认识的应力与应变的关系
应力与应变间的关系

22
例题7-7 边长 a = 0.1m 的铜立方块, 无间隙地放入体积较
大, 变形可略去不计的钢凹槽中, 如图 所示。 已知铜的弹 性模量 E=100GPa, 泊松比 =0.34, 当受到P=300kN 的均布 压力作用时, 求该铜块的主应力. 体积应变以及最大剪应力。
P a
y
z
x
23
y
解:铜块上截面上的压应力为
9
3、 特例
(1)平面应力状态下(假设 Z = 0 )
x
1 E
(
x
y)
y
1 E
(
y
x)
z E ( x y)
xy
xy
G
10
(2) 广义胡克定律用主应力和主应变表示时 三向应力状态下:
1
1
E [ 1
(
2
3)]
2
1 E
[
2
(
3
1)]
3
1 E
[
3
( 1
2)]
(7-7-6)
11
平面应力状态下 设 3 = 0, 则
x y z x y y z z x
y
σy
上面
x y z x y y z z x
1、各向同性材料的广义胡克定律 (1)符号规定
τ yx
τ τ yz
xy
τ τ zy xz
τ zx
右侧面
σx
(a)三个正应力分量:拉应力为正
σz
x
o
压应力为负。 z
前面
3
(b)三个剪应力分量: 若正面(外法线与坐标轴
dxdydz
dxdydz(1 1 2 3) dxdydz
dxdydz
应变和应力关系

新能源技术:利用应变和应力原理,优化风力发电机叶片设计,提高风能 利用率和发电效率。
机器人技术:通过研究应变和应力与机器人关节运动的关系,提高机器人 的灵活性和稳定性,拓展机器人的应用领域。
应变和应力对未来科技发展的影响
增强材料性能:通过深入研究应变和应力,可以开发出性能更强的新型材 料,为未来的科技发展提供物质基础。
智能制造:利用应变和应力的知识,可以优化制造过程中的材料性能,提 高生产效率和产品质量,推动智能制造的发展。
生物医学应用:在生物医学领域,应变和应力的研究有助于更好地理解和 控制人体生理机制,为未来的生物医学应用提供支持。
压痕法:利用压痕仪在物体表面压出一定形状的压痕,通过测量压痕的尺寸来计算应力
应变和应力的相互影响
应变和应力之间的关系:应变是应力作用下的物体形状变化,应力是抵抗变形的力。
应变和应力的测量方法:通过应变计和应力计进行测量,应变计测量物体变形,应力计测量物 体受到的力。
应变和应力的相互影响:应变和应力之间存在相互影响,例如在材料屈服点附近,应变和应力 之间会发生突变。
应力的概念
分类:正应力、剪应力、弯 曲应力等
定义:物体受到外力作用时, 内部产生的反作用力
单位:帕斯卡(Pa) 作用效果:使物体产生形变
应变和应力的关系
应变是物体形状 的改变,应力是 物体内部抵抗变
形的力
应变和应力之间 存在线性关系, 即应变正比于应
力
应变和应力之间 的关系可以用胡 克定律表示,即 应力=弹性模量
应变和应力关系
汇报人:XX
应变和应力的定义 应变和应力的测量方法 应变和应力的应用领域 应变和应力的研究进展 应变和应力的未来展望
弹性体的应力与应变

弹性体的应力与应变弹性体是一种在受力作用下可以发生形变,但当受力停止时,能够恢复原来形状和大小的材料。
了解弹性体的应力与应变关系对于工程设计和材料科学具有重要意义。
在本文中,我们将探讨弹性体的应力与应变之间的关系,分析材料的弹性性质以及应力与应变的计算方法。
1. 应力的概念与计算方法应力是指单位面积上作用的力,合理地计算应力是分析弹性体性质的关键。
在计算应力时,常用到两种基本的力学概念:张力和压力。
张力是指沿一维方向的受力情况,通常用F表示,单位为牛顿。
而压力是指在一个平面上均匀分布的力,用P表示,单位是帕斯卡。
应力的计算公式如下:应力 = 受力 / 横截面积2. 应变的概念与计算方法应变是指材料在受力作用下发生的形变,一般用ΔL / L表示。
其中,ΔL是材料长度的变化量,L是材料的初始长度。
应变可以分为线性弹性应变和非线性应变。
线性弹性应变是指材料在受力作用下,形变与受力成正比的状态。
计算线性弹性应变的方法如下:应变 = 形变 / 初始长度而非线性应变则需要更复杂的计算方法来进行分析,涉及到材料的本构关系等。
3. 应力与应变的关系应力与应变之间存在一定的关系,即应力-应变曲线。
弹性体的应力-应变曲线通常可以分为三个阶段:弹性阶段、屈服点和塑性阶段。
在弹性阶段,材料受力时会产生应变,但当受力停止时,材料会完全恢复到原来的状态。
这是因为材料内部的原子或分子只发生了相对位移,而没有发生永久性的结构变化。
当应力超过材料的屈服点时,就进入了屈服点阶段。
在这个阶段中,材料开始发生塑性变形,不再能够完全恢复到原来的状态,具有一定的永久性形变。
塑性阶段是材料的应力与应变不再成正比,继续增加应力会导致更大的应变。
这是由于材料的内部结构发生了永久性的改变,无法恢复原状。
4. 弹性模量和刚度弹性模量是描述材料抵抗形变的能力,可以用来评估材料的刚度。
弹性模量越大,表示材料越难发生形变,具有较高的刚度。
常用的弹性模量有三种:杨氏模量、剪切模量和体积模量。
应力张量和应变张量的关系

应力张量和应变张量的关系在物理和工程的世界里,有两个小伙伴总是形影不离,那就是应力张量和应变张量。
就像老鼠和米饭,或者说是鱼和水,这俩家伙其实是相辅相成的,缺一不可。
今天咱们就来聊聊这两位的关系,顺便让这话题变得轻松有趣,让大家听了觉得“这还真有意思!”1. 应力张量——你能忍受多少压力?1.1 什么是应力张量?应力张量嘛,可以简单理解为“压力的图谱”。
想象一下,你在参加一场拔河比赛,另一边的人使劲拉,你的手臂就会感受到拉力。
这个拉力就是应力。
如果我们把这个感觉用一个数学对象来表示,那就是应力张量。
它可以告诉我们在一个物体内部,各个方向上受到了多大的压力。
1.2 应力的分类应力可不是单一的,它分成好几种,像是“拉应力”、“压应力”和“剪应力”。
拉应力就像你拉一根橡皮筋,越拉越长;压应力则像是在面团上用力按,面团就变扁了。
至于剪应力嘛,想象一下你在切水果,刀子刮过的地方就是受到剪应力的地方。
通过这些应力,我们就能感受到物体内部的变化和状态。
2. 应变张量——变形的小精灵2.1 应变张量的概念说到应变张量,它就像是应力张量的反应者,专门负责记录物体是如何变形的。
用个简单的比喻来说,假如应力是拉面师傅的力量,那么应变就是拉出来的面条。
面条在拉伸的过程中,变长了,变细了,这就是应变在作怪。
2.2 应变的种类应变同样有多种形式,比如“拉伸应变”、“压缩应变”和“剪切应变”。
拉伸应变就像你把橡皮筋拉得细细的,压缩应变就像把一个泡沫压扁,而剪切应变就像你用力划过一块巧克力,让它变得不平整。
这些变形的形式让我们对材料的性能有了更深的理解。
3. 应力与应变——亲密无间的关系3.1 他们是好朋友说到应力和应变的关系,其实就是一个因果关系。
就像是“打虎亲兄弟,上阵父子兵”,应力会导致应变的发生。
你想啊,当一个物体受到外力作用时,它肯定会有所反应,这个反应就是应变。
这就像你被朋友拉着走,脚步肯定要跟着他的节奏走,这样才能保持平衡。
第四章应力与应变关系

(4-3a)
广义虎克定律
在小变形条件下,应变分量都是微量,(a)式在应变 为零附近做Taylor展开后,忽略2阶以上的微量,例如
对 , 可x 得:
x (f1)0(f1x)0x (f1y)0y (f1z)0z
( f1
yz
)0yz
(f1zx)0zx
(f1xy)0xy
广义虎克定律 展开系数表示函数在其对应变分量一阶导数在应变分 量等于零时的值,而 实( f 1 际) 0 上代表初应力,由于无初应 力假设 等于( f 1零) 0 。 其它分量类推,那么在小变形情况下应力与应变关系 式简化为:
3 t 2 3
和 称 为拉梅(Lame)弹性常数,简称拉梅常数
各向同性体的广义虎克定律
(三)最后通过坐标变换,进一步建立任意正交坐标系应 力与应变关系
在各向同性弹性体中,设 o为x y任z 意正交坐标系,它
的三个轴与坐标系 应O力12主3 轴的方向余弦分别为 、 (l1 ',m1和',n1 ') (l2,',m因2 ',n为2 ')1,(2l3,',m33 ',轴n3是') 主轴,主轴方向的 剪应变和剪应力等于零。 根据转轴时应力分量变换公式得
系O123各轴的方向余弦,知:
l1 n3 cos180 1 m2 cos0 1 l2 l3 m1 m3 n1 n2 cos90 0
各向同性体的广义虎克定律
因此新坐标轴也指向应变主轴方向,剪应变也应该等
于零,且因各向同性时,弹性系数C41,C42和C43应
该不随方向面改变,故取 x, y分, z别为1′,2′和3′轴,同
上式作为虎克定律在复杂受力情况下的一个推广, 因此称为广义虎克定律。式中系数Cm n(m ,n1,是2, ,6) 物质弹性性质的表征,由均匀性假设可知这些弹性性 质与点的位置无关,称为弹性常数。上式也可以写成 矩阵形式
应力应变关系

应力应变关系我所认识的应力应变关系一在前面两章的分别学习了关于应力与应变的学习,第三章的本构关系讲述了应力与应变的关系从而构成了弹塑性力学的本构关系。
在单向应力状态下,理想的弹塑性材料的应力应变关系及其简单满足胡克定律即,E ,,XX在三维应力状态下需要9个分量,即应力应变需要9个分量,于是可以把单向应力应变关系推广到三维应力状态,及推广到广义的胡克定律本式应该是91个应变分量单由于切应力互等定理,此时后面的三个应力与式中的切应力想等即现在剩余36个应变分量。
(1)具有一个弹性对称面的线弹性体的应力应变公式如下(2)正交各向异性弹性体的弹塑性体公式如下(3)各向同性弹性体的本构方程各向同性弹性体在弹性状态下,主应力方向与主应变方向重合容易证明。
在主应变空间里,由于应变主轴与应力主轴重合,各向同性弹性体体内任意一点的应力和应变之间满足:,,,,,,,CCCxxyz111213,,,,,,,CCCyxyz212223,,,,,,,CCCzxyz313233 (2-3),,,,,,yyxzxz对的影响与对以及对的影响是相同的,即有,CCC==,CC=CC=,y112233x12132123z;和对的影响相同,即,同理有和CC=3132等,则可统一写为:CCCa==,112233CCCCCCb=====,122113312332 (2-4)所以在主应变空间里,各向同性弹性体独立的弹性常数只有2个。
在任意的坐标系中,同样可以证明弹性体独立的弹性参数只有2个。
广义胡可定律如下式,,xy1,,,,,,,,,,,[()]xy,xxyz,2GE,,,,1,yz, ,,,[()],,,,,,,,yzyyxz2GE,,,1,zx,,,,,[()]zx,,,,,,,zzxy,2GE,,EGv泊松比剪切模量 E:弹性模量/杨氏模量 ,2(1),,,,,E虎克定律 ,G,,对于应变能函数理解有点浅在此就不多做介绍了。
2 屈服条件拉伸与压缩时的应力——应变关系曲线P,,A0,ll0,,lBC:屈服阶段,,CD:强化阶段塑性阶段,,DE:局部变形阶段,弹性变形时应力应变关系的特点1.应力与应变完全成线性关系;即应力主轴与全量应变主轴重合2.弹性变形是可逆的,与应变历史(加载过程)无关,即某瞬时的物体形状、尺寸只与该瞬时的外载有关,而与该瞬时之前各瞬间的载荷情况无关。
应力与应变间的关系

τ xy
右侧面
σx τ xz
x
γ xy
γ yz
γ zx
O
∠ xOy ∠ yOz
∠zox 。
z
σz
前面
2、各向同性材料的广义胡克定 、 律
(1)线应变的推导 线应变的推导 分别单独存在时, 在σx σy σz 分别单独存在时 x 方 依次为: 向的线应变 εx 依次为
x σ
z
x
x σ
εx ' =
σx
τ = Gγ
或
γ=
τ
G
τ γ γ τ
为剪切弹性模量,单位为N/m G 为剪切弹性模量,单位为N/m2.
三、复杂应力状态下应力与应变的关系 σx σy σz τ x y τ y z τ z x εx ε y ε z γ x y γ y z γ z x
1、各向同性材料的广义胡克定律 (1)符号规定 ) (a)三个正应力分量 拉应力为正 (a)三个正应力分量 三个正应力分量:拉应力为正
因此, 该圆筒变形后的厚度并无变化, 因此 该圆筒变形后的厚度并无变化 仍然为 t =10mm .
G G G
在线弹性范围内, 小变形条件下, 在线弹性范围内 小变形条件下 各向同性材料。 各向同性材料。
1 εx = σx ν (σ y +σz ) E 1 E
[
]
公式的适用范围 : 在线弹性范围内,小 在线弹性范围内 小 变形条件下, 变形条件下 各向同性材 料。
ε y = [σ y ν (σz +σx )]
ν ν ε z = (σ x + σ y ) = (τmax + τmax ) = 0 E E
同理可得,圆筒中任一点 该点到圆筒横截面中心的距离为 该点到圆筒横截面中心的距离为ρ 同理可得 圆筒中任一点 (该点到圆筒横截面中心的距离为ρ) 处 的径向应变为
应变与应力的关系

应变与应力的关系
应变与应力的关系可以用胡克定律来描述。
胡克定律指出,在物体恒定温度下,其弹性变形所产生的应变与其所受的应力成正比。
换句话说,应变与应力之间的关系是线性的。
具体来说,该定律的数学表达式为:
应力 = 弹性模量 ×应变
其中,应力是物体所受的力除以其受力面积;弹性模量是物体材料对应力的敏感程度,也称为弹性系数;应变是物体长度、面积或体积的相对变化量。
因此,应变与应力之间的关系是密切相关的。
当施加的应力增加时,物体的应变也会随之增加;反之,当应力减小时,应变也会相应减小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
我所认识的应力与应变的关系
在之前的材料力学的学习当中,认识到的应力与应变的关系是,是正比关系,ε
σE
=,弹性应力应变关系主要是广义胡克定律。
在现在的弹塑性力学中,在弹性阶段,他们是线性关系,在塑性阶段,应力与应变的关系是非线性的,与材料有关。
在塑性变形时应力与应变的关系称为本构关系。
在弹性阶段应力与应变的特点是:应力与应变完全成线性关系;弹性变形是可逆的。
在塑性变形的时候的特点是:应力、应变为非线性关系:塑性变化不可逆:对于应变硬化材料,卸载后的屈服应力比初始屈服应力高。
塑性变形时,应力与应变之间的关系不是单值关系,而与加载路线(加载历史)有关。
有初始屈服和后继屈服,应力变形受到加载路线的影响。
在这产生了三个增量本构关系和全量理论,分别是Levy-Mises理论,Saint-Venant塑性流动方程,
Prandtl-Reuss理论,全量塑性应变与应力
之间的关系伊留辛全量理论在塑性变形时,只有在满足比例加载的条件下,才可建立全量应变与应力之间的关系。
以上就是我认识的应力与应变之间的关系。