拉格朗日乘子法
拉格朗日乘子法

拉格朗⽇乘⼦法拉格朗⽇乘数法(Lagrange multiplier)有很直观的⼏何意义。
举个2维的例⼦来说明:假设有⾃变量x和y,给定约束条件g(x,y)=c,要求f(x,y)在约束g下的极值。
我们可以画出f的等⾼线图,如下图。
此时,约束g=c由于只有⼀个⾃由度,因此也是图中的⼀条曲线(红⾊曲线所⽰)。
显然地,当约束曲线g=c 与某⼀条等⾼线f=d1相切时,函数f取得极值。
两曲线相切等价于两曲线在切点处拥有共线的法向量。
因此可得函数f(x,y)与g(x,y)在切点处的梯度(gradient)成正⽐。
于是我们便可以列出⽅程组求解切点的坐标(x,y),进⽽得到函数f的极值。
想法就是:能够碰到极⼤极⼩值点的必要条件是:梯度场与切空间垂直,也就是梯度场不能够有任何流形切空间上的分量,否则在切空间⽅向有分量,在流形上沿分量⽅向⾛,函数值会增加,沿反⽅向⾛,函数值会减少,不可能为局部极⼩或者极⼤值点。
⼀.⼀个基本的例⼦:假设你⽣活在三维欧⽒空间中,z⽅向的坐标数值上代表海拔⾼度。
如果你会飞,那么anyway,你想飞多⾼飞多⾼,所以你的海拔可以任意⾼也可以任意⼩,根本就没有最⼤值。
假定你是⼀个普通⼈类,你在⼀座⼭上,你的⽬标是爬到⼭顶,也就是说你希望⾃⼰的海拔⾜够⾼:当你真正到达⼭腰时,很容易“只缘⾝在此⼭中,不识此⼭真⾯⽬”,这时候如何判断是真的在往上爬呢,还是在往下⾛呢?在⾁眼所能看见的⼩范围内,你可以通过周边的局部地形来判断,假设它⼤概是这样:你就知道应该往⾼处(⼤概为红箭头⽅向)⾛,⽽不是绿箭头⽅向。
当然不⼀定⼀直沿这个⽅向直线式上升,可能还需要⾛到某个地⽅,再次做⼀下这种局部的考察,调整⼀下⽅向,保证⾃⼰能向⾼处⾛。
不过,什么是“⾼”的⼀边?这个概念究竟是如何形成的?我们知道,海拔,我们希望能够找到⼭⾯上的海拔最⾼点(⼭顶)。
梯度关于梯度⼀个很⾃然的结论就是:沿梯度⽅向是f增长最快的⽅向,反⽅向是下降最快的⽅向。
拉格朗日乘子法不等式约束

拉格朗日乘子法不等式约束拉格朗日乘子法是寻找函数在一组约束下的极值方法。
1、等式约束形式:(x是d维向量)min f(x)s.t. h(x) = 0.写成如下形式:min f(x)+lambda*h(x)(lambda为参数)s.t. h(x) = 0.发现两者是等价的。
记:拉格朗日函数L(x,lambda) = f(x)+lambda*h(x).发现约束条件h(x)=0,其实就是对拉格朗日函数L(x,lambda)关于lambda求偏导等于0得到,略去该约束,继而原约束优化问题就转化成了对拉格朗日函数L(x,lambda)的无约束优化问题(即令L 关于x和lambda的偏导等于0求解)。
几何解释:原目标函数f(x)取得最小化点x*时,可以得到如下结论:a.约束曲面上的任意点x,该点的梯度正交于约束曲面;b.在最优点x*,目标函数在该点的梯度正交于约束曲面(可以反正:若目标函数梯度与约束曲面不正交,则总可以在约束曲面上移动该点使目标函数进一步减小)。
所以,在最优点x*,梯度▽f(x*)和▽h(x*)的方向相同或相反,即存在lambda!=0,使:▽f(x*)+lambda*▽h(x*)=0. (1式)定义拉格朗日函数:L(x,lambda) = f(x)+lambda*h(x).令L(x,lambda)对x的偏导数等于0,得到1式;令L(x,lambda)对lambda的偏导数等于0,得到约束条件h(x)=0。
于是,原约束优化问题转化为无约束优化问题。
2、不等式约束形式:min f(x)s.t. g(x) <= 0.同样定义拉格朗日函数L(x,lambda) = f(x)+lambda*g(x).此时,首先看目标函数f(x)在无约束条件下的最优点,显然要么在g(x)<=0的区域内,要么在g(x)>0的区域内。
若f(x)在无约束条件下的最优点在g(x)<=0区域内,则约束条件g(x)<=0不起作用(即可直接求min f(x),得到的结果必然满足g(x)<=0),相当于lambda=0;若f(x)在无约束条件下的最优点不在g(x)<=0区域内,则f(x)在约束条件下的最优点必然在g(x)<=0区域边界,即在边界g(x)=0上。
运筹学拉格朗日乘子法

运筹学拉格朗日乘子法
拉格朗日乘子法是一种常用的运筹学方法,用于求解等式约束的最优化问题。
其基本原理和过程如下:
1. 定义拉格朗日函数:将目标函数和约束条件用拉格朗日乘子法表示,构造一个新的函数,称为拉格朗日函数。
2. 求驻点:对拉格朗日函数求导,使其等于0,得到一组驻点。
3. 最优性条件:在驻点处,目标函数的梯度等于拉格朗日函数的梯度与约束函数梯度的线性组合,即满足KKT条件。
4. 最优解:如果驻点同时满足KKT条件和约束条件,则该驻点为最优解。
拉格朗日乘子法在求解优化问题时具有重要的应用,但也存在一定的局限性,如可能存在局部最优解等。
在实际应用中,需要根据具体问题的特点选择合适的算法和方法。
拉格朗日乘子法等式约束

拉格朗日乘子法等式约束拉格朗日乘子法是一种用于求解等式约束问题的优化方法。
它的基本思想是通过引入拉格朗日乘子,将等式约束问题转化为无约束的优化问题,从而找到约束条件下的最优解。
使用拉格朗日乘子法求解等式约束问题的步骤如下:首先,将原始问题转化为带等式约束的优化问题。
设目标函数为f(x),约束条件为h(x)=0,其中x为待求解的向量。
我们的目标是找到满足约束条件的x,使得f(x)达到最小或最大。
然后,构造拉格朗日函数L(x,λ),其中λ为拉格朗日乘子。
拉格朗日函数的定义为L(x,λ)=f(x)+λ⋅h(x)。
通过引入拉格朗日乘子,我们将原始问题中的等式约束转化为了拉格朗日函数的约束条件。
接下来,求解拉格朗日函数的极值。
我们将拉格朗日函数对x和λ分别求偏导,并令其为零,得到一组方程组。
通过求解这组方程组,可以得到x和λ的值。
最后,检验解的有效性。
将求解得到的x代入原始问题的约束条件中,检验是否满足等式约束。
如果满足,则求解得到的x为原始问题的最优解;如果不满足,则需要重新进行求解。
总的来说,拉格朗日乘子法是一种有效的求解等式约束问题的方法。
通过引入拉格朗日乘子,我们可以将等式约束转化为无约束的优化问题,从而找到最优解。
在实际应用中,拉格朗日乘子法被广泛应用于经济学、物理学、工程学等领域,为解决复杂的等式约束问题提供了有力的工具。
通过使用拉格朗日乘子法,我们可以灵活地处理等式约束问题,并求解出最优解。
它的应用范围非常广泛,可以用于解决各种工程、经济和物理等领域的优化问题。
在实际应用中,我们需要结合具体问题,合理选择合适的目标函数和约束条件,才能得到准确的结果。
在使用拉格朗日乘子法求解等式约束问题时,我们需要注意以下几点:首先,需要确保目标函数和约束条件是可微的;其次,需要求解得到的解是否为局部最优解还是全局最优解;最后,需要对求解结果进行验证,确保满足等式约束。
综上所述,拉格朗日乘子法是一种求解等式约束问题的优化方法。
拉格朗日乘子法 与拉格朗日方程

拉格朗日乘子法与拉格朗日方程拉格朗日乘子法与拉格朗日方程是应用数学中的两个重要概念,它们在优化问题和动力学中扮演着重要角色。
在本文中,我将深入探讨这两个概念的内涵和应用,帮助你更好地理解它们的意义和作用。
1. 拉格朗日乘子法的基本原理拉格朗日乘子法是一种数学工具,用于求解有等式约束的极值问题。
举例来说,当我们需要求一个函数在一些限制条件下的最大值或最小值时,拉格朗日乘子法可以帮助我们有效地解决这一问题。
具体来说,对于一个约束优化问题:\[ \max_{x} f(x) \]\[ s.t. g(x) = c \]其中,f(x)是我们需要优化的目标函数,g(x) = c表示约束条件。
使用拉格朗日乘子法,我们可以构建拉格朗日函数:\[ L(x, \lambda) = f(x) + \lambda(g(x) - c) \]其中,\(\lambda\)就是所谓的拉格朗日乘子。
通过对拉格朗日函数求偏导数,并令偏导数等于零,我们可以得到关于x和\(\lambda\)的方程,进而求解出最优解。
2. 拉格朗日方程的应用拉格朗日方程是描述一个动力学系统的经典物理学方程。
它可以从作用量原理出发推导得到,是描述系统运动方程的一种极其优美的形式。
具体而言,对于一个由广义坐标q和广义速度\(\dot{q}\)描述的动力学系统,它的拉格朗日函数可以表示为:\[ L(q, \dot{q}, t) = T - V \]其中,T代表系统的动能,V代表系统的势能。
根据欧拉-拉格朗日方程,我们可以得到系统的运动方程:\[ \frac{d}{dt}\left(\frac{\partial L}{\partial \dot{q}}\right) -\frac{\partial L}{\partial q} = 0 \]3. 个人观点和理解拉格朗日乘子法和拉格朗日方程都是非常有用的数学工具,它们在实际问题中的应用非常广泛。
在工程优化、经济学建模、物理学等领域,这两个工具都扮演着重要的角色。
第八章_拉格朗日乘子法

应用力学研究所
第10页
§8.1 Lagrange第一类方程
例8-2 质量为m1的质点A,放在倾角为α、质量
y
B( x2 , y2 )
m1g
A( x1 , y1 )
为m2的三角形楔块的斜边上,楔块又可在水平面
上滑动。不计摩擦,适用Lagrange第一类方程求 质点和楔块的加速度以及它们所受的约束力。 解:系统的约束方程
f1 y2 y1 x1 x2 tan 0
O
h
m2 g
R1
R2
x
f 2 y2 h
f1 1 y2
f 2 1 y2
则
f1 tan x1
f1 1 y1
f 2 0 y1
f1 tan x2
f 2 0 x1
f 2 0 x2
H x, yx , yx F x, yx , yx Gx, yx , yx
其中λ为Lagrange乘子 。使满足上述条件泛函极值问题化为无约束条件的 极值问题 Euler方程为
Hy
d H y 0 dx
由Euler方程边界条件及约束条件可求解及λ值
应用力学研究所
李永强
第13页
§8.2 罗司(Routh)方程
Routh Eq.要解决的问题
1)Lagrange 第一类方程是以直角坐标描述系统运动,各坐标为非
独立;除了要考虑运动约束外还要考虑几何约束; 2)Routh Eq.选用广义坐标,系统的参数减少,坐标独立,可不
考虑几何约束,仅考虑运动约束,减少方程中变量数。
g j M 0
j
1,2,, m; m n
Lagrange乘子法:引进m个拉格朗日乘子λ;建立Lagrange函数
lagrange乘子法

lagrange乘子法
什么是拉格朗日乘子法?
在数学最优问题中,拉格朗日乘子法(Lagrange Multiplier,以数学家拉格朗日命名)是一种寻找变量受一个或多个条件限制的多元函数的极值的方法。
这种方法将一个有n 个变量与k 个约束条件的最优化问题转换为一个有n + k 个变量的方程组的极值问题,其变量不受任何约束。
这种方法引入了一种新的标量未知数,即拉格朗日乘数:约束方程的梯度(gradient)的线性组合里每个向量的系数。
如何使用拉格朗日乘子法?
在机器学习的过程中,我们经常遇到在有限制的情况下,最大化表达式的问题。
如maximizef(x,y)s.t. \quad g(x,y)=0
此时我们就可以构造L(x,y,λ)=f(x,y)−λ⋅g(x,y) ,其中\lambda 称为拉格朗日乘子。
接下来要对拉格朗日表达式求导,令其为0,解方程即可。
1。
拉格朗日乘子法

z 设长方体的三个棱长为x,y,z,则其体积f 为三个边长 的乘积:f(x,y,z)=xyz.要求表面积为a 的平方 于是长方体的6面的面积可以写成2xy+2xz+2yz=a2 即 2xy+2xz+2yz-a2 =0它也就是本问题中仅有一个约束条 件。根据前面介绍的拉格朗日方法制造一个新函数F,并 且放进一个未知的常数C ,于是有 F=xyz+C(2xy+2xz+2yz-a2 )
z 2. assume that the energy of the oscillators are quantized E = nhν = nhc / λ we see that at shortwavelength oscillators is very large. This energy is too large for the walls to supply it, so the shortwavelength oscillators remain unexcited.
z 上面的n 个方程连同约束条件给的m 个方程式已经可以解出n+m 个未 知数。它们就是n 个x(即x1,x2,…,xn )和m 个C (即C1 ,C2 ,…, Cm )。于是我们就得到了这个函数达到极值时的各个自变量的值。可 以看到约束条件不同,得到的各个x 值也不同。这样就利用拉格朗日 方法解决了问题
11.2(b)
z Describe how a wavefunction determines the dynamical properties of a system and how those properties may be perdicted.
z 1. In quantum mechanics all dynamical properties of a physical system have associated with them a corresponding operator. The system itself is described by a wavefunction.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
∂f ∂x1
+ C1
∂y1 ∂x1
+ C2
∂y2 ∂x1
+ LCm
∂ym ∂x1
L
∂F ∂xn
=
0=
∂f ∂xn
+ C1
∂y1 ∂xn
+ C2
∂y2 ∂xn
+ LCm
∂ym ∂xn
z 很显然,这n 个方程式已经巧妙地把约束条件融合到求解的要求之中 了。拉格朗日就是这样把约束条件的信息放到了求解进程中了。
z 2. assume that the energy of the oscillators are quantized E = nhν = nhc / λ we see that at shortwavelength oscillators is very large. This energy is too large for the walls to supply it, so the shortwavelength oscillators remain unexcited.
except at the particle’s position.(Fig11.26,11.27)
properties. z 3. When the function is not an eigenfunction of Ω, we can only
find the average or expectation value of dynamical properties by performing the integration
z 注意到约束条件的各个函数都是零,所以新函数F 达到极值与原函数f 达到极值对自变量(各个x 值)的值是相同的。
z 函数F 既然是各个x 的函数,它达到极值时必然是对各个自变量x 的 偏微商分别等于零(由于是多元函数,所以过去的微分变成了偏微商 了)。根据这个分析,求多个偏微商以后我们就得到n 个新的方程
z 2. When the function representing the state of the system is an eigenfunction of the operator Ω,we solve the eigenvalue equation
Ωψ = ωψ
in order to obtain the observable values,ω ,of the dynamical
p
a particle with high momentum has a wavefunction with a short wavelength(Fig11.14)
z 2. the sharply curved function corresponding to a higher kinetic energy than the less sharply curved function(Fig11.23,11.24,11.25)
z 上面的n 个方程连同约束条件给的m 个方程式已经可以解出n+m 个未 知数。它们就是n 个x(即x1,x2,…,xn )和m 个C (即C1 ,C2 ,…, Cm )。于是我们就得到了这个函数达到极值时的各个自变量的值。可 以看到约束条件不同,得到的各个x 值也不同。这样就利用拉格朗日 方法解决了问题
z 设长方体的三个棱长为x,y,z,则其体积f 为三个边长 的乘积:f(x,y,z)=xyz.要求表面积为a 的平方 于是长方体的6面的面积可以写成2xy+2xz+2yz=a2 即 2xy+2xz+2yz-a2 =0它也就是本问题中仅有一个约束条 件。根据前面介绍的拉格朗日方法制造一个新函数F,并 且放进一个未知的常数C ,于是有 F=xyz+C(2xy+2xz+2yz-a2 )
11.2(b)
z Describe how a wavefunction determines the dynamical properties of a system and how those properties may be perdicted.
z 1. In quantum mechanics all dynamical properties of a physical system have associated with them a corresponding operator. The system itself is described by a wavefunction.
11.1(b)
z Explain why Planck’s introduction of quantization accounted for the properties of black-body radiation
z 1. explain the energy density distribution of the radiation as a function of wavelength, in particular ,the observed drop to zero as λ 0
z 令其对x,y,z 的三个自变量的偏微熵分别为零,得到三 个新方程式: yz+2C(y+z)=0 xz+2C(x+z)=0 xy+2C(x+y)=0
z 把上面的式子相除得 (x/y)=(x+z)/(y+z) (y/z)=(x+y)/(x+z)
z 再由约束条件得到它们的值是 x=y=z=(a/√6)
z 3. the uncertainty principle
ΔpΔq ≥
1 2
h
the wavefunction for a particle at a well-defined location is a
sharply spiked function that has zero amplitude everywhere
〈Ω〉 = ∫ψ ∗ Ωψdτ
11.3(b)
z Suggest how the general shape of a wavefunction can be predicted without solving the schro&&dinger equation explicitly.
z 1. the de Broglie relation: λ = h
拉格朗日乘子法(lagrange mutipliers)
z 欲y1求(x1n,元x2,函…数,xnf()x=10,x,2,…,xn)在如下m个约束条件(m<n) y2(x1,x2,…,xn)=0 … ym(x1,x2,…,xn )=0 下的极值
z 拉乘f格,y朗1 ,y日2 方,…法,y是m,以并1且,把C它1 ,C们2加,…起,来C,m 就这得些到未了知一常个数新(的待函求数的F)顺次 F(x1,x2,…,xn)=f(x1,x2,…,xn) +C1y1(x1,x2,…,xn,…) + C2 y2(x1,x2,…,xn) + … +Cm ym(x1,x2,…,xn )