胶体溶液和表面现象
物理化学界面第9章 表面现象总结

第9章表面现象和胶体化学1 基本概念1.1界面和表面不同物质或同种物质的密切接触的两个相之间的过渡区叫界面,如液态水和冰的接触面,水蒸气和玻璃的接触面等等。
表面是指固体对真空或固体和液体物质与其自身的蒸气相接触的面。
显然,表面包括在界面的概念之内,但通常并没严格区别两者,“表面”和“界面”互相通用。
1.2 表面能、表面函数和表面功表面上的物质微粒比他们处于体相内部时多出的能量叫表面能或总表面能。
由于表面的变化通常在等温等压条件下进行,因此这时的表面能实际上就是表面吉布斯函数。
在等温等压下且组成不变的条件下以可逆方式增加体系的表面积时所做的非体积功叫表面功,它在量值上等于表面吉布斯函数。
1.03 表面张力(比表面能)简单的说,表面张力就是单位面积上的表面能量,即比表面能,因为它与力有相同的量纲,故叫表面张力。
实际上,表面张力是表面层的分子垂直作用在单位长度的线段或边界上且与表面平行或相切的收缩力。
1.04 附加压力弯曲液面下的附加压力是指液面内部承受的压力与外界压力之差,其方向指向曲面球心。
1.5 铺展和铺展系数某一种液滴在另一种不相溶的液体表面上自行展开形成一层液膜的现象叫铺展,也叫展开。
铺展系数就是某液滴B在液体A的表面上铺展时比表面吉布斯函数的变化值,常用符号为S B/A1.6 湿润凡是液体沾湿在固体表面上的现象都叫润湿,其中又分为铺展润湿(液体在固体表面上完全展开),沾湿湿润(液体在固体表面形成平凹透镜)和浸没湿润(固体完全浸渍在液体中),三种湿润程度的差别是:浸没湿润〉铺展湿润〉沾湿湿润1.7 沾湿功和湿润功在定温定压下,将单位面积的固-液界面分开时外界所做的可逆功叫沾湿功。
这一概念对完全不相溶的两种液体间的界面也适用。
结合功是指定温定压下,将单位面积的液柱拉开时外界所做的可逆功,又叫内聚功。
它是同种分子相互吸引能力的量度。
1.08 接触角液体在固体表面达到平衡时,过三相接触点的切线与固-液界面所夹的最大角叫平衡接触角或润湿角,常用符号θ。
8胶体溶液

此法可用于区分胶体与溶液
46
二、溶胶的基本性质 (一) 溶胶的光学性质
当一束光线透过胶体,从入射光的垂直方 向可以观察到胶体里出现的一条光亮的 “通路”,这种现象叫丁铎尔现象,也叫 丁铎尔效应(Tyndall effect)
25
二、液体表面的吸附 (一)液体表面的吸附与表面活性剂
表面活性物质:能显著降低水表 面张力的物质 它所引起液体表面的吸附是正吸附。
表面惰性物质:能使水的表面张力升高的物质 它所引起液体表面的吸附是负吸附。
26
二、液体表面的吸附 (一)液体表面的吸附与表面活性剂
阴离子型:如肥皂 ,RCOONa
R
一、固体表面的吸附
1. 物理吸附是固体表面的分子与吸附质分子之间的作 用力是范德华力(分子间引力)。这类吸附没有选择 性,吸附速度快,吸附与解吸(与吸附相反的过程)易 达平衡,但可因分子间引力大小不同使吸附的难易程 度不同,在低温时易发生物理吸附。
20
第三节 固体和液体的表面吸附及乳状液
吸附:固体或液体表面吸引其它物质的分子、 原子或离子聚集在其表面上的过程。
41
c.胶溶法:属化学分散法。原理是在新生成的沉 淀中加入适量电解质,使沉淀重新分散
成胶体。如新生成的 Fe(OH)3 沉淀,经 洗涤再加入少量稀 FeCl3 溶液,通过搅 拌后沉淀就转变为红棕色的 Fe(OH)3 溶 胶。
Fe(OH)3(新鲜沉淀) FeCl3 Fe(OH)3(溶胶) AgCl(新鲜沉淀) AgNO3 或 KCl AgCl(溶胶)
34
形成乳状液的类型主要决定于所使用的乳化剂 的性质。 当加入水溶性乳化剂(HLB>7),如钠肥皂、乳蛋 白等,形成O/W型乳状液;
若加入油溶性乳化剂(HLB<7) ,如钙肥皂、胆固
物理化学中的表面现象与胶体化学

物理化学中的表面现象与胶体化学物理化学是一门探讨物质性质变化及相关规律的学科。
与之相关的表面现象和胶体化学则是物理化学领域中一项重要的分支。
本文将从表面现象和胶体化学两个方面入手,探讨它们的基本概念、相关应用和研究意义。
一、表面现象观察一个物体,我们会发现它的表面是与外界直接接触的部分。
因此,表面现象是物质研究中一种极其普遍和重要的现象。
表面现象是指两种或两种以上介质相接触时,有特殊性质的现象出现。
在物理化学中,表面现象主要包括表面张力、毛细现象和润湿现象。
表面张力是液体表面处由于分子间作用力而表现出来的一种现象。
表面张力较大的液体在容器中形成凸面或水滴状,这种现象称为毛细现象。
液体与固体相接触时,液体能否在固体表面上均匀分布并附着称为润湿现象。
表面现象在自然界和人类生活中都有广泛应用。
例如,水平稳定的大船只是因为水面的表面张力;高楼大厦的毛细管水系统则利用了毛细现象;润滑油、乳液、涂料等都运用了润湿性质。
二、胶体化学胶体化学是涉及无色透明的小粒子(胶体)和它所处的环境之间的相互作用的学科。
胶体是介于小分子和宏观物体之间的一种存在形式,其中粒子的平均大小在1至1000纳米之间。
胶体物理包括多种胶体类型,例如溶胶、凝胶和气溶胶等。
胶体学科研究中的主要问题是如何制备胶体,以及在胶体中所表现出的各种特殊性质。
胶体的制备方法包括溶胶法、凝胶法和胶体化合物分解法等。
在胶体中存在的各种特殊现象包括布朗运动、泡沫现象和重力分选等。
胶体的应用十分广泛,例如在涂料、油墨、胶水、陶瓷、橡胶等方面都得到了广泛的应用。
另外,人类生命活动中的一些基础物质,例如蛋白质、肌肉等,都是以胶体形式存在的。
三、物理化学中的表面现象与胶体化学的关联表面现象与胶体化学之间有着密不可分的联系。
在液态物质中,固液接触面所呈现的动态变化与胶体的形成和演化密切相关。
例如,胶体粒子表面的物理化学特征决定了胶体粒子的成长和聚集行为。
此外,表面现象和胶体化学之间也有着一些实际应用。
胶体的基本特征

胶体的基本特征胶体是一种特殊的物质,具有许多独特的特征。
本文将以胶体的基本特征为标题,探讨胶体的相关知识。
胶体的第一个基本特征是其由两个或多个不相溶的物质组成。
这些物质分别是连续相和分散相。
连续相是胶体中占据主导地位的物质,通常是液体。
分散相则是以微小颗粒或小液滴的形式分散在连续相中的物质。
这种双相结构赋予了胶体独特的性质。
胶体的第二个基本特征是其颗粒或液滴的尺寸通常在1纳米到1微米之间。
这种微小的尺寸使得胶体的分散相可以呈现出均匀的分布,并且在光学上表现出散射现象。
这也是为什么我们能够看到许多胶体溶液呈现出浑浊的外观。
胶体的第三个基本特征是分散相的表面具有相当的活性。
这是因为胶体颗粒或液滴的尺寸非常小,表面积相对较大。
这使得胶体颗粒或液滴能够与周围的分子进行接触和反应。
由于表面活性,胶体能够吸附其他物质,形成吸附层。
这种吸附层可以改变胶体的性质,并且在许多应用中发挥重要作用。
胶体的第四个基本特征是其具有流变性质。
流变性是指胶体在外力作用下能够发生形变和流动的特性。
这是由于胶体中分散相之间的相互作用力和连续相的黏性所决定的。
胶体的流变性质使其在许多工业和生物领域具有广泛的应用,例如润滑剂、涂料和生物医学材料等。
胶体的第五个基本特征是其具有光学性质。
由于胶体中分散相的尺寸与光波长相当,所以胶体溶液会发生散射现象。
这种散射会导致胶体呈现出特定的颜色,这也是为什么我们能够看到一些胶体溶液呈现出不同的颜色。
胶体的第六个基本特征是其具有电学性质。
胶体中的分散相通常带有电荷,可以被溶液中的离子吸附,形成电荷层。
这种电荷层的存在导致了胶体粒子之间的静电斥力,从而维持了胶体的稳定性。
这也是为什么胶体溶液可以长时间保持均匀分散状态的原因。
胶体具有由两个或多个不相溶物质组成、微小尺寸、表面活性、流变性、光学性质和电学性质等基本特征。
这些特征使得胶体在许多领域具有重要的应用价值,并且对我们的生活和工业生产有着重要影响。
无机化学 胶体溶液【医疗资料】

优秀课件
6
(2) 动力学性质 A. 布朗运动
在超显微镜下观察溶胶时,可看到胶体粒子不断地 上下往来作不规则运动, 这种运动称为Brown运动。
Brown运动实质上是溶胶粒子本身热运动和分散介 质对它不断撞击的总结果。
优秀课件
7
胶粒越小、温度越高、介质黏度越低,Brown运动
越激烈。
Brown运动使胶粒具有一定能量,可以克服重力
的照片哦。
优秀课件
5
当光线射入粗分散系时,主要发生反射现象, 光线无法透过,可观察到体系呈现浑浊不透明;
当光线射入溶胶时,发生散射现象,在光线的 垂直方向可观察到一条明亮的的光柱;
当光线射入真溶液,光几乎全部透过,整个溶 液是透明的。
Tyndall 效 应 是 溶 胶 的 特 征 , 可用来区分三类分散系。
优秀课件
9
(3) 电学性质
+
在溶胶内插入两个电极接 通直流电源后,可观察到 胶体粒子的定向移动。这 种在外电场作用下,分散 质粒子在分散剂中的定向 移动称为电泳。
优秀课件
漏斗
-
电极
Fe(OH)3 溶胶, 带正电 U形管
10
Fe(OH)3溶胶的电泳现象
优秀课件
11
通过电泳实验,可以证
明胶粒是带电的,电泳的
胶粒与溶液中的分散剂接触时,表面分子发生 解离,有一种离子进入溶液,而使胶粒带电。
例如,硅酸溶胶的胶粒是由很多硅酸分子 (xSiO2·yH2O) 缩合而成,胶粒表面的 H2SiO3 分 子发生解离,使硅胶粒子带负电。
H2 SiO3
H SiO3 H
优秀课件
14
3. 胶团结构 以Fe(OH)3溶胶为例
表面及胶体化学知识点归纳

胶体: 指具有高度分散的分散体系(亦是研究对象),分散相可以是一相和多相,粒子大小通常为10-7~10-9m之间.胶体的研究内容:表面现象、分散体系、高分子溶液。
表面能δ:恒温恒压下,可逆地增加单位表面积,环境对体系所做的功,单位J·m-2。
表面张力δ:单位长度液体表面的收缩力,单位N·m-1(或mN·m-1)l aplace方程:球面,则R1=R2=R,ΔP=2σR 柱面,则R1=R,R2=∞,ΔP=σ/R 球形气泡,且R1=R2=RΔP=4σ/R表面过剩:界面相与体相的浓度差。
接触角:固液气三相交点处作气液界面的切线,此切线与固液交界线之间的夹角θ。
Gibbs吸附公式:(双组分体系)固体表面张力:新产生的两个固体表面的表面应力之和的一半。
固体表面能:指产生一平方厘米新表面所消耗的等温可逆功。
Laugmuir理论:假设被吸附分子间无作用力,因而分子脱附不受周围分子的影响。
只有碰撞在空间表面的分子才有可能被吸附(单分子层吸附)。
固体表面是均匀的,各处吸附能相同。
BET理论的基本假设:①固体表面是均匀的,同层分子(横向)间没有相互作用,分子在吸附和脱附时不受周围同层分子的影响。
②物理吸附中,固体表面与吸附质之间有范德华力,被吸附分子间也有范德华力,即吸附是多分子层的。
影响溶液中吸附的因素:吸附剂:溶质、溶剂三者极性的影响;温度:溶液吸附也是放热过程,一般T上升,吸附下降;溶解度:吸附与溶解相反,溶解度越小,越易被吸附;同系物的吸附规律一般随C-H链的增长吸附有规律的增加和减少。
Trube规则;吸附剂的孔隙大小;吸附剂的表面化学性质,同一类吸附剂由于制备条件不同,表面活性相差很大,吸附性能也会有很大差异;混合溶剂的影响,色谱法中使用混合溶剂,洗提效果比单纯溶剂好,若自极性相同的混合溶剂中吸附第三组份,等温线界于两单等温线之间;若自极性不相同的混合溶剂中吸附第三组份,吸附量比任何单一溶剂中少,混合溶剂极性一致或不一致情况不同;多种溶质的混合溶液;9、盐的影响,盐的存在通过影响溶质的活度系数、溶解度、溶质的电离平衡而影响吸附。
第5章胶体溶液和表面现象

2020/2/12
22
二 高分子化合物溶液的特点
• 1、稳定性大
– 稳定的主要因素是在溶液中水化能力很强,高 分子化合物能通过氢键与水形成一层很厚的水 化膜。
• 2、粘度大 • 3、溶解的可逆性
– 高分子化合物从溶剂中分离出来以后,再加入 原来的溶剂,又能得到原来状态的真溶液。胶 体溶液一旦聚沉以后,再加入原来的分散剂不 能再形成胶体溶液。
乳化剂:能增加乳浊液稳定性的物质。 乳化作用:乳化剂使乳浊液稳定的作用。
2020/2/12
38
乳浊液
类型:水包油(O/W):水是分散剂,油 是分散质。如:牛奶 油包水(W/O):油是分散剂,水是分散质。 如:原油 乳化剂决定乳浊液的类型。
2020/2/12
39
亲水乳化剂有钾肥皂、钠肥皂、十二烷基磺酸 钠、蛋白质、动物胶等; 亲油乳化剂有钙、镁、锌二价金属肥皂,高级 醇类、石墨、碳黑等。
第五章 胶体溶液和表面现象
第一节 胶体溶液
2020/2/12
1
分散系的分类
胶体分散系包括溶胶、高分子溶液。
2020/2/12
2
一、胶体溶液的性质
• (一)溶剂的光学性质——丁铎尔(Tyndall)效应
– 如果将一束强光射入胶体溶液,在光束的垂直方向 上可以看到一条发亮的光柱,这种现象称为丁达尔 效应,又称乳光效应。
• 一高分子化合物的概念
• (一)定义:高分子化合物(又称大分子 化合物)是指相对分子质量在一万以上, 甚至高达几百万的物质。
•
(二)分类:天然高分子化合物和合成高 分子化合物。
• (三)特点
物理化学表面现象及胶体化学总结

1.压缩因子任何温度下第七章表面现象1.在相界面上所发生的物理化学现象陈称为表面现象。
产生表面现象的主要原因是处在表面层中的物质分子与系统内部的分子存在着力场上的差异。
2.通常用比表面来表示物质的分散度。
其定义为:每单位体积物质所具有的表面积。
3.任意两相间的接触面,通常称为界面(界面层)。
物质与(另一相为气体)真空、与本身的饱和蒸气或与被其蒸汽饱和了的空气相接触的面,称为表面。
4.表面张力:在与液面相切的方向上,垂直作用于单位长度线段上的紧缩力。
5.在恒温恒压下,可逆过程的非体积功等于此过程系统的吉布斯函数变。
6.影响表面及界面张力的因素:表面张力与物质的本性有关、与接触相的性质有关(分子间作用力)、温度的影响、压力的影响。
7.润湿现象:润湿是固体(或液体)表面上的气体被液体取代的过程。
铺展:液滴在固体表面上迅速展开,形成液膜平铺在固体表面上的现象。
8.亚稳状态与新相生成:a.过饱和蒸汽:按通常相平衡条件应当凝结而未凝结的蒸汽。
过热液体:按通常相平衡条件应当沸腾而仍不沸腾的液体。
过冷液体:按相平衡条件应当凝固而未凝固的液体。
过饱和溶液:按相平衡条件应当有晶体析出而未能析出的溶液。
上述各种过饱和系统都不是真正的平衡系统,都是不稳定的状态,故称为亚稳(或介安)状态。
亚稳态所以能长期存在,是因为在指定条件下新相种子难以生成。
9.固体表面的吸附作用:吸附:在一定条件下一种物质的分子、原子或离子能自动地粘附在固体表面的现象。
或者说,在任意两相之间的界面层中,某种物质的浓度可自动发生变化的现象。
吸附分为物理吸附(范德华力)和化学吸附(化学键力)。
具有吸附能力的物质称为吸附剂或基质,被吸附的物质称为吸附质。
吸附的逆过程,即被吸附的物质脱离吸附层返回到介质中的过程,称为脱附(或解吸)。
10.吸附平衡:对于一个指定的吸附系统,当吸附速率等于脱附速率时所对应的状态。
当吸附达到平衡时的吸附量,称为吸附量。
气体在固体表面的吸附量与气体的平衡压力及系统的温度有关。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021/3/7
7
(三)电泳现象(电学性质)
电泳:在外电场中,胶粒在介质中定向移动的现象 称为电泳 。
胶体粒子带正电荷的胶体称正胶体。 胶体粒子带负电荷的胶体称负胶体。
水
溶胶
2021/3/7
水
溶胶
8
(三)电泳现象(电学性质)
• 某些胶体粒子所带电荷的情况
带正电荷的胶体 氢氧化铁 氢氧化铝 氢氧化铬
的负电荷被海水中电解质中和而沉淀堆积而成的。 在豆浆中加入少量石膏溶液制成豆腐,也是由于电 解质中和了豆浆胶粒电荷的结果。
2021/3/7
19
(二)溶胶的聚沉
• 2、加入带相反电荷的胶体溶液
– 当带有相反电荷的两种胶体溶液互相混和时, 由于胶粒带的电荷相反,互相中和电荷,从而 发生聚沉。
• 两种不同的墨水,由于染料不同或生产工艺不同都 有可能带不同的电荷,因此也不能混合使用。
– 2.胶粒带同种电荷;
• 同性电荷的胶粒互相排斥,从而阻止了胶粒在运动 时互相接近和聚合成较大的颗粒沉淀下来。
– 3.溶剂化膜(水化膜)的存在。
• 由于胶核吸附离子,离子水化力很强,使胶粒外面 又包围一层水分子,形成水化膜,使胶粒增加一层 保护膜,阻止胶粒互相聚合。
• 胶体稳定的主要因素是胶粒带电和水化膜 的存在,其次是布朗运动。
练习:
• AgNO3+KI=AgI(溶胶)+KNO3
请写出当AgNO3过量时的胶团结构;
{[AgI]m·nAg+(n-x)NO3-}x+·xNO3-
2021/3/7
17
二、 胶体溶液的稳定性和聚沉
• (一)胶体的稳定因素
– 1.布朗运动;
• 胶粒比较小,因此布朗运动产生的动能足够克服地 心对它的吸引力,从而使胶体具有一定的稳定性。
• 明矾的主要成分是硫酸铝钾,水解后生成带正电荷 的氢氧化铝胶粒,遇到悬混在水中的带负电荷的泥 沙等杂质,互相中和电荷发生聚沉,从而达到净化 水的目的。
2021/3/7
20
(二)溶胶的聚沉
• 3、加热
– 许多胶体溶液在加热时都能发生聚 沉。
• 这是因为
– 一方面温度升高,胶核吸附离子的能力降 低,使胶粒电荷减少、水化程度降低。
蛋白质在酸性溶液中
带负电荷的胶体 金、银、硫溶胶 硫化砷、硫化锑 硅酸、锡酸、土壤 淀粉、蛋白质在碱性溶液中
碱性染料(如次甲基蓝) 酸性染料(如刚果红)
卤化银(硝酸银过量时 卤化银(卤化物过量时形成
形成的胶体)
的胶体)
2021/3/7
9
(三)电泳现象(电学性质)
• 胶粒带电的主要原因: • 1.胶体粒子选择性地吸附带电离子 • 2.胶粒表面分子的解离
2021/3/7
18
(二)溶胶的聚沉
• 1、加入少量电解质,中和胶粒电荷
– 电解质对胶体的聚沉能力不仅与电解质的浓度 有关,更主要的是决定于与胶粒带相反电荷的 离子即反离子的电荷数,反离子电荷数越多, 聚沉能力越强。
聚沉能力:对正胶体:K3[Fe(CN)6]>K2SO4>KCl • 江河入对海负口胶三角体洲:的A形l成Cl,3>就C是aC由l于2>河N水aC中l泥沙带
{[Fe(OH) 3 ]m nFeO (n - x) Cl x xCl
2021/3/7
14
•
氢 氧 化 铁 溶 胶 的
胶 团 结
构 示 意 图
2021/3/7
15
练习:
• 请写出明矾水解得Al(OH)3溶胶的结构
{[Al(OH)3]m·nAl3+·[(3n-x)/2]SO42-}x+·xSO42
2021/3/7
6
(二)溶胶的动力学性质:
2、扩散:当溶胶中的胶粒的分布不均匀时,由于布 朗运动,胶粒将从浓度大的区域向浓度小的区域,这 种现象称为胶粒的扩散。
3、沉降和沉降平衡: −沉降:分散系中的分散相粒子在重力作用下作用下 逐渐下沉的现象称为沉降。 −沉降平衡:当沉降和扩散这两个相反作用的速度相 等时,达到平衡状态,称为沉降平衡。
– 另一方面,升高温度,胶粒运动加快、碰 撞机会增多。所以加热可以使胶体聚沉
2021/3/7
10
胶团结构与制备过程有关
• AgNO3+KI=AgI(溶胶)+KNO3
– KI过量:优先吸附I-,带负电荷;
{[AgI]m·nI-(n-x)K+}x-·xK+
2021/3/7
11
K+
扩
散K+
层
K+
K+
K+ 吸K附+ 层
K+
K+
I- II-
I-
I-
I-
K+
II-
胶(AI核g—I)m
利用丁铎尔现象可以区别真溶液、胶体溶液和 粗分散系。
2021/3/7
4
丁铎尔现象
森林中的 丁铎尔现象
2021/3/7
5
(二)溶胶的动力学性质
1、布朗运动 • 在超显微镜下观察胶体
溶液,可以看到胶体颗 粒不断地作无规则的运 动,这种运动称布朗运 动。
– 它是不断做热运动 的介质分子对胶粒 撞击的结果。
– 如果将一束强光射入胶体溶液,在光束的垂直方向 上可以看到一条发亮的光柱,这种现象称为丁达尔 效应,又称乳光效应。
光
真溶液
胶体溶液
2021/3/7
3
丁铎尔现象
将溶胶置于暗处,用一束强光照射溶胶,在与光束 垂直的方向观察,可以看到溶胶中有一束浑浊发亮的光 柱,这种现象是由英国物理学家丁铎尔发现的,称为丁 铎尔现象或乳光现象。
• 即 优先吸附原则: • 1、结构相似的离子; • 2、电荷较大的离子; • 3、浓度较大的离子;
2021/3/7
13
3、胶团的结构
• (1)用FeCl3水解生成Fe(OH)3溶胶的胶团 结构.
– ①、化学反应
FeCl3 (稀溶液)+3H2O Fe(OH)3 (溶胶)+3HCl
– ②、胶团的形成
II-
K+
K+
I- I-
I-
II-
K+
K+ K+
K+
K+
胶粒 K+
胶团
胶团结构式: [(AgI)m·nI-·(n-x)K+]X-·xK+
2021/3/7
12
3、 胶团的结构
• 胶核在溶液中吸附离子时,优先吸附:
– (1)与它组成相似的离子; – (2)若有几种离子相似,则优先吸附电荷多的
离子;
– (3)若其他条件相似,则优先吸附浓度大的离 子。
胶体溶液和表面现象
2021/3/7
1
分散系的分类 分散系
粗分散系胶体分散系源自分子或离子分散系(悬浊液&乳浊液) (溶胶&高分子溶液) (真溶液)
d > 100 nm
1< d < 100 nm
d <1 nm
胶体分散系包括溶胶、高分子溶液。
2021/3/7
2
一、胶体溶液的性质
• (一)溶剂的光学性质——丁铎尔(Tyndall)效应