机器视觉基础知识-视频信号的分类

合集下载

视频信号

视频信号
VGA端子也叫D-Sub接口。VGA接口是一种D型接口,上面共有15针,分成三排,每排五个。VGA接口是显卡上 应用最为广泛的接口类型,绝大多数的显卡都带有此种接口。迷你音响或者家庭影院拥有VGA接口就可以方便的 和计算机的显示器连接,用计算机的显示器显示图像 。
VGA接口传输的仍然是模拟信号,对于以数字方式生成的显示图像信息,通过数字/模拟转换器转变为R、G、 B三原色信号和行、场同步信号,信号通过电缆传输到显示设备中。对于模拟显示设备,如模拟CRT显示器,信号 被直接送到相应的处理电路,驱动控制显像管生成图像。而对于LCD、DLP等数字显示设备,显示设备中需配置相 应的A/D(模拟/数字)转换器,将模拟信号转变为数字信号。在经过D/A和A/D2次转换后,不可避免地造成了一 些图像细节的损失。VGA接口应用于CRT显示器无可厚非,但用于数字电视之类的显示设备,则转换过程的图像损 失会使显示效果略微下降 。
DVI数字端子比标准VGA端子信号要好,数字接口保证了全部内容采用数字格式传输,保证了主机到监视器的 传输过程中数据的完整性(无干扰信号引入),可以得到更清晰的图像。
显示设备采用DVI接口具有主要有以下两大优点:
1.速度快
DVI传输的是数字信号,数字图像信息不需经过任何转换,就会直接被传送到显示设备上,因此减少了数字 →模拟→数字繁琐的转换过程,大大节省了时间,因此它的速度更快,有效消除拖影现象,而且使用DVI进行数 据传输,信号没有衰减,色彩更纯净,更逼真 。
DVI接口主要用于与具有数字显示输出功能的计算机显卡相连接,显示计算机的RGB信号。DVI(Digital Visual Interface)数字显示接口,是由1998年9月,在Intel开发者论坛上成立的数字显示工作小组 (Digital Display Working Group简称DDWG),所制定的数字显示接口标准。

视频信号处理基本知识

视频信号处理基本知识

以上就是以彩色视频信号为例,说明其编码和译码的简单过程。
第6页/共44页
4.1.3 图象的颜色模型 4.1.3.1 视角系统对颜色的感知
颜色是视觉系统对可见光的感知结果。可见光是波长在380 nm~780 nm之间 的电磁波,我们看到的大多数光不是一种波长的光,而是由许多不同波长的 光组合成的。研究表明,人的视网膜有对红、绿、蓝颜色敏感程度不同的三 种锥体细胞,另外还有一种在光功率极端低的条件下才起作用的杆状体细胞, 因此颜色只存在于眼睛和大脑。在计算机图像处理中,杆状细胞还没有扮演 什么角色。人的视觉系统对颜色的感知可归纳出如下几个特性: 1、眼睛本质上是一个照相机。人的视网膜(human retina)通过神经元来感知外 部世界的颜色,每个神经元或者是一个对颜色敏感的锥体(cone),或者是一 个对颜色不敏感的杆状体(rod)。 2、红、绿和蓝三种锥体细胞对不同频率的光的感知程度不同,对不同亮度的感 知程度也不同,如图4-03所示。这就意味着,人们可以使用数字图像处理技 术来降低数据率而不使人感到图像质量明显下降。
第9页/共44页
图4-05 彩色显像管产生颜色的原理 颜色=R(红色的百分比)+G(绿色的百分比)+B(蓝色的百分比)
当三基色等量相加时,得到白色;等量的红绿相加而蓝为0值时得到黄色;等量的红 蓝相加而绿为0时得到品红色;等量的绿蓝相加而红为0时得到青色。这些三基色相加的结 果如图4-06所示。
第10页/共44页
传送
D/A变换
R
回放


D/A变换
坐 标
G
色 输



D/A变换
换 B设 备
图 4-2-2
视频信号译码过程框图
已压缩的视频信号经解码器进行解压缩,再由D/A变换器恢复亮度和二个色差信号(Y、 U、V)。这三个信号(Y、U、V)经变换可恢复原始的R、G、B三基色信号。R、G、B加到 输出设备上(最常见的输出设备就是电视机、监视器或彩色打印机等)供用户观察。

各种常用视频信号类型大全

各种常用视频信号类型大全

视频信号分类介绍 视频信号接口图示:
视频信号分类介绍
BNC 端口:通常用于工作站和同轴电缆连接的连接器,标准 专业视频设备输入、输出端口。BNC电缆有5个连接头用于 接收红、绿、蓝、水平同步和垂直同步信号。BNC接头有别 于普通15针D-SUB标准接头的特殊显示器接口。由R、G 、B三原色信号及行同步、场同步五个独立信号接头组成。 主要用于连接工作站等对扫描频率要求很高的系统。BNC接 头可以隔绝视频输入信号,使信号相互间干扰减少,且信号 频宽较普通D-SUB大,可达到最佳信号响应效果。
视频信号分类介绍 视频信号接口图示:
视频信号分类介绍
标准视频输入(RCA)接口:也称AV 接口,通常都是成对的 白色的音频接口和黄色的视频接口,它通常采用RCA(俗称 莲花头)进行连接,使用时只需要将带莲花头的标准AV 线缆 与相应接口连接起来即可。AV接口实现了音频和视频的分 离传输,这就避免了因为音/视频混合干扰而导致的图像质 量下降,但由于AV 接口传输的仍然是一种亮度/色度(Y/C) 混合的视频信号,仍然需要显示设备对其进行亮/ 色分离和 色度解码才能成像,这种先混合再分离的过程必然会造成色 彩信号的损失,色度信号和亮度信号也会有很大的机会相互 干扰从而影响最终输出的图像质量。AV还具有一定生命力, 但由于它本身Y/C混合这一不可克服的缺点因此无法在一些 追求视觉极限的场合中使用。
视频信号术语简介 隔行扫描 : 隔行扫描指显示屏在显示一幅图像时,先扫描奇数 行,全部完成奇数行扫描后再扫描偶数行,因此每幅图像需扫 描两次才能完成,造成图像显示画面闪烁较大。 因此该种扫 描方式较为落后,通常用在早期的显示产品中。 隔行扫描就是每一帧被分割为两场,每一场包含了一帧中 所有的奇数扫描行或者偶数扫描行,通常是先扫描奇数行得到 第一场,然后扫描偶数行得到第二场。由于视觉暂留效应,人 眼将会看到平滑的运动而不是闪动的半帧半帧的图像。但是这 时会有几乎不会被注意到的闪烁出现,使得人眼容易疲劳。当 屏幕的内容是横条纹时,这种闪烁特别容易被注意到。

机器视觉菜鸟入门基础知识

机器视觉菜鸟入门基础知识
机器视觉菜鸟入门基础知 识
机器视觉概述
1. 机器视觉系统基本原理 2. 照明光源 3. 镜头 4. 工业摄像机 5. 图像采集/处理卡 6. 图像处理系统
第1章 机器视觉系统基本原理
1.1 机器视觉系统的原理 1.2 机器视觉系统与人的视觉的对比 1.3 机器视觉系统的构成
1.1 机器视觉系统的原理
2.1照明光源
简单视功能原理:人眼视网膜里存在着大量 光敏细胞,按其形状可分为杆状和锥状两 种。杆状光敏细胞的灵敏度极高,主要靠 它在低照度时辨别明暗,但它对彩色是不 敏感的;而锥状细胞既可辨别明暗,也可 辨别彩色。白天的视觉过程主要靠锥状细 胞来完成,夜晚视觉则由杆状细胞起作用。 所以在较暗处无法辨别彩色。
UV镜 雷登镜 增温镜 各色滤镜 带通滤镜
增倍镜 分光镜 棱镜
上海图星电子科技有限公司
第4章 工业摄像机
4. 工业摄像机
按不同芯片类型划分:
CCD摄像机,CCD称为电荷耦合器件,CCD实际 上只是一个把从图像半导体中出来的电子有组织 地储存起来的方法。
CMOS摄像机,CMOS称为“互补金属氧化物半 导体”,CMOS实际上只是将晶体管放在硅块上 的技术,没有更多的含义。CMOS可以将光敏元 件、放大器、A/D转换器、存储器、数字信号处 理器和计算机接口控制电路集成在一块硅片上, 具有结构简单、处理功能多、速度快、耗电低、 成本低等特点。
3. 镜头-有关镜头的基本概念
3. 镜头-有关镜头的基本概念
焦距(F): 视场角: 物距: 像距: 光圈:一般用口径系数f表示,指镜头口径与焦距之比,f/2.8即指
1:2.8 景深(DOF):在焦点前后各有一个容许弥散圆,这两个弥散圆之间
的距离就叫景深,即:在被摄主体(对焦点)前后,其影像仍然有一段 清晰范围的,就是景深。 分辨力:指能分清楚物体的能力,单位LP/mm(Line pairs/Milimeter) 快门,决定曝光时间 数值孔径,Numerical Aperture (NA) 基本放大倍数(光学放大倍数),Primary Magnification (PMAG) 调制传递函数(MTF),MTF好的镜头有利于低对比度景物的再现, 拍出的图像层次丰富、细节明显、质感细腻。 畸变:也叫失真

机器视觉基础知识(PDF)

机器视觉基础知识(PDF)

机器视觉中的图像采集技术硬件基础知识
一、镜头基本概念(7)
镜头的调制传递函数MTF
第一节 工业镜头
机器视觉中的图像采集技术硬件基础知识
一、镜头基本概念(8)
镜头的调制传递函数MTF
第一节 工业镜头
机器视觉中的图像采集技术硬件基础知识
第一节 工业镜头
一、镜头基本概念(9)
镜头的调制传递函数MTF
机器视觉中的图像采集技术硬件基础知识
第一节 工业镜头
一、镜头基本概念(4)
镜头接口 – C-MOUNT 镜头的标准接口之一,镜头的接口螺纹参数: 公称直径:1“ 螺距:32牙 – CS-Mount是C-Mount的一个变种,区别仅仅在于 镜头定位面到图像传感器光敏面的距离的不同,C- Mount 是17。5mm,CS-Mount是12。5mm。 – C/CS能够匹配的最大的图像传感器的尺寸不超过1“。
一、镜头基本概念(10)
系统的调制传递函数MTF
第一节 工业镜头
机器视觉中的图像采集技术硬件基础知识
第一节 工业镜头
二、镜头的分类(1)
按照等效焦距分为 广角镜头
等效焦距小于标准镜头(等效焦距为50mm)的镜头。特点 是最小工作距离短,景深大,视角大。常常表现为桶形畸变。 中焦距镜头 焦距介于广角镜头和长焦镜头之间的镜头。通常情况下畸变 校正较好。 长焦距镜头 等效焦距超过200mm的镜头。工作距离长,放大比大,畸变 常常表现为枕形状畸变。
像素速率(Pixel Rate)
相机每秒中能够输出像素的个数,仅仅对于数字相机有意 义。
机器视觉中的图像采集技术硬件基础知识
第二节 工业相机
一、工业相机的基本概念(5)
卷帘快门(Rolling Shutter)

视频信号基础知识

视频信号基础知识

1 模拟视频

1.4视频信号的主要参数
■主要包括水平清晰度、垂直清晰度、带宽、宽高比、 场频和帧频。
■水平清晰度 一般指视频图像在水平方向上的最小显像单元,用 “线”来表示。 ■垂直清晰度 眼睛可分辨的水平线数目。一般只有575行为正程, 有76%的有效区,垂直清晰度约为437线。
1 模拟视频

• 行消隐脉冲:截止行扫描逆程电子束 的脉冲 称为行消隐脉冲;
• 场消隐脉: 截止场扫描逆程电子束 的脉冲称为场消隐脉冲;

基于视频信号的图像定位技术
5.7μs
1.6μs 12μs
行同步信号
消隐脉冲与复合同步脉冲
消隐脉冲:
扫描逆程期间电子束消隐——扫描逆程期间让信号 电平为黑电平,电子束截止,屏幕为黑色,起到消 隐逆程光栅痕迹的作用。
行消隐信号(或称行消隐脉冲) —— 行逆程12μs,则行消隐脉冲脉宽为12μs,电平为黑
电平
• 场消隐信号(或称场消隐脉冲) —— 场逆程1.6ms,则场消隐脉冲脉宽为1.6ms,电平为
1 模拟视频

1.1模拟黑白视频
■视频形成原理:每一张35 mm胶片均为 静止图片,在相邻两张图片中只有很小 的动作变化,每秒中变换24张图片,利 用人眼的视觉暂留特性,以达到播放活 动图像的效果。 ■特点:整幅画面扫描呈现
图像的顺序传送
a bcd e f g h i j
1 2 3 4 5 6 7 8 9 10
t
622. 623. 624. 625. 1. 2. 3. 4. 5. … 22. 23. 24.
前均衡脉冲 场同步脉冲 后均衡脉冲
行 同 步脉 冲
齿脉冲
行 消 隐脉 冲

机器视觉的分类

机器视觉的分类

机器视觉的分类机器视觉(Computer Vision)是一门研究如何使计算机能够“看”的学科,旨在使计算机模仿人类视觉系统的功能和能力。

它通过利用图像和视频数据来识别、分析和理解现实世界中的视觉信息。

机器视觉技术已经被广泛应用于各个领域,包括自动驾驶、安防监控、医疗诊断等。

在机器视觉领域中,有多种不同的分类方法,本文将对其中几种常见的分类方法进行介绍。

1. 基于任务的分类根据机器视觉所处理的任务类型,可以将其分为以下几类:1.1 图像分类(Image Classification)图像分类是指将图像分为不同的类别或标签。

这是最常见的机器视觉任务之一。

通常情况下,图像分类算法会通过训练一个模型来学习从输入图像到输出标签之间的映射关系。

该模型可以通过深度学习方法(如卷积神经网络)来实现。

1.2 目标检测(Object Detection)目标检测是指在图像或视频中定位和识别特定目标物体。

与图像分类不同,目标检测需要确定目标的位置和边界框。

常见的目标检测算法包括基于特征的方法(如Haar特征和HOG特征)和基于深度学习的方法(如Faster R-CNN、YOLO等)。

1.3 语义分割(Semantic Segmentation)语义分割是指将图像划分为若干个语义上有意义的区域。

与目标检测不同,语义分割要求对每个像素进行分类,即像素级别的分类。

这在许多应用中非常有用,例如自动驾驶中道路和障碍物的识别。

1.4 实例分割(Instance Segmentation)实例分割是指在图像或视频中同时识别和定位多个对象实例,并为每个实例生成一个唯一的分割掩码。

与语义分割相比,实例分割不仅要求对图像进行像素级别的分类,还需要对不同对象实例进行区分。

1.5 姿态估计(Pose Estimation)姿态估计是指从图像或视频中推断出人体或物体的姿态信息,包括关节位置、角度等。

姿态估计在许多领域中都有应用,如动作识别、虚拟现实等。

视觉信号的分类

视觉信号的分类

视觉信号的分类视觉信号是一种通过光线传递的信息,它是人类感知世界的主要方式之一。

视觉信号的分类可以根据其来源、形式和用途来进行。

从来源来看,视觉信号可以分为自然视觉信号和人工视觉信号。

自然视觉信号是人眼直接接收到的来自自然界的光线信号,如太阳光、月光等。

人工视觉信号是经过人为处理或创造的用于传递信息的光线信号,如电视信号、计算机屏幕显示等。

从形式来看,视觉信号可以分为连续信号和离散信号。

连续信号是在时间和空间上都是连续变化的信号,如自然景物的光线反射形成的连续图像。

离散信号是在时间或空间上有间隔的信号,如数字相机采集到的图像像素值。

从用途来看,视觉信号可以分为感知信号和传输信号。

感知信号是用于人类感知和理解外界事物的信号,如人眼接收到的光线信号传递给大脑进行图像信息的处理和认知。

传输信号是用于将图像或视频信号传递给其他设备或人进行观看或处理的信号,如电视信号传输到电视机上显示出图像。

除了这些主要分类外,视觉信号还可以根据其频率、颜色、亮度等特征进行进一步的细化。

频率是光信号波动的速度,决定了图像的细节程度。

颜色是光信号的不同波长和频率所表现出的视觉效果,是物体表面反射或发射的光线在人眼中所呈现出的不同感受。

亮度是光信号的强度,决定了图像的明暗程度。

视觉信号在现代社会中发挥着重要的作用。

人们通过视觉信号来获取信息、交流思想和美化环境。

广告行业利用视觉信号来吸引消费者注意,设计行业利用视觉信号来传达产品的特点和设计理念。

在科学研究中,视觉信号也被广泛应用于医学图像诊断、机器视觉和人工智能等领域。

然而,不同的视觉信号也存在一些挑战和限制。

自然视觉信号受到环境因素的影响,如光线强度、反射物体的颜色和材质等。

人工视觉信号在传输过程中可能遭受干扰和损失,导致图像质量下降。

此外,视觉信号的处理和分析需要复杂的算法和设备支持,这对于技术水平较低或资源匮乏的地区可能存在困难。

总之,视觉信号是一种重要的信息传递方式,它可以根据来源、形式和用途进行分类。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档