.正整数集合:{ …},负整数集合:{ …},整数集合:{ …},正分数集合:{ …},负分数集合:{ …},分数集合:{ …},非负数集合:{ …},非正数集合:{ …}.【要点梳理】要点一、数轴1.定义:规定了原点、正方向和单位长度的直线叫做数轴.要点诠释:(1)原点、正方向和单位长度是数轴的三要素,三者缺一不可.(2)长度单位与单位长度是不同的,单位长度是根据需要选取的代表“1”的线段,而长度单位是为度量线段的长度而制定的单位.有km、m、dm、cm等.(3)原点、正方向、单位长度可以根据实际灵活选定,但一经选定就不能改动.2. 数轴与有理数的关系:任何一个有理数都可以用数轴上的点来表示,但数轴上的点不都表示有理数,还可以表示其他数,比如 .要点诠释:(1)一般地,数轴上原点右边的点表示正数,左边的点表示负数;反过来也对,即正数用数轴上原点右边的点表示,负数用原点左边的点表示,零用原点表示.(2)在数轴上表示的两个数,右边的数总比左边的数大.要点二、相反数1.定义:只有符号不同的两个数互为相反数,0的相反数是0.要点诠释:(1)“只”字是说仅仅是符号不同,其它部分完全相同;(2)“0的相反数是0”是相反数定义的一部分,不能漏掉;(3)相反数是成对出现的,单独一个数不能说是相反数;(4)求一个数的相反数,只要在它的前面添上“-”号即可.2.性质:(1)互为相反数的两数的点分别位于原点的两旁,且与原点的距离相等(这两个点关于原点对称).(2)互为相反数的两数和为0.要点三、多重符号的化简多重符号的化简,由数字前面“-”号的个数来确定,若有偶数个时,化简结果为正,如-{-[-(-4)]}=4 ;若有奇数个时,化简结果为负,如-{+[-(-4)]}=-4 .要点诠释:(1)在一个数的前面添上一个“+”,仍然与原数相同,如+5=5,+(-5)=-5. (2)在一个数的前面添上一个“-”,就成为原数的相反数.如-(-3)就是-3的相反数,因此,-(-3)=3.【典型例题】1.数轴上点A、B的位置如图所示,若点B关于点A的对称点为C,则点C表示的数为2.(1)如果a=-13,那么-a=______;(2) 如果-a=-5.4,那么a =______;(3) 如果-x=-6,那么x=______;(4) -x=9,那么x=______.3. -4的倒数的相反数是( )A .-4B .4C .-D . 4.填空:(1) -(-2.5)的相反数是 ;(2) 是-100的相反数;(3) 155-是 的相反数; (4) 的相反数是-1.1;(5)8.2和 互为相反数;(6)a 和 互为相反数.(7)______的相反数比它本身大, ______的相反数等于它本身.5. 已知21m -与172m -互为相反数,求m 的值.6.化简:(1)﹣{+[﹣(+3)]}; (2)﹣{﹣[﹣(﹣|﹣3|)}.【要点梳理】要点一、绝对值1.定义:一般地,数轴上表示数a 的点与原点的距离叫做数a 的绝对值,记作|a|. 要点诠释:(1)绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.即对于任何有理数a 都有:(2)绝对值的几何意义:一个数的绝对值就是表示这个数的点到原点的距离,离原点的距离越远,绝对值越大;离原点的距离越近,绝对值越小.(3)一个有理数是由符号和绝对值两个方面来确定的.2.性质:绝对值具有非负性,即任何一个数的绝对值总是正数或0.要点二、有理数的大小比较1.数轴法:在数轴上表示出这两个有理数,左边的数总比右边的数小. 如:a 与b 在数轴上的位置如图所示,则a <b .41412.法则比较法:要点诠释:利用绝对值比较两个负数的大小的步骤:(1)分别计算两数的绝对值;(2) 比较绝对值的大小;(3)判定两数的大小.3. 作差法:设a 、b 为任意数,若a-b >0,则a >b ;若a-b =0,则a =b ;若a-b <0,a <b ;反之成立.4. 求商法:设a 、b 为任意正数,若1a b >,则a b >;若1a b =,则a b =;若1a b<,则a b <;反之也成立. 若a 、b 为任意负数,则与上述结论相反.5. 倒数比较法:如果两个数都大于0,那么倒数大的反而小.【典型例题】1.计算:(1)145-- (2)|-4|+|3|+|0| (3)-|+(-8)|2.若|a ﹣1|=1﹣a ,则a 的取值范围是( )A. a ≥1B. a ≤1C. a <1D. a >13. 若a >3,则|6﹣2a|= (用含a 的代数式表示).4. 如果数轴上的点A 到原点的距离是6,则点A 表示的数为 .如果|x -2|=1,那么x = ;如果|x |>3,那么x 的范围是 .5.化简||||x x x +的结果是 . 6. 比大小: (1) -0.3 31-(2)⎪⎭⎫ ⎝⎛--91 101--.7. 若m >0,n <0,且|m|>|n|,用“>”把m ,-m ,n ,-n 连接起来.8. 已知有理数a ,b ,c 在数轴上对应的点的位置如图所示:化简:.9. 已知|a -2|+|b -3|=0,求a -b 的值.10. 已知b 为正整数,且a 、b 满足,求的值.【练习】1、下列说法中,错误的个数有( ).①绝对值是它本身的数有两个:0和1②一个有理数的绝对值必为正数③0.5的倒数的相反数的绝对值是2④任何有理数的绝对值都不是负数A 、1个B 、2个C 、3个D 、4个2、在-(-2.5),3,0,-5,-0.25,中正整数有( ).A .1个B .2个C .3个D .4个3、在数轴上表示-2的点离开原点的距离等于( ).A .2B .-2C .±2D .44、有理数a 在数轴上的位置如图所示:化简1+a 的结果是( )A 、b a +B 、1+-aC 、1-aD 、1--a5、若两个有理数a 、b 在数轴上表示的点如图所示,则下列各式中正确的是().12-A .a >bB .|a |>|b |C .-a <-bD .-a <|b |6、若a ,b 互为相反数,c ,d 互为倒数,x 的绝对值等于2,则x 2+5(a +b )-8c d =______. 7、若实数a ,b 满足|3a -1|+(b -2)2=0,则a b =______.8、(1)当x =______时,|x -3|+1有最小值为_______;(2)当x =______时,2-|x -1|有最大值为________.9、已知|a|=4,|b|=2,且ab <0,则a +b =_________.10、若|m -n|=n -m ,且|m|=4,|n|=3,则m +n =_________.11、若x =8-,则=x ;若8-=-x ,则x = .12、若a a -=-,则=a .13、13=-x ,则=x .14、如果a <0,b >0且|a|<|b|,则a +b 0.15、已知|x +2|+(2y -3)²=0,求x +2y 的值.【思考题】求的最小值.。

新人教版七年级数学上册知识点汇总

新人教版七年级数学上册知识点汇总

新人教版七年级数学上册知识点汇总第一章有理数一、知识框架:本章主要介绍了有理数的相关概念和运算法则,包括正数与负数、有理数、数轴、相反数、绝对值、比大小、倒数、加法法则、加法运算律、减法法则、乘法法则和乘法运算律等。

二、知识概念:1.正数与负数:大于0的数是正数,小于0的数是负数,0既不是正数也不是负数。

2.有理数:⑴凡能写成 p/q (p、q为整数,且p≠0)形式的数,都是有理数。

正整数、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数。

注意:0既不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;π不是有理数。

⑵有理数的分类:正有理数:正整数、正分数负有理数:负整数、负分数零:03.数轴:数轴是规定了原点、正方向、单位长度的一条直线。

4.相反数:⑴只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;⑵相反数的和为0,即a+b=0,则a、b互为相反数。

5.绝对值:⑴正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数。

注意:绝对值的意义是数轴上表示某数的点离原点的距离;⑵绝对值可表示为:a=|a| (a≥0)a=|a|或a=-a (a<0)绝对值的问题经常分类讨论。

6.有理数比大小:⑴正数大于0,0大于负数,正数大于负数;⑵两个负数比较,绝对值大的反而小。

7.倒数:乘积为1的两个数互为倒数。

注意:0没有倒数;若a≠0,则a的倒数是1/a;若ab=1,则a、b互为倒数;若ab=-1,则a、b互为负倒数。

8.有理数加法法则:⑴同号两数相加,取相同的符号,并把绝对值相加;⑵异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝值;⑶一个数与0相加,仍得这个数。

9.有理数加法的运算律:⑴加法的交换律:a+b=b+a;⑵加法的结合律:(a+b)+c=a+(b+c)。

10.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b)。

2022年新湘教版七年级数学上知识点总结

2022年新湘教版七年级数学上知识点总结

新湘教版七年级数学上册知识点总结第一章:有理数总复习一、有理数旳基本概念1.正数:不小于0旳数叫做正数;例如:3, 32,0.32负数:不不小于0旳数叫做负数。

例如:51,04.0,2---备注:在正数前面加“-”旳数是负数;“0”既不是正数,也不是负数。

(我们把正数和0统称为非负数)2.有理数:整数和分数统称有理数。

(有理数是指有限小数和无限循环小数。

牢记:不是有理数π)3.数轴:规定了原点、正方向和单位长度旳直线。

性质:(1)在数轴上表达旳两个数,右边旳数总比左边旳数大;(2)正数都不小于0,负数都不不小于0;正数不小于一切负数;(3)所有有理数都可以用数轴上旳点表达。

4.相反数:只有符号不同旳两个数,其中一种是另一种旳相反数。

例如:5与-5 。

性质:(1)数a 旳相反数是-a (a 是任意一种有理数) 。

例如: )1()1+-+x x 的相反数是((2)0旳相反数是0;(3)若a 、b 互为相反数,则a+b=0;5.倒数 :乘积是1旳两个数互为倒数 。

性质:(1)a 旳倒数是(a ≠0); (2)0没有倒数 ;(3)若a 与b 互为倒数,则ab=1;6、倒数与相反数旳区别和联系:(1)a 与-a 互为相反数; a 与a1(a ≠ 0)互为倒数; (2)符号上:互为相反数(除0外)旳两数旳符号相反;互为倒数旳两数符号相似;(3)a 、b 互为相反数,则 a+b=0;a 、b 互为倒数则 ab=1;(4)相反数是自身旳数是0,倒数是自身旳数是±1 。

7.绝对值:一种数a 旳绝对值就是数轴上表达数a 旳点与原点旳距离。

性质:(1)数a 旳绝对值记作︱a ︱。

例如:1212-的绝对值表示为-(2)若a >0,则︱a ︱= a ;即正数旳绝对值是它自身。

若a <0,则︱a ︱= -a ;负数旳绝对值是它旳相反数;若a =0,则︱a ︱=0;0旳绝对值是0.(3) 对任何有理数a,总有︱a ︱≥0.8.有理数大小旳比较:(1)可通过数轴比较:在数轴上旳两个数,右边旳数总比左边旳数大;正数都不小于0,负数都不不小于0;正数不小于一切负数;(2)两个负数,绝对值大旳反而小。

小升初:初一数学上册《有理数》知识点总结,硬货,带走不谢

小升初:初一数学上册《有理数》知识点总结,硬货,带走不谢

小升初:初一数学上册《有理数》知识点总结,硬货,带走不谢暑假开始了,大家的预习热情也变得逐渐高涨,小升初的同学,恭喜你们即将成为初中生!下面给各位分享的就是数学第一章《有理数》部分的知识点~正数和负数知识点1 正数和负数的概念(1) 像3、1.5、1/2、584等大于0的数,叫做正数,在小学学过的数,除0以外都是正数,正数比0大。

(2) 像-3、-1.5、-1/2、-584等在正数前面加“-”(读作负)号的数,叫做负数。

负数比0小。

(3) 零即不是正数也不是负数,零是正数和负数的分界。

注意:(1) 为了强调,正数前面有时也可以加上“+”(读作正)号,例如:3、1.5也可以写作+3、+1.5。

(2) 对于正数和负数的概念,不能简单理解为:带“+”号的数是正数,带“-”号的数是负数。

例如:-a一定是负数吗?答案是不一定。

因为字母a可以表示任意的数,若a表示的是正数,则-a是负数;若a 表示的是0,则-a仍是0;当a表示负数时,-a就不是负数了(此时-a是正数)。

正数、负数表示正数和负数是根据实际需要而产生的,随着社会的发展,小学学过的自然数、分数和小数已不能满足实际的需要,比如一些有相反意义的量:收入200元和支出100元、零上6和零下等等,它们不但意义相反,而且表示一定的数量,怎样表示它们呢?我们把一种意义的量规定为正的,把另一种和它意义相反的的量规定为负的,这样就产生了正数和负数。

用正数和负数表示具有相反意义的量时,哪种意义为正,是可以任意选择的,但习惯把“前进、上升、收入、零上温度”等规定为正,而把“后退、下降、支出、零下温度”等规定为负。

有理数知识点1 有理数的有关概念有理数:整数和分数统称为有理数。

注:(1)有时为了研究的需要,整数也可以看作是分母为1的数,这时的分数包括整数。

但是本讲中的分数不包括分母是1的分数。

(2)因为分数与有限小数和无限循环小数可以互化,上述小数都可以用分数来表示,所以我们把有限小数和无限循环小数都看作分数。

人教版数学七年级上册第一章有理数相反数


1.2.3 相反数
栏目索引
3.下列说法正确的是 ( )
A.-6是相反数 B.- 2 与 1 互为相反数
33
C.-4是4的相反数 D.- 1 是2的相反数
2
答案 C 相反数是成对出现的,故A错;B和D不符合相反数的定义.故 选C.
1.2.3 相反数
栏目索引
4.下列说法正确的是 ( ) A.因为相反数是成对出现的,所以0没有相反数 B.数轴上原点两旁的两点表示的数互为相反数 C.符号不同的两个数互为相反数 D.正数的中,特别规定了0的相反数是0,故A不 正确;选项B,数轴上原点两旁的两点到原点的距离不一定相等,所以它 们表示的数不一定互为相反数,故B不正确;选项C,符号不同的两个数不 一定互为相反数,如+2和-3,故C不正确,故选D.

.
答案 2和-2
解析 由相反数是在数轴上原点的两侧且与原点的距离相等的两个点
所表示的数,知这两个数是2和-2.
1.2.3 相反数
栏目索引
7.如图1-2-3-3,数轴上一动点A向左移动2个单位长度到达点B,再向右移动
5个单位长度到达点C.若点C表示的数为1,则与点A表示的数互为相反
数的数是
.
图1-2-3-3
+(-2)=-2,
(2)当最前面的符号是“-”号时,去掉这个“-”号,并写出括号内的数 +(+2)=2,
的相反数;
-(+2)=-2,
(3)当这个数还能继续化简时,重复使用上述方法
-(-2)=2
化简多重符号的主要依据是相反数的定义,因为-(-a)可理解为求-a的相反数,而-a的相反 数是a,所以-(-a)=a,从而达到化简的目的
1.2.3 相反数

初中数学七年级上册知识点总结(最新最全)

提分数学七年级上知识清单第一章 有理数一.正数和负数⒈正数和负数的概念负数:比0小的数 正数:比0大的数 0既不是正数,也不是负数注意:①字母a 可以表示任意数,当a 表示正数时,-a 是负数;当a 表示负数时,-a 是正数;当a 表示0时,-a 仍是0。

(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a 就不能做出简单判断)②正数有时也可以在前面加“+”,有时“+”省略不写。

所以省略“+”的正数的符号是正号。

2.具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:零上8℃表示为:+8℃;零下8℃表示为:-8℃支出与收入;增加与减少;盈利与亏损;北与南;东与西;涨与跌;增长与降低等等是相对相反量,它们计数: 比原先多了的数,增加增长了的数一般记为正数;相反,比原先少了的数,减少降低了的数一般记为负数。

3.0表示的意义⑴0表示“ 没有”,如教室里有0个人,就是说教室里没有人;⑵0是正数和负数的分界线,0既不是正数,也不是负数。

二.有理数1.有理数的概念⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)⑵正分数和负分数统称为分数⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。

理解:只有能化成分数的数才是有理数。

①π是无限不循环小数,不能写成分数形式,不是有理数。

②有限小数和无限循环小数都可化成分数,都是有理数。

注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8…也是偶数,-1,-3,-5…也是奇数。

2. (1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ①按正、负分类: ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数②按有理数的意义来分:⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数总结:①正整数、0统称为非负整数(也叫自然数)②负整数、0统称为非正整数③正有理数、0统称为非负有理数④负有理数、0统称为非正有理数(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数⇔ 0和正整数;a >0 ⇔ a 是正数;a <0 ⇔ a 是负数;a ≥0 ⇔ a 是正数或0 ⇔ a 是非负数;a ≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数.三.数轴⒈数轴的概念规定了原点,正方向,单位长度的直线叫做数轴。

七年级上册数学知识点整理

七年级上册数学知识点整理人教版七年级上册数学知识点整理第一章有理数1.1.1 正数和负数①大于零的数叫做正数,小于零的数叫做负数。

② 1 是最小的自然数。

③ 0 是正数和负数的分界线。

④ 0 既不是正数也不是负数。

⑤在一些问题中,表示什么都没有,在另一些问题中,可视为标准量。

⑥相反意义的量必须包含两层意思,一是具有相反的意义;二是具有一定的量,但这个量可以不必要相等。

1.2.1 有理数①整数和分数统称为有理数。

②有理数的分类:有理数整数有理数整数正整数分数有限小数无限循环小数负整数分数正分数负分数1.2.2 数轴①规定了原点、正方向和单位长度的直线叫做数轴。

②数轴的三要素:原点、正方向、单位长度。

③数轴上的数从左至右依次增大。

即右边的点表示的数总比左边的点表示的数大。

④所有的有理数都可以用数轴上的点表示,但并不是所有数轴上的点都表示有理数。

1.2.3 相反数①只有符号不同的两个数叫做互为相反数。

② 0 的相反数是 0.③相反数的定义分析:1.相反数是成对出现的;2.互为相反数的两个数除了符号不同外,其余部分都相同;3.互为相反数的两个数可视为在原点两侧,到原点距离相同的两个点所表示的数。

1.2.4 绝对值①数轴上表示数 a 的点与原点的距离叫做 a 的绝对值,记作 |a|,读作 a 的绝对值。

②一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0 的绝对值是 0.a,a>0 丨a丨= a,a=0 -a,a<0 丨a丨= -a③正数大于负数,正数大于负数的绝对值。

④两个负数比较大小,绝对值大的反而小。

1.3.1 有理数的加法①同号两数相加,取相同的符号,并把绝对值相加。

②绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

互为相反数的两个数相加和为 0.③一个数同 0 相加,仍得这个数。

④有理数的加法交换律:两个数相加,交换加数的位置,和不变。

七年级上册数学知识点笔记

七年级上册数学知识点笔记
以下是七年级上册数学的一些重要知识点笔记:第一章:有理数
1. 正数、负数和零的概念及表示方法。

2. 有理数的概念、分类及有理数的大小比较。

3. 数轴的概念及数轴上的有理数表示。

4. 相反数、绝对值的概念及性质。

5. 有理数的加法、减法、乘法、除法法则。

6. 有理数的混合运算及运算律。

第二章:整式的加减
1. 单项式、多项式的概念及整式的概念。

2. 同类项的概念及合并同类项的方法。

3. 去括号法则及整式的加减运算。

4. 整式加减的应用,如化简求值、列式表示等。

第三章:一元一次方程
1. 方程的概念及一元一次方程的定义。

2. 等式的性质及利用等式性质解方程。

3. 移项法则及解一元一次方程的一般步骤。

4. 一元一次方程的应用,如行程问题、工程问题等。

第四章:几何图形初步
1. 几何图形的概念及分类。

2. 立体图形与平面图形的区别。

3. 直线、射线、线段的概念及表示方法。

4. 角的概念、表示方法及角度的度量。

5. 平行线的概念及平行线的判定和性质。

6. 三角形的概念、分类及三角形的内角和定理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数轴与相反数
一、本节学习指导
本节学习数轴与相反数,这两个知识点非常严重,同时也是比较简易理解不深的知识,细节比较多,希望同学们认真学习。

二、知识要点
1、数轴【重点】
(1)、用一条直线上的点表示数,这条直线叫做数轴。

它满足以下要求:
① 在直线上任取一个点表示数0,这个点叫做原点;
② 通常规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向;
③选取合适的长度为单位长度,直线上从原点向右,每隔一个单位长度取一个点,依次表示1,2,3…;从原点向左,用类似的方法依次表示-1,-2,-3…
(2)、数轴的三要素:原点、正方向、单位长度。

(3)、画数轴的步骤:一画(画一条直线并选取原点);二取(取正反向);三选(选取单位长度);四标(标数字)。

数轴的规范画法:是条直线,数字在下,字母在上。

注意:所有的有理数都可以用数字上的点表示,但是数轴上的所有点并不都表示有理数。

(4)、大凡地,设a是一个正数,则数轴上表示数a的点在原点的右边,与原点的距离是a个单位长度;表示数-a的点在原点的左边,与原点的距离是a 个单位长度。

2、相反数
(1)、只有符号例外的两个数叫做互为相反数。

① 注意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;
② 相反数的商为-1;
③ 相反数的绝对值相等。

(2)、大凡地,设a是一个正数,数轴上与原点的距离是a的点有两个,他们分别在原点的两侧,表示a和-a,我们说这两点关于原点对称。

(3)、a和-a互为相反数。

0的相反数是0,正数的相反数是负数,负数的相反数是正数。

相反数是它本身的数只有0.
(4)、在任意一个数前面添上“-”号,新的数就表示原数的相反数。

(5)、若两个数a、b互为相反数,就可以得到a+b=0;反过来若a+b=0,则a、b互为相反数。

(6)、多重符号的相乘由“-”的个数来定:若“-”的个数为偶数,相乘结果为正数;若“-”的个数为奇数,化简结果为负数。

比如:-2×4×-3×-1×-5,首先由4个负号,所以最终结果是正数,再算数字相乘得到120
三、经验之谈
数轴往往和绝对值联系起来,不管是在几何画图还是不等式、函数中都离不开数轴,线下我们要多做练习加以巩固。

对与相反数,我们也要理解他的性质。

本文由xx学院整理。

相关文档
最新文档