现代控制理论最优控制

合集下载

最优控制理论

最优控制理论
智能优化方法
对于越来越多的复杂控制对象,一方面,人们所要求的控制性能不再单纯的局限于一两个指标;另一方面,上述各种优化方法,都是基于优化问题具有精确的数学模型基础之上的。但是许多实际工程问题是很难或不可能得到其精确的数学模型的。这就限制了上述经典优化方法的实际应用。随着模糊理论、神经网络等智能技术和计算机技术的发展。 近年来,智能式的优化方法得到了重视和发展。 (1)神经网络优化方法 人工神经网络的研究起源于1943年和Mc Culloch和Pitts的工作。在优化方面,1982年Hopfield首先引入Lyapuov能量函数用于判断网络的稳定性,提出了Hopfield单层离散模型;Hopfield和Tank又发展了Hopfield单层连续模型。1986年,Hopfield和Tank将电子电路与Hopfield模型直接对应,实现了硬件模拟;Kennedy和Chua基于非线性电路理论提出了模拟电路模型,并使用系统微分方程的Lyapuov函数研究了电子电路的稳定性。这些工作都有力地促进了对神经网络优化方法的研究。 根据神经网络理论,神经网络能量函数的极小点对应于系统的稳定平衡点,这样能量函数极小点的求解就转换为求解系统的稳定平衡点。随着时间的演化,网络的运动轨道在空间中总是朝着能量函数减小的方向运动,最终到达系统的平衡点——即能量函数的极小点。因此如果把神经网络动力系统的稳定吸引子考虑为适当的能量函数(或增广能量函数)的极小点,优化计算就从一初始点随着系统流到达某一极小点。如果将全局优化的概念用于控制系统,则控制系统的目标函数最终将达到希望的最小点。这就是神经优化计算的基本原理。 与一般的数学规划一样,神经网络方法也存在着重分析次数较多的弱点,如何与结构的近似重分析等结构优化技术结合,减少迭代次数是今后进一步研究的方向之一。 由于Hopfield模型能同时适用于离散问题和连续问题,因此可望有效地解决控制工程中普遍存在的混合离散变量非线性优化问题。 (2)遗传算法 遗传算法和遗传规划是一种新兴的搜索寻优技术。它仿效生物的进化和遗传,根据“优胜劣汰”原则,使所要求解决的问题从初始解逐步地逼近最优解。在许多情况下,遗传算法明显优于传统的优化方法。该算法允许所求解的问题是非线性的和不连续的,并能从整个可行解空间寻找全局最优解和次优解,避免只得到局部最优解。这样可以为我们提供更多有用的参考信息,以便更好地进行系统控制。同时其搜索最优解的过程是有指导性的,避免了一般优化算法的维数灾难问题。遗传算法的这些优点随着计算机技术的发展,在控制领域中将发挥越来越大的作用。 目前的研究表明,遗传算法是一种具有很大潜力的结构优化方法。它用于解决非线性结构优化、动力结构优化、形状优化、拓扑优化等复杂优化问题,具有较大的优势。 (3)模糊优化方法 最优化问题一直是模糊理论应用最为广泛的领域之一。 自从Bellman和Zadeh在 70年代初期对这一研究作出开创性工作以来,其主要研究集中在一般意义下的理论研究、模糊线性规划、多目标模糊规划、以及模糊规划理论在随机规划及许多实际问题中的应用。主要的研究方法是利用模糊集的a截集或确定模糊集的隶属函数将模糊规划问题转化为经典的规划问题来解决。 模糊优化方法与普通优化方法的要求相同,仍然是寻求一个控制方案(即一组设计变量),满足给定的约束条件,并使目标函数为最优值,区别仅在于其中包含有模糊因素。普通优化可以归结为求解一个普通数学规划问题,模糊规划则可归结为求解一个模糊数学规划(fuzzymathematicalprogramming)问题。包含控制变量、目标函数和约束条件,但其中控制变量、目标函数和约束条件可能都是模糊的,也可能某一方面是模糊的而其它方面是清晰的。例如模糊约束的优化设计问题中模糊因素是包含在约束条件(如几何约束、性能约束和人文约束等)中的。求解模糊数学规划问题的基本思想是把模糊优化转化为非模糊优化即普通优化问题。方法可分为两类:一类是给出模糊解(fuzzysolution);另一类是给出一个特定的清晰解(crispsolution)。必须指出,上述解法都是对于模糊线性规划(fuzzylinearprogramming)提出的。然而大多数实际工程问题是由非线形模糊规划(fuzzynonlinearprogramming)加以描述的。于是有人提出了水平截集法、限界搜索法和最大水平法等,并取得了一些可喜的成果。 在控制领域中,模糊控制与自学习算法、模糊控制与遗传算法相融合,通过改进学习算法、遗传算法,按给定优化性能指标,对被控对象进行逐步寻优学习,从而能够有效地确定模糊控制器的结构和参数

现代控制理论最优控制课件

现代控制理论最优控制课件

04 离散时间系统的最优控制
CHAPTER
离散时间系统的最优控制问题的描述
定义系统
离散时间系统通常由差分方程描述,包括状 态转移方程和输出方程。
确定初始状态
最优控制问题通常从一个给定的初始状态开 始,我们需要确定这个初始状态。
确定控制输入
在离散时间系统中,控制输入是离散的,我 们需要确定哪些控制输入是可行的。
工业生产领域
02 现代控制理论在工业生产领域中也得到了广泛的应用
,如过程控制、柔性制造等。
社会经济领域
03
现代控制理论在社会经济领域中也得到了广泛的应用
,如金融风险管理、能源调度等。
02 最优控制基本概念
CHAPTER
最优控制问题的描述
确定受控系统的状态和输入,以便在 给定条件下使系统的性能指标达到最 优。
LQR方法
利用LQR(线性二次调节器)设计最优控制 器。
线性二次最优控制的应用实例
经济巡航控制
在航空航天领域,通过线性二次最优控制实现燃料消 耗最小化。
电力系统控制
在电力系统中,利用线性二次最优控制实现稳定运行 和最小化损耗。
机器人控制
在机器人领域,通过线性二次最优控制实现轨迹跟踪 和避障等任务。
03
02
时变控制系统
04
非线性控制系统
如果系统的输出与输入之间存在 非线性关系,那么该系统就被称 为非线性控制系统。
这类系统的特点是系统的参数随 时间而变化。
静态控制系统
这类系统的特点是系统的输出与 输入之间没有时间上的依赖关系 。
发展历程
古典控制理论
这是最优控制理论的初级阶段,其研究的主 要对象是单输入单输出系统,主要方法是频 率分析法和根轨迹法。

现代控制理论 最优控制

现代控制理论 最优控制
所以它的导数在 = 时应为零,即

[∗ + ]቟
=

=
由变分引理

[∗

+ ]ቕ
=
= ∗
=
得证
《现代控制理论》MOOC课程
6.2.2 无约束条件的变分问题(1)
6.2.2 无约束条件的变分问题
引理:如果函数() 在区间 ∈ [ , ]上是连Βιβλιοθήκη 的,而且对于只满足某些一般条件的任意

[ + ]቟

=
+ ]ቕ
=
∆ +
= lim

∆→

=
+ −
= lim




1
1 2


= lim { ඐ +


+}
2

2
− ∗
<
则称泛函 在∗ 处是连续的。
其中, , ∗ 表示在函数空间中 与∗ 之间的距离:

泛函的变分
, ∗ = max − ∗
≤≤
泛函 增量∆ 的线性主部称为泛函的一阶变分,简称泛函的变分,记作

选定的函数()有‫)()( ׬‬

= , 则在区间 ∈ [ , ]上有: () ≡
一 欧拉方程
讨论一个固定端点时间,固定端点状态的无约束条件变分问题。
问题: 考虑泛函为



= න [ , (),
]


式中 在 ∈ [ , ]上连续, [ , (),

最优控制问题介绍

最优控制问题介绍

最优控制问题介绍最优控制问题是现代控制理论的核心内容之一,它研究的主要问题是如何在满足一定约束条件下,使得某一性能指标达到最优。

这类问题广泛存在于各个领域,如航天工程、经济管理、生态系统等。

通过对最优控制问题的研究,我们可以更加科学、合理地进行决策,实现资源的优化配置,提高系统的运行效率。

一、最优控制问题的基本概念最优控制问题通常可以描述为一个动态系统的优化问题。

在这个问题中,我们需要找到一个控制策略,使得系统从初始状态出发,在给定的时间内,通过控制输入,使得系统的某一性能指标达到最优。

这个性能指标可以是时间最短、能量消耗最小、误差最小等。

为了解决这个问题,我们首先需要建立系统的数学模型。

这个模型应该能够准确地描述系统的动态行为,包括状态方程、输出方程以及约束条件等。

然后,我们需要定义一个性能指标函数,这个函数描述了我们希望优化的目标。

最后,我们通过求解一个优化问题,找到使得性能指标函数达到最优的控制策略。

二、最优控制问题的分类根据系统的动态特性和性能指标函数的不同,最优控制问题可以分为多种类型。

其中,最常见的包括线性二次型最优控制问题、最小时间控制问题、最小能量控制问题等。

1. 线性二次型最优控制问题:这类问题中,系统的动态特性是线性的,性能指标函数是状态变量和控制输入的二次型函数。

这类问题在实际应用中非常广泛,因为许多实际系统都可以近似为线性系统,而二次型性能指标函数可以方便地描述许多实际优化目标。

2. 最小时间控制问题:在这类问题中,我们的目标是使得系统从初始状态到达目标状态的时间最短。

这类问题通常出现在对时间要求非常严格的场合,如火箭发射、紧急制动等。

3. 最小能量控制问题:这类问题的目标是使得系统在完成指定任务的过程中消耗的能量最小。

这类问题在能源有限的系统中尤为重要,如无人机、电动汽车等。

三、最优控制问题的求解方法求解最优控制问题的方法主要有两种:解析法和数值法。

1. 解析法:解析法是通过求解系统的动态方程和性能指标函数的极值条件,得到最优控制策略的解析表达式。

现代控制理论 6 最优控制

现代控制理论 6 最优控制

(11)
对(11)式中的第三项进行分部积分,得
T J [ x ( t )] H ( x , u , λ , t ) d t λ ( t ) x λ ( t ) x d t f t T t f t 0
0

t f
t f
t 0
(12)
当泛函J 取极值时,其一次变分等于零。 即

T
将上式改写成
T T t H H f δ J λ ( t ) δ x ( t ) λ δ x δ u d t 0 f f t x ( t ) x u 0 f (13)
0
tf
( x ,x , t ) 及 x ( t ) 在 [ t 0 , t f ] 上连续可微, t 0 和 t f 给定, 其中, L
(t0) x x (tf ) xf ,x(t)Rn ,则极值轨线 x * ( t ) 满足如下欧 已知 x 0, 拉方程
L d L 0 x dt x
J [ x ( t t ( x , u , t ) d t f), f] L
t f t 0
(x ,u ,t) 是 x 、u 和t 的连续函数 最优。其中 L
最优控制问题就是求解一类带有约束条件的条件泛函极值问题。
补充:泛函与变分法
一、泛函与变分
1、泛函的基本定义: 如果对于某个函数集合 x(t)中的每一个函数 x (t ),变量J 都有一个 值与之对应,则称变量J 为依赖于函数 x (t ) 的泛函,记作 Jx ( t) 可见,泛函为标量,可以理解为“函数的函数” 例如:
由于 δ u 是任意的变分,根据变分法中的辅助引理,由(16)式得 (17) (14)式称为伴随方程, λ (t )为伴随变量,(17)式为控制方程。

现代控制理论基础 第6章 线性系统的最优控制

现代控制理论基础 第6章 线性系统的最优控制

7
方法的比较
总的来说,当控制量无约束时,‘采用“变分法” ;当控制量有 约束时,采用“极小值原理” 或“动态规划”;如果系统是线性的, 采用“线性二次型”方法最好,因为,一方面,二次型指标反映了大 量实际的工程性能指标的要求;另方面,理论上的分析及求解较简单、 方便、规范,而且还有标准的计算机程序可供使用;得到的控制器易 于通过状态反馈实现闭环最优控制,工程实现方便。在实际的工程控 制中,目前线性二次型最优控制己得到了广泛的成功应用。
J 值为极值 J (最大值或最小值),这种泛函求极值的方法,实际上 就是数学上的“变分”问题,须采用数学中的“变分法” 。
5
采用直接变分法求解最优控制率,难于甚至“无法解决容许控 制属于闭集”的最优控制问题,所以受到实际工程应用上的限制, 例如,每台电动机都有最大功率的限制;船舶或飞机的操纵舵面 也有最大偏转角的限制。况且采用直接变分法设计出的系统,其 抗参数变化的能力,即系统的鲁棒性也不强。因此,工程应用上 有较小的实用价值。
线性系统二次型的最化控制,因为其性能指标具有明确的物理 意义,在大量的工程实际中具有代表性,而且最优控制率的求解 较简单,并具有统一的解析表达式,构成的最优控制系统具有简 单的线性状态反馈的型式,易于工程实现,所以在国内外实际的 工程中目前己得到广泛应用。本章主要介绍其基本概念、基本原 理和设计方法。
下面只介绍线性二次型最优控制的基本概念、求解原理及设 计中的一些主要结论。
8
第三节 线性二次型最优控制
一、控制对象数学模型
线性系统的状态空间表达式
x(t) A(t)x(t) B(t)u(t)
y(t) C(t)x(t)
式中,
n x(t) 为 维状态向量;
(6-4)

最优控制-极大值原理

最优控制-极大值原理

近似算法
针对极大值原理的求解过程,开 发了一系列近似算法,如梯度法、 牛顿法等,提高了求解效率。
鲁棒性分析
将极大值原理应用于鲁棒性分析, 研究系统在不确定性因素下的最 优控制策略,增强了系统的抗干 扰能力。
极大值原理在工程领域的应用
航空航天控制
在航空航天领域,利用极大值原理进行最优 控制设计,实现无人机、卫星等的高精度姿 态调整和轨道优化。
03
极大值原理还可以应用于经济 学、生物学等领域,为这些领 域的研究提供新的思路和方法 。
02
最优控制理论概述
最优控制问题定义
01
确定一个控制输入,使得某个给定的性能指标达到 最优。
02
性能指标通常由系统状态和控制输入的函数来描述。
03
目标是在满足系统约束的条件下,找到最优的控制 策略。
最优控制问题的分类
1 2
确定型
已知系统的动态模型和控制约束,求最优控制输 入。
随机型
考虑系统的不确定性,如随机干扰、参数不确定 性等。
3
鲁棒型
考虑系统模型的不确定性,设计鲁棒控制策略。
最优控制问题通过求解优化问题得到最优解的解析表达式。
数值法
02
通过迭代或搜索方法找到最优解。
极大值原理
03
基于动态规划的方法,通过求解一系列的子问题来找到最优解。
03
极大值原理
极大值原理的概述
极大值原理是现代控制理论中的基本原理之一,它为解决最 优控制问题提供了一种有效的方法。该原理基于动态系统的 状态和性能之间的关系,通过寻求系统状态的最大或最小变 化,来达到最优的控制效果。
在最优控制问题中,极大值原理关注的是在给定的初始和终 端状态约束下,如何选择控制输入使得某个性能指标达到最 优。它适用于连续和离散时间系统,以及线性或非线性系统 。

现代控制理论-第7章 最优控制

现代控制理论-第7章  最优控制

(3)控制规律:
u* kx(t)
P由黎卡提微分k 方Q2程1BT得P 到 边界条件:P(tf)=Q0

PA AT P PBQ21BT P Q1 P(t)
例:求解使:J最小的u*(t)
0 1 0 x 0 0x 1u,
பைடு நூலகம்
J
第二节 状态调节器
在不消耗过多控制能量的前提下,使系统各状态在受 到外界干扰作用下,维持平衡状态。
一.无限长时间状态调节器
1.原系统:可控系统

2.性能指标: 说明:(1) J

x Ax Bu, y Cx
12表0 (示xTQ1系x u统TQ2要u)d求t 状态变量偏离平衡点的累积
u* kx(t)
3.控制规律
k Q21BT P
正定实对称P由黎卡提代数方程得到:
PA AT P PBQ21BT P Q1 0
例:求使J最小的u*(t)。 0 1 0
解:
x 0 0x 1u,
J

1

(xT
x uTu)dt
误差最小,这xTQ意1x 味着因某种原因系统状态偏离平衡点,控制
作用应使它很快回复到平衡点,调节器的名称由此而来
(2) 表示在控制过程中,消耗的能量最小
J中(3的u)TQ权Q2u1重半正定,Q2正定,用来确定状态变量与控制能量在
即寻求控制规律,使系统的状态变量x(t)按性能指标J的要 求,在无限长的时间内达到平衡点
1.原系统:可控、可观系统
x Ax Bu, y Cx

2.性能指标:J

1 2

[(y
0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Q和R为加权矩阵,调整Q和R的元素,就是调 整状态变量接近“平衡状态”和“控制的量 不能太大”这两个目标的重视程度.
6、研究线形二次型问题的重要性
1).相当多的最优控制问题是线性二次型 问题 2).线性二次型问题理论上比较完善,其 最优控制是状态变量的反馈(或u=-kx), 所以应用比较方便,闭环品质较准。
2. 将(2)代入(3)可得:
1 T 1 T T T J ( x Qx x k Rkx)dt x (Q k T Rk ) xdt 2 0 2 0
令 实对称阵 于是得到
T T
xT (Q k T Rk ) x
d T ( x .P.x) dt
式中P为正定
T Px xT Px xT (Q k T Rk ) x x
明显地两者之间的差异和相同处在于: 相同: 都要在给定目标函数条件下,求使目标 函数取极值的函数式变量. 相异: 一个是求函数的极值时的变量取值问题, 另一个是求函数极值时求控制函数的问题.
由于最优控制中,目标函数依赖于控制 函数u(t),因而也称目标函数为目标泛函.
因此最优控制问题实际上是求使目标泛 函取极值的控制规律问题.
2.求最优控制的方法 1. 变分法: 17 世纪,无约束最优控制 2. 最大值原理:前苏联庞特里雅金在20世 纪50年代提出. (有约束最优控制) 3. 动态规划:美国贝尔曼1957年提出,求解 最优控制策略应用于弹道优化是控制策略.
3. 实现最优控制的必备条件 1. 具有适当精度的数学模型; 2. 有明确的控制约束; 3. 有明确的目标函数,其大小能反映出所设 计的控制系统的优劣.
J (u ) xT (t )Qx(t )dt
f
t0
并对控制应有约束,如不,则控制会无穷大,则 目标泛函为
J (u ) ( xT (t )Qx(t ) u T Ru) dt
t0 tf
当有终点约束要求时
1 T 1 tf T J (u ) x (t f ) Fx(t f ) ( x (t )Qx(t ) u T Ru )dt 2 2 t0
4. 典型的最优控制问题 (1)最小时间问题; (2)最小能量问题; (3)最省燃料问题; (4)状态调节器问题;
当系统的状态偏离平衡点 xe 0 时,可用 状态的平方和的积分衡量误差的积累.
目标函数可取为
J (u ) xT (t )x(t )dt
t0 tf
更一般的取为状态变量的加权平方和的积 分: t
因此,当二次型最优控制问题的性能指 标如前所描述的那样。 其最优控制为 u kx RT BT Px 其中P应满足 AT P PA PBR1BT P Q 0 (9) 式(9)称为退化的矩阵黎卡提方程。
8. 线性二次型最优控制的设计步骤 1).解黎卡提方程,求出矩阵P,并检验P的 正定性,如P正定,则 A – BK是稳定的; 2). 将解出的P,代入 K= R B P 中, 得到 最优控制 Q Kx

x1 2 x 2
x
1
2 x2

特征方程 当 1 时, S 0.866 j 故A-BK是稳定的!
1,2
det(sI A BK ) s 2 2s 1 0
p12 p21
先设P为实对称矩阵,则
故可得到下列方程
a,
2 1 p12 0
b,
p11 p12 p22 0
C, p
11

p p
21
22
0
d,
2 2 p12 p22 0
其中b和c 是等价的,故得到三个方程
1 p 0 p11 p12 p22 0 2 2 p12 p22 0
由于目标泛函可归结为或需满足式(5) 或式(6)的要求,同时泛函J对k极小值的 问题可归结为方程式(5)或式(6)对k取 极小值的问题。
也就是说,当k取何值时,式(5)或式( 6)为极小,这样可将式(6)改写为:
T 1 T T 1 T 1 T A P PA TK T B P . TK T B P PBR B P Q 0 T T
p p
12
1 0 0 0 0 0 0 22
上述方程,计算后得到
p12 p21 1 p p p 11 22 21 p11 p12 p22 0 0 2 p12 p21 p22 0 0
0
由于A-Bk是稳定矩阵,因此 x 0 , 故而 J 1 xT 0 Px 0 2 显然性能指标可由初始条件和P算得。
5.以下求k 由于R为正定实对称阵,故 R T T T ,其中 T为非奇异矩阵,于是方程式(5)可以写 成 T T T T T A k B P P A Bk Q k T Tk 0 (6)
1.2 最优控制的提法
给定系统状态方程 x f x, u, t , x(t0 ) t0
和目标函数(泛函)
J (u )
n
tf
t0
L( x, u, t )dt ( x(t f ), t f )
求最优控制u(t) ∈U , 使J(u)最大或最 小, U是 R 的一个子集,可开可闭。
Ax Bu x 0 1 0 A ,B ,x x1 0 0 1
x
2
T
2.) 求P,由于 则假设
A R 22
,故
P R 22
p11 p 12 P p21 p22
有黎卡提方程 AT P PA PBR1BT P Q 0 可得
因此,最优控制也是状态反馈控制问题 ,即 u r k x r 0 即 u kx , r 0 的目的 在于使系统的状态回到 xe 0 的系统原平衡 点位置处,当然若系统的原平衡点不为零, 则应先通过坐标变换,使系统的平衡状态为 零.
7、线性二次型最优控制的解(或二次型最 优状态调节器) 方法:变分法或最大值原理,研究非时 变理论
给定系统状态方程,
Ax Bu, x(t0 ) x0 x
(1)
确定下列最优控制向量的矩阵k,
u (t ) kx(t )
使下列性能指标达到最小值
1 T J ( x Qx u T Ru )dt 2 0
(2) (3)
式中Q、R为正定实对称阵。
求最优控制问题,实际归纳为求k,下面求 解过程 1.将(2)代入(1)可得: Ax Bkx ( A Bk ) x x (4) 在下面的推导过程中,假设矩阵A-Bk是稳定 矩阵,即A-Bk的特征值都具有负实部。
2 12
解出,
2 p 1
2 1
显然P是正定矩阵,所有元素大于零
故而最优增益为
K R B P
T 1
1
1
p11 0 1 p 21
p12 p21 p22
p22

K 1
2
最优控制为 u kx 1
(Q k T Rk ) ( A Bk )T P P( A Bk )
4.性能指标可计算如下:
1 T 1 T T J x (Q k Rk ) xdt x Px 2 0 2
1 ( xT Px xT 0 Px 0 ) 2
将式(4)的结果代入后得:
T x (Q k Rk ) x x A Bk P P A Bk x T
如果要对于所存x均成立,则
(5) 显然对式(5)来说,若A-Bk为稳定矩阵, 则必存在一个正定矩阵P,并满足式(5).
3.有了式(5)以后,问题转化为求P,并 检验P是否正定阵。

T 1 T TK T A P PA PBR B P Q B P T 1 T T T 1 T . TK T 0 B P
(7)
在式(7)中,第一项与K无关,因此 若第二项取极小,则能得证该式为最小, 考虑到第二项为二次型的形式,即它们是 每个元素的平方和,其结果非负,因此若 使二次型取得最小值,则使得构成向量的 T 1 T 元素为零即可,即: TK T B P 0 1 T 1 T 1 T K T T B P R B P 或 (8) 时才出现极小值。
0 0 p11 1 0 p 21
p p
12
p 11 p 22 21
p p
12
0 1 p 11 0 0 p 22 21
p p
12
0 1 22
1
1
p 11 0 1 p 21
1 T
例2. 考虑如图所表示的系统.假如控制信号 为 u(t ) Kx(t )
试确定最优反馈增益 K ,使得下列性能指标 达到最小
1 T J (u ) ( x Qx u 2 )dt 2 0
式中
1 0 Q 0
( 0), R 1
解.1.) 先写出对象的状态方程
情况下,线性调节器或状态调节器是最常 见的一类线性二某种 原因偏离出原来的平衡状态,控制的目的是 使系统的状态x(t)尽量接近平衡状态,而所用 的量又不能太大,控制能量一般描述为控制 变量的二次型.
因此目标函数选为:
1 tf T J (u ) ( x Qx u T Ru )dt 2 t0
(5)跟踪问题.
5. 线性二次型最优控制问题
所谓二次型最优控制问题,实际上是指 目标函数是状态变量和控制变量的二次 型.
如状态调节器问题,而线性二次型最优 控制问题:则是除目标函数是状态变量和控 制变量的二次型,而且它的状态方程是线性 微分方程,即
相关文档
最新文档