现代控制理论实验报告三系统的能控性、能观测性分析

合集下载

现代控制理论能控性、能观测性

现代控制理论能控性、能观测性

0 1 0 0
0
0
1
0
A
0
0
0
1
a1 a2 a3 an1
0
0
b 0
1
且:
证明: PA AP (由A PAP1 推得 )
P1A P2
P2 A P1A2 P3
Pn2 A P1 An2 Pn1 Pn1 A P1 An1 Pn
例:
. 1 1 1 求x能控1标准0型x. 1u
设线性定常连续系统状态空间表式: . x Ax Bu y Cx Du
1. 定义:对任意给定u(t),在[t0 , t f ]
rank P1[B AB An1B]
rank[B AB An1B]
rank SC
P1 满秩矩阵
系统的能控性不变
7. 定理4:
.
设 x Ax bu
如则果必系存统在能 一控 个, 非则 奇异SC变换[BXABPA1nx1B]
可将状态方程化为能控标准型:
.
x Ax bu
其中:
A PAP1 b pb
第八章 现代控制理论能控性、能观测性
一、线性系统能控性和能观性的概念 二、线性定常系统的输出能控性 三、线性定常连续系统的能观性 四、线性定常连续系统的能观性
例1: 给定系统的状态空间描述:
.
x1
.
x 2
4 0
0 5
x1 x2
1 2u
解:展开 y 0. 6x
.
x1 4x1 u x2 5x2 2u
rank Sc =rank[Sc ScT ]nn
.
3. 定理2:若x Ax Bu ,
若A为对角型,则状态完全能控的 充要条件为:
B中没有任意一行的元素全为零.

现代控制理论能控性、能观测性

现代控制理论能控性、能观测性

.
例:设系统的状态方程为 x Ax bu
其中:
A
1
0
1
2
b
b1 b2
试判断系统的能控性.
解: Sc [b Ab]
b 而Sbc 1是b任A意b值,bb12且ra1nbk11Sb2cb2=2
20
2
则该系统能控.
5.
当A的特征 值 l ( l重根),
1
(1重根)1
22
(2重根l )n
B 0 0 1
1 0 0
0 1 0
1 0 0
Br 1
0 1
1 0
0 0
行线性无关
B
r 2
1
0
0
不全为零
能控
6. 线性变换后系统的能控性不变

.
x Ax Bu

x
SPC
x
[
B
AB . An1B] 则:x Ax Bu
其中:A P1AP, B P1B
SC
[B
AB
n1
A
B]
rank Sc rank[P1B (P1AP)P1B(P1AP)n1 P1B] rank[P1B P1AB P1An1B]
能控.
说明:
① 任意初态 x(t0 ) x(状态空间中任
一点),零终态 x(t f ) =0 能控
② 零初态x(t0) 0
任意终态 x(t f ) x
能达
2. 定理1
设 x Ax Bu
状态完全可控的充要条件是能控性矩阵:
Sc B AB
An1B的秩为n
即: rankSc rank B AB
0 1 0 0
0
0

现代控制理论基础实验报告

现代控制理论基础实验报告

紫金学院计算机系实验报告现代控制理论基础实验报告专业:年级:姓名:学号:提交日期:实验一 系统能控性与能观性分析1、实验目的:1.通过本实验加深对系统状态的能控性和能观性的理解;2.验证实验结果所得系统能控能观的条件与由它们的判据求得的结果完全一致。

2、实验内容:1.线性系统能控性实验;2. 线性系统能观性实验。

3、实验原理:系统的能控性是指输入信号u 对各状态变量x 的控制能力。

如果对于系统任意的初始状态,可以找到一个容许的输入量,在有限的时间内把系统所有的状态变量转移到状态空间的坐标原点。

则称系统是能控的。

系统的能观性是指由系统的输出量确定系统所有初始状态的能力。

如果在有限的时间内,根据系统的输出能唯一地确定系统的初始状态,则称系统能观。

对于图10-1所示的电路系统,设i L 和u c 分别为系统的两个状态变量,如果电桥中4321R R R R ≠,则输入电压u 能控制i L 和u c 状态变量的变化,此时,状态是能控的;状态变量i L 与u c 有耦合关系,输出u c 中含有i L 的信息,因此对u c 的检测能确定i L 。

即系统能观的。

反之,当4321R R =R R 时,电桥中的c 点和d 点的电位始终相等, u c 不受输入u 的控制,u 只能改变i L 的大小,故系统不能控;由于输出u c 和状态变量i L 没有耦合关系,故u c 的检测不能确定i L ,即系统不能观。

1.1 当4321R RR R ≠时u L u i R R R R C R R R R R R R R L R R R R R R C R R R R R R R R L u i C L C L ⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛⨯⎪⎪⎪⎪⎪⎭⎫+++-+-+-⎝⎛+-+-+++-=⎪⎪⎭⎫ ⎝⎛01)11(1)(1)(1)(143214343212143421243432121 (10-1)y=u c =[01]⎪⎪⎪⎭⎫⎝⎛c L u i (10-2)由上式可简写为bu Ax x+= cx y =式中⎪⎪⎭⎫ ⎝⎛=C L u i x ⎪⎪⎪⎪⎪⎭⎫+++-+-+-⎝⎛+-+-+++-=)11(1)(1)(1)(143214343212143421243432121R R R R C R R R R R R R R L R R R R R R C R R R R R R R R L A⎪⎪⎪⎭⎫⎝⎛=01L b 1] [0=c由系统能控能观性判据得][Ab brank =2 2=⎥⎦⎤⎢⎣⎡cA c rank故系统既能控又能观。

系统的能控性与能观性分析及状态反馈极点配置

系统的能控性与能观性分析及状态反馈极点配置

实 验 报 告课程 自动控制原理 实验日期 12 月26 日 专业班级 姓名 学号实验名称 系统的能控性与能观性分析及状态反馈极点配置 评分批阅教师签字一、实验目的加深理解能观测性、能控性、稳定性、最小实现等观念,掌握状态反馈极点配置方法,掌握如何使用MATLAB 进行以下分析和实现。

1、系统的能观测性、能控性分析;2、系统的最小实现;3、进行状态反馈系统的极点配置;4、研究不同配置对系统动态特性的影响。

二、实验内容1.能控性、能观测性及系统实现(a )了解以下命令的功能;自选对象模型,进行运算,并写出结果。

gram, ctrb, obsv, lyap, ctrbf, obsvf, mineral ; (b )已知连续系统的传递函数模型,182710)(23++++=s s s as s G ,当a 分别取-1,0,1时,判别系统的能控性与能观测性;(c )已知系统矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=2101013333.06667.10666.6A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=110B ,[]201=C ,判别系统的能控性与能观测性;(d )求系统1827101)(23++++=s s s s s G 的最小实现。

2.实验内容原系统如图1-2所示。

图中,X 1和X 2是可以测量的状态变量。

图1-2 系统结构图试设计状态反馈矩阵,使系统加入状态反馈后其动态性能指标满足给定的要求:(1) 已知:K=10,T=1秒,要求加入状态反馈后系统的动态性能指标为:σ%≤20%,ts≤1秒。

(2) 已知:K=1,T=0.05秒,要求加入状态反馈后系统的动态性能指标为:σ%≤5%,ts≤0.5秒。

状态反馈后的系统,如图1-3所示:图1-3 状态反馈后系统结构图分别观测状态反馈前后两个系统的阶跃响应曲线,并检验系统的动态性能指标是否满足设计要求。

三、实验环境 1、计算机1台;2、MATLAB6.5软件1套。

四、实验原理(或程序框图)及步骤 1、系统能控性、能观性分析设系统的状态空间表达式如下:p m n R y R u R x Du Cx y Bu Ax x∈∈∈⎩⎨⎧+=+=&(1-1)其中A 为n ×n 维状态矩阵;B 为n ×m 维输入矩阵;C 为p ×n 维输出矩阵;D 为p ×m 维传递矩阵,一般情况下为0。

现代控制理论第三章线性系统的能控性和能观测性

现代控制理论第三章线性系统的能控性和能观测性

1 x1 u x 2 2 x2 u x y x x 1 2
1 x
u
1 s 1 s
2
x1
y
x2
2 x
由于状态变量x1、x2都受控于输入u,所以系统 是能控的;输出y能反映状态变量x1,又能反映状 态变量x2的变化,所以系统是可观测的。 即状态变量x1能控、可观测;状态变量x2能控、 可观测。
任意初态 x(t0 ) x 零终态 x(t f ) 0
状态完全能控
Байду номын сангаас
第 三章 线性控制系统式的能控性和能观测性
②把系统的初始状态规定为状态空间的原点, 即 x(t 0 ) 0,终端状态规定为任意非零有限点, 则可达定义表述如下: 对于给定的线性定常系统
Ax Bu ,如果 x
存在一个分段连续的输入 u (t ),能在 [t 0 , t f ] 有限时间间隔内,将系统由零初始状态 x(t 0 ) 转移 到任一指定的非零终端状态 x(t f ) ,则称此系统 是状态完全可达的,简称系统是可达的(能达的)。 任意初态 x(t0 ) 0 零终态 x(t f ) x 状态完全可达
第 三章 线性控制系统式的能控性和能观测性
1. 直接由A,B矩阵的结构判断系统的能控性 定理: 系统
( A, B )

A(t )x B(t )u x y C (t )x D(t )u
状态完全能控的充分必要条件是其能控性矩阵
Qk [ B AB A2 B An1 B]
一、线性定常连续系统状态能控性的定义 定义3.1(状态能控性定义):
Ax Bu,如果存在一个 对于线性定常系统 x 分段连续的输入u(t),能在有限时间间隔[t0,tf]内, 使得系统从某一初始状态x(t0)转移到指定的任一 终端状态x(tf) ,则称此状态是能控的。若系统的 所有状态都是能控的,则称此系统是状态完全能 控的,简称系统是能控的。

现代控制理论的能控性和能观性分析.pdf

现代控制理论的能控性和能观性分析.pdf
( ) rank(Γc[A, B]) = rank [B AB L An−1B] = n
Γc [ A, B] 能控性检验矩阵。 特点:只依赖状态矩阵A和输入矩阵B,和时间长短无关 Γc [A, B] 是否满秩的方法: SISO:计算 Γc [A, B] 的行列式 MIMO:计算行列式 (Γc[A, B])(Γc[A, B])T MATLAB命令:ctrb(A,B) SISO:det(ctrb(A,B)) MIMO:det(ctrb(A,B)*ctrb(A,B)’)
ω2
⎥ ⎥

2 sin ωT cosωT − sin ωT ⎥
ω
⎥⎦

T
=
kπ ω
,k
= 1, 2, L
以上能控性矩阵的第2行为零,故能控性检验矩阵是不
满秩的。离散系统不能控的。
原因:采样周期选取不合适!
采样周期大,使得信息损失过多,导致性能损失
采样周期小,处理复杂
19 / 36
3.1.4 输出能控性 控制输入影响输出的能力--输出能控性。
=
⎡ ⎢⎣−
cos ωT ω sin ωT
⎡1− cosωT ⎤
(sin ωT ) cos ωT
ω⎤
⎥ ⎦
x(k
)
+
⎢ ⎢ ⎢ ⎢
ω2 sin ωT
⎥ ⎥⎥u (k ) ⎥
⎢⎣ ω ⎥⎦
18 / 36
能控性检验矩阵
⎡1 − cos ωT

Γc
[G,
H
]
=
⎢ ⎢
ω2
⎢ sin ωT
⎢⎣ ω
cos ωT − cos 2 ωT + sin 2 ωT ⎤
的秩等于该矩阵的行数。

现代控制理论能控性和能观测性

现代控制理论能控性和能观测性

I A1
B
I A
B f
(3-21)
式中B 为元素埏是I A的伴随矩阵。方程(3-21)两端右 乘 I A得:
BI A f I
(3-22)
由于 B 的元素 I A代数余子式,均为 n 1 次多项式,
故据矩阵加法运算规则,可将其分解为n个矩阵之和:
B
B n1 n1
B n2 n2
Bn1 I
Bn2 Bn1A an1I
Bn3 Bn2A an2I
M
B0 B1A a1I
B0A a0I
Bn1An An
Bn2An1 Bn1An an1An1
Bn3An2 Bn2An1 an2An2 M
0 1 M 1 -2 M 2 3
S2 G2 G2 L 2G2 0 0 M 0 1 0 M 0
0 M 0 0 1 M 1 -2
显见出现全零行,rankS2 2 3 ,故不能控。
多输入系统能控阵 S2,其行数小于列数,在计算列写能控阵时, 若有显时见可通过矩计S阵2算的秩为Sn的2,秩S便T2 是不否必为把n来判矩断S阵2多的输所入有系列统都的写能出控。性。 这只是需因计为算,一当次n阶非行奇列S异式2 时即,可确定能必S控非2 性奇ST2,异但,在而计算 为S方2 S阵T2 ,
系统矩阵 的阶数,或系统特征方程的阶次数。
以上研究假定了终态 x 0 0。若令终态为任意给定状态xn
则方程(3-2)变为:
n 1
nx 0 x n n1igu i
i0
(3-9)
方程两端左乘 n ,有
x 0-nx n 1g 2g L
u0
ng
u 1
M
u n 1
(3-10)

系统的能控性能观测性稳定性分析

系统的能控性能观测性稳定性分析

系统的能控性能观测性稳定性分析1. 能控性(Controllability)能控性是指系统输出能否通过适当的输入方式对系统进行控制。

如果一个系统是能控的,意味着通过控制器的输入信号,我们能够将系统的输出发展到我们所期望的状态。

对于一个线性时不变(LTI)系统,能控性可以通过判断其控制矩阵的秩来确定。

控制矩阵(也称为控制可达矩阵)是由系统的状态方程和控制器的输入方程组成的。

如果控制矩阵的秩等于系统的状态数量,则系统是能控的;否则,系统是无法被完全控制的。

能控性的分析可以帮助我们选择合适的控制策略和控制器设计。

当系统的能控性差时,我们可能需要通过增加或修改系统的状态变量或控制器的输入方式来提高系统的能控性。

2. 能观测性(Observability)能观测性是指系统的内部状态能否通过系统的输出信号来判断。

一个能观测的系统意味着我们可以通过观测系统的输出来估计系统的状态。

对于一个线性时不变系统,能观测性可以通过判断其观测矩阵的秩来确定。

观测矩阵(也称为观测可达矩阵)是由系统的状态方程和输出方程组成的。

如果观测矩阵的秩等于系统的状态数量,则系统是能观测的;否则,系统的一些状态是无法通过输出来观测到的。

能观测性的分析可以帮助我们选择合适的观测器设计,以实现对系统状态的估计。

当系统的能观测性差时,我们可能需要增加或改变系统的输出方程来提高系统的能观测性。

3. 稳定性(Stability)稳定性是指系统在受到扰动后是否会逐渐恢复到原来的状态。

对于线性时不变系统,稳定性可以分为几种类型:零状态稳定、有限状态稳定和无限状态稳定。

零状态稳定(Zero-state stability)是指当系统受到初始条件扰动时,输出信号会在有限时间内收敛到零。

有限状态稳定(Finite state stability)是指当系统受到初始条件扰动时,输出信号会在有限时间内收敛到一些有限值。

无限状态稳定(Infinite state stability)是指当系统受到初始条件扰动时,输出信号会在无限时间内收敛到一些有限值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
-10.0000 12.0000 1.0000
Bc =
0
0
1.0000
(4)
A=[0,2,-1;5,1,2;-2,0,0];B=[1;0;-1];C=[1,1,0];
Uo=obsv(A,C);
T1=inv(Uo)*[0;0;1];
%T=[T1,A*T1,A^2*T1]
T=ctrb(A,T1)
Ao=inv(T)*A*T
end
nc =
3
system is completely state controllable
system is completely state observe
(3)
A=[0,2,-1;5,1,2;-2,0,0];B=[1;0;-1];C=[1,1,0];
Uc=ctrb(A,B);
p1=[0,0,1]*inv(Uc);
解:(1)(2)
A=[0,2,-1;5,1,2;-2,0,0];B=[1;0;-1];C=[1,1,0];
Uc=ctrb(A,B);
Uo=obsv(A,C);
n1=rank(Uc);n2=rank(Uo);nc=length(A)
if nc==n1
disp('system is completely state controllable')
%P=[p1;p1*A;p1*A^2]
P=obsv(A,p1)
Ac=P*A*inv(P)
Bc=P*B
P =
0.1364 0.0455 0.1364
-0.0455 0.3182 -0.0455
1.6818 0.2273 0.6818
Ac =
0 1.0000 -0.0000
0 -0.0000 1.0000
3、构造变换阵,将一般形式的状态空间描述变换成能控标准形、能观标准形。
六、数据处理
题3.1已知系数阵A和输入阵B分别如下,判断系统的状态能控性

解:
A=[6.666,-10.6667,-0.3333;1,0,1;0,1,2];B=[0;1Biblioteka 1];Uc=ctrb(A,B)
n=det(Uc);%de计算矩阵对应的行列式的值,abs为求n的绝对值
6.6660 -8.6667 3.6667
35.7689 -67.4375 -3.5551
system is completely state observe
题3.3已知系统状态空间描述如下
(1)判断系统的状态能控性;
(2)判断系统的状态能观测性;
(3)构造变换阵,将其变换成能控标准形;
(4)构造变换阵,将其变换成能观测标准形;
三、仪器设备
PC计算机1台,MATLAB软件1套。
四、线路示图
五、内容步骤
1、根据系统的系数阵A和输入阵B,依据能控性判别式,对所给系统采用MATLAB编程;在MATLAB界面下调试程序,并检查是否运行正确。
2、根据系统的系数阵A和输出阵C,依据能观性判别式,对所给系统采用MATLAB编程;在MATLAB界面下调试程序,并检查是否运行正确。
Co=C*T
T =
-0.5000 0 -1.0000
0.5000 0 2.0000
1.0000 1.0000 0
Ao =
0 0 -10
1 0 12
0 1 1
Co =
0 0 1
七、分析讨论
1、掌握了能控性和能观测性的概念。学会了用MATLAB判断能控性和能观测性。
2、学会了将矩阵装换成能控标准型和能观标准型的方法。进一步加深了对能控性与能观性的理解。
实验报告
实验名称系统的能控性、能观测性分析

专业

姓名
学号
授课老师
预定时间
实验时间
实验台号
一、目的要求
1、学习系统状态能控性、能观测性的定义及判别方法;
2、通过用MATLAB编程、上机调试,掌握系统能控性、能观测性的判别方法,掌握将一般形式的状态空间描述变换成能控标准形、能观标准形。
二、原理简述
由系统状态方程求能控性矩阵Uc,调用函数rank()可求得Uc的秩,从而判断系统的能控性,同理求得能观性矩阵Uo,用rank()求其秩,再判断系统的能观性。
Uo=obsv(A,C)
n1=rank(Uo);n2=length(A);
if n2==n1
disp('system is completely state observe')
else
disp('system is not completely state observe')
end
Uo =
1.0000 0 2.0000
else
disp('system is not completely state controllable')
end
if nc==n2
disp('system is completely state observe')
else
disp('system is not completelystate observe')
if abs(n)<eps
disp('系统不能控');
else
disp('系统能控');
end
Uc =
0 -11.0000 -84.9926
1.0000 1.0000 -8.0000
1.0000 3.0000 7.0000
系统能控
题3.2已知系数阵A和输出阵C分别如下,判断系统的状态能观性。

解:
A=[6.666,-10.6667,-0.3333;1,0,1;0,1,2];C=[1,0,2];
相关文档
最新文档