(完整word)高中数学选修2-2主要内容

(完整word)高中数学选修2-2主要内容
(完整word)高中数学选修2-2主要内容

第一章 导数及其应用

1.1 变化率与导数

问题中的变化率可用式子 1

212)

()(x x x f x f --表示,

称为函数f (x )从x 1到x 2的平均变化率

若设12x x x -=?, )()(12x f x f f -=? (这里x ?看作是对于x 1的一个“增量”可用x 1+x ?代

x 2,

)

()(12x f x f y f -=?=?)则平均变化率为

=

??=??x

f

x y x x f x x f x x x f x f ?-?+=--)()()()(111212

在前面我们解决的问题:

1、求函数2

)(x x f =在点(2,4)处的切线斜率。

x x

x f x f x y ?+=?-?+=??4)()2(,故斜率为4 2、直线运动的汽车速度V 与时间t 的关系是12

-=t V ,求o t t =时的瞬时速度。

t t t

t v t t v t V o o o ?+=?-?+=??2)

()(,故斜率为4 二、知识点讲解

上述两个函数)(x f 和)(t V 中,当x ?(t ?)无限趋近于0时,t V ??(x

V

??)都无限趋近于一个常数。

归纳:一般的,定义在区间(a ,b )上的函数)(x f ,)(b a x o ,∈,当x ?无限趋近于0

时,

x

x f x x f x y o o ?-?+=??)()(无限趋近于一个固定的常数A ,则称)(x f 在o x x =处可导,并称A 为)(x f 在o x x =处的导数,记作)('o x f 或o x x x f =|)(',

函数y =f (x )在x =x 0处的瞬时变化率是:

000

0()()lim

lim x x f x x f x f

x

x ?→?→+?-?=?? 我们称它为函数()y f x =在0x x =出的导数,记作'0()f x 或0'

|x x y =,即

0000

()()

()lim

x f x x f x f x x

?→+?-'=?

说明:(1)导数即为函数y =f (x )在x =x 0处的瞬时变化率

(2)0x x x ?=-,当0x ?→时,0x x →,所以000

()()

()lim

x f x f x f x x x ?→-'=-

当点n P 沿着曲线无限接近点P 即Δx →0时,割线n PP 趋近于确定的位置,这个确定位置的直线PT 称为曲线在点P 处的切线.

函数y =f (x )在x =x 0处的导数等于在该点00(,())x f x 处的切线的斜率, 即 0000

()()

()lim

x f x x f x f x k x

?→+?-'==?

说明:求曲线在某点处的切线方程的基本步骤: ①求出P 点的坐标;

②求出函数在点0x 处的变化率0000

()()

()lim

x f x x f x f x k x

?→+?-'==? ,得到曲线在点

00(,())x f x 的切线的斜率;

③利用点斜式求切线方程.

由函数f (x )在x =x 0处求导数的过程可以看到,当时,0()f x ' 是一个确定的数,那么,当x 变化时,便是x 的一个函数,我们叫它为f (x )的导函数.记作:()f x '或y ', 即: 0

()()

()lim

x f x x f x f x y x

?→+?-''==?。

函数()f x 在点0x 处的导数0()f x '、导函数()f x '、导数 之间的区别与联系。 1)函数在一点处的导数0()f x ',就是在该点的函数的改变量与自变量的改变量之比的极限,它是一个常数,不是变数。

2)函数的导数,是指某一区间内任意点x 而言的, 就是函数f(x)的导函数

3)函数()f x 在点0x 处的导数'

0()f x 就是导函数()f x '在0x x =处的函数值,这也是 求函

数在点0x 处的导数的方法之一。

1.函数()y f x c ==的导数 根据导数定义,因为

()()0y f x x f x c c x x x

?+?--===??? 所以00

lim

lim 00x x y

y

?→?→?'===

0y '=表示函数y c =图像(图3.2-1)上每一点处的切线的斜率都为0.若y c =表示路程

关于时间的函数,则0y '=可以解释为某物体的瞬时速度始终为0,即物体一直处于静止状态.

2.函数()y f x x ==的导数 因为

()()1y f x x f x x x x x x x

?+?-+?-===??? 所以00

lim lim11x x y

y ?→?→?'===

1y '=表示函数y x =图像(图3.2-2)上每一点处的切线的斜率都为1.若y x =表示路程

关于时间的函数,则1y '=可以解释为某物体做瞬时速度为1的匀速运动.

3.函数2

()y f x x ==的导数

因为22

()()()y f x x f x x x x x x x

?+?-+?-==??? 222

2()2x x x x x x x x

+?+?-==+??

所以00

lim

lim(2)2x x y

y x x x x ?→?→?'==+?=?

2y x '=表示函数2y x =图像(图3.2-3)上点(,)x y 处的切线的斜率都为2x ,说明随着x 的

变化,切线的斜率也在变化.另一方面,从导数作为函数在一点的瞬时变化率来看,表明:当0x <时,随着x 的增加,函数2

y x =减少得越来越慢;当0x >时,随着x 的增加,函数2

y x =增加得越来越快.若2

y x =表示路程关于时间的函数,则2y x '=可以解释为某物体做变速运动,它在时刻x 的瞬时速度为2x .

4.函数1

()y f x x

==

的导数 因为11

()()y f x x f x x x x x x x

-

?+?-+?==

??? 2()1

()x x x x x x x x x x

-+?=

=-+??+??

所以220011

lim

lim()x x y y x x x x x

?→?→?'==-=-?+??

(2)推广:若*

()()n

y f x x n Q ==∈,则1

()n f x nx -'=

1.2 导数的计算

导数的运算法则

导数运算法则

1.[]'

'

'

()()()()f x g x f x g x ±=±

2.[]'

'

'

()()()()()()f x g x f x g x f x g x ?=±

3.[]

'

''2

()()()()()

(()0)()()f x f x g x f x g x g x g x g x ??-=≠???? 函数

导数

y c =

'0y = *()()n y f x x n Q =

=∈

'1n y nx -=

sin y x = 'cos y x = cos y x =

'sin y x =- ()x y f x a == 'ln (0)x y a a a =?>

()x y f x e == 'x y e =

()log a f x x =

()ln f x x = '1()f x x

=

复合函数的概念 一般地,对于两个函数()y f u =和()u g x =,如果通过变量u ,y 可以表示成x 的函数,那么称这个函数为函数()y f u =和()u g x =的复合函数,记作

()()y f g x =。

复合函数的导数 复合函数()()y f g x =的导数和函数()y f u =和()u g x =的导数间的关系为x u x y y u '''=?,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.

若()()y f g x =,则()()()()()y f g x f g x g x ''''==?????

1.3 导数在研究函数中的应用

在某个区间(,)a b 内,如果'

()0f x >,那么函数()y f x =在这个区间内单调递增;如果'

()0f x <,那么函数()y f x =在这个区间内单调递减.

特别的,如果'

()0f x =,那么函数()y f x =在这个区间内是常函数. 求解函数()y f x =单调区间的步骤: (1)确定函数()y f x =的定义域; (2)求导数'

'()y f x =;

(3)解不等式'()0f x >,解集在定义域内的部分为增区间; (4)解不等式'()0f x <,解集在定义域内的部分为减区间.

一般的,如果一个函数在某一范围内导数的绝对值较大,那么函数在这个范围内变化的

快,这时,函数的图像就比较“陡峭”;反之,函数的图像就“平缓”一些.

一般地,在闭区间[]b a ,上函数()y f x =的图像是一条连续不断的曲线,那么函数

()y f x =在[]b a ,上必有最大值与最小值.

“最值”与“极值”的区别和联系

⑴最值”是整体概念,是比较整个定义域内的函数值得出的,具有绝对性;而“极值”是个局部概念,是比较极值点附近函数值得出的,具有相对性.

⑵从个数上看,一个函数在其定义域上的最值是唯一的;而极值不唯一;

⑶函数在其定义区间上的最大值、最小值最多各有一个,而函数的极值可能不止一个,也可能没有一个

⑷极值只能在定义域内部取得,而最值可以在区间的端点处取得,有极值的未必有最值,有最值的未必有极值;极值有可能成为最值,最值只要不在端点必定是极值.

利用导数求函数的最值步骤:

由上面函数)(x f 的图象可以看出,只要把连续函数所有的极值与定义区间端点的函数值进行比较,就可以得出函数的最值了.

一般地,求函数)(x f 在[]b a ,上的最大值与最小值的步骤如下:

⑴求)(x f 在(,)a b 内的极值;

⑵将)(x f 的各极值与端点处的函数值)(a f 、)(b f 比较,其中最大的一个是最大值,最小的一个是最小值,得出函数)(x f 在[]b a ,上的最值

1.4 生活中的优化问题举例

解决优化问题的方法:首先是需要分析问题中各个变量之间的关系,建立适当的函数关系,并确定函数的定义域,通过创造在闭区间内求函数取值的情境,即核心问题是建立适当的函数关系。再通过研究相应函数的性质,提出优化方案,使问题得以解决,在这个过程中,导数是一个有力的工具.

1.5 定积分的概念

回忆前面曲边梯形的面积,汽车行驶的路程等问题的解决方法,解决步骤:

定积分的概念

一般地,设函数()f x 在区间[

,]a b 上连续,用分点 0121i i n a x x x x x x b -=<<<<<<<=L L

将区间[,]a b 等分成n 个小区间,每个小区间长度为x D (b a

x n

-D =

),在每个小区间[]1,i i x x -上任取一点()1,2,

,i i n x =L ,作和式:

1

1

()()n

n

n i i i

i b a

S f x f n x x ==-=

D =邋 如果x D 无限接近于0(亦即n ?

?)时,上述和式n S 无限趋近于常数S ,那么称该常

数S 为函数()f x 在区间[,]a b 上的定积分。记为:()b

a

S f x dx

=ò,

其中

-

ò积分号,b -积分上限,a -积分下限,()f x -被积函数,x -积分变量,[,]

a b -积分区间,(

)f x dx -被积式。 说明:(1)定积分

()

b

a f x dx ò是一个常数,即n

S 无限趋近的常数S (n ??时)记为

()b

a

f x dx

ò,而不是n S .

(2)用定义求定积分的一般方法是:①分割:n 等分区间[],a b ;②近似代替:取点

[]1,i i i x x x -?;③求和:1

()n

i i b a

f n x =-?;④取极限:()

1

()l i m n

b i n a i

b a

f x dx f n

x =-=?ò (3)曲边图形面积:()b

a S f x dx

=

ò;变速运动路程2

1

()t t

S v t dt =

ò;变力做功

()b

a

W F r dr =

ò

定积分的几何意义

从几何上看,如果在区间[],a b 上函数()f x 连续且恒有

()0f x 3,那么定积分

()b

a f x dx

ò表示由直线

,(),0x a x b a b y ==?和曲线()y f x =所围成的曲边

梯形(如图中的阴影部分)的面积,这就是定积分()b

a f x dx ò的几何意义。

说明:一般情况下,定积分

()

b

a f x dx ò的几何意义是介于x 轴、函数()f x 的图形以及直线,x a x

b ==之间各部分面积的代数和,在x 轴上方的面积取正号,在x 轴下方的面积去

负号。

分析:一般的,设被积函数()y f x =,若()y f x =在[,]a b 上可取负值。 考察和式()()()12()i n f x x f x x f x x f x x D +

D ++D ++D L L

不妨设1()

,(),,()0i i n f x f x f x +

于是和式即为

()()()121(){[()][]}i i n f x x f x x f x x f x x f x x -D +D ++D --D ++-D L L

()b

a

f x dx \

=ò阴影A 的面积—阴影B 的面积(即x 轴上方面积减x 轴下方的面积)

思考:根据定积分的几何意义,你能用定积分表示图中阴影部分的面积S 吗?

3.定积分的性质

根据定积分的定义,不难得出定积分的如下性质: 性质1()b

a

kdx k b a =-ò;

性质2

()()()b

b a

a

kf x dx k f x dx k =蝌为常数(定积分的线性性质)

; 性质31

2

12

[()()]()()b

b b

a

a

a f x f x dx f x dx f x dx ??

蝌?(定积分的线性性质)

; 性质4

()()()()b c b

a

a

c

f x dx f x dx f x dx a c b =+

<<蝌?其中(定积分对积分区间

的可加性) (1)

()()b

a a

b

f x dx f x dx =-蝌; (2)

()0a

a f x dx =ò;

说明:①推广:

1

2

12[()()()]()()()b

b b

b m m a

a

a

a

f x f x f x dx

f x dx f x dx

f x 北?北?

蝌蝌L L

②推广:

12

1

()()()()k

b

c c b

a

a

c

c f x dx f x dx f x dx f x dx =+

++蝌蝌L

③性质解释:

P

C

N M B

A

a

b

O

y

x

y=1

y

x

O

b

a

性质1 性质4

A M N

B A M P

C C PN B

S S S =+曲边梯形曲边梯形曲边梯形

第二章推理与证明

2.1 合情推理与演绎推理

●把从个别事实中推演出一般性结论的推理,称为归纳推理(简称归纳).

注:归纳推理的特点;简言之,归纳推理是由部分到整体、由特殊到一般的推理。

归纳推理的一般步骤:(部分—整体,个别—一般)

通过观察个别情况发现某些相同的性质从已知的相同性质中

推出一个明确表述的一般命题(猜想)

类比推理的一般步骤:(特殊—特殊)

⑴找出两类对象之间可以确切表述的相似特征;

⑵用一类对象的已知特征去推测另一类对象的特征,从而得出一个猜想;

⑶检验猜想。即

归纳推理和类比推理是常用的合情推理。

演绎推理的定义(一般—特殊):从一般性的原理出发,推出某个特殊情

况下的结论,这种推理称为演绎推理.

1.演绎推理是由一般到特殊的推理;

2.“三段论”是演绎推理的一般模式;包括

观察、比较联想、类推猜想新结论

⑴大前提---已知的一般原理;

⑵小前提---所研究的特殊情况;

⑶结论-----据一般原理,对特殊情况做出的判断.

2.2 直接证明与间接证明

分析法和综合法(直接证明):是思维方向相反的两种思考方法。在数学解题中,分析法是从数学题的待证结论或需求问题出发,一步一步地探索下去,最后达到题设的已知条件。综合法则是从数学题的已知条件出发,经过逐步的逻辑推理,最后达到待证结论或需求问题。对于解答证明来说,分析法表现为执果索因,综合法表现为由果导因,它们是寻求解题思路的两种基本思考方法,应用十分广泛。

反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论。

反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一个/一个也没有;至少有n个/至多有(n一1)个;至多有一个/至少有两个;唯一/至少有两个。

归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木。推理必须严谨。导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾。

2.3 数学归纳法

第3章数系的扩充与复数的引入

3.1数系的扩充和复数的概念

因生产和科学发展的需要而逐步扩充,数集的每一次扩充,对数学学科本身来说,也解决了在原有数集中某种运算不是永远可以实施的矛盾,分数解决了在整数集中不能整除的矛盾,负数解决了在正有理数集中不够减的矛盾,无理数解决了开方开不尽的矛盾.但是,数集扩到实数集R以后,像x2=-1这样的方程还是无解的,因为没有一个实数的平方等于-1.由于解方程的需要,人们引入了一个新数i,叫做虚数单位.并由此产生的了复数

讲解新课:

1.虚数单位i:

(1)它的平方等于-1,即21

i=-;

(2)实数可以与它进行四则运算,进行四则运算时,原有加、乘运算律仍然成立.

2. i与-1的关系: i就是-1的一个平方根,即方程x2=-1的一个根,方程x2=-1的另一个根是-i!

3. i的周期性:i4n+1=i, i4n+2=-1, i4n+3=-i, i4n=1

4.复数的定义:形如(,)

a bi a

b R

+∈的数叫复数,a叫复数的实部,b叫复数的虚部全体复数所成的集合叫做复数集,用字母C表示*

3. 复数的代数形式: 复数通常用字母z表示,即(,)

z a bi a b R

=+∈,把复数表示成a+bi 的形式,叫做复数的代数形式

4. 复数与实数、虚数、纯虚数及0的关系:对于复数(,)

a bi a

b R

+∈,当且仅当b=0时,复数a+bi(a、b∈R)是实数a;当b≠0时,复数z=a+bi叫做虚数;当a=0且b≠0时,z=bi叫做纯虚数;当且仅当a=b=0时,z就是实数0.

5.复数集与其它数集之间的关系:N Z Q R C.

6. 两个复数相等的定义:如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等

这就是说,如果a,b,c,d∈R,那么a+bi=c+di?a=c,b=d

几何意义:复平面、实轴、虚轴:

复数z=a+bi(a、b∈R)与有序实数对(a,b)是一一对应

关系这是因为对于任何一个复数z=a+bi(a、b∈R),由复

数相等的定义可知,可以由一个有序实数对(a,b)惟一确

定,如z=3+2i可以由有序实数对(3,2)确定,又如z=-2+i

可以由有序实数对(-2,1)来确定;又因为有序实数对(a,

b Z(a,b)

a

o

y

x

b )与平面直角坐标系中的点是一一对应的,如有序实数对(3,2)它与平面直角坐标系中的点A ,横坐标为3,纵坐标为2,建立了一一对应的关系 由此可知,复数集与平面直角坐标系中的点集之间可以建立一一对应的关系.

点Z 的横坐标是a ,纵坐标是b ,复数z =a +bi (a 、b ∈R)可用点Z (a ,b )表示,这个建立了直角坐标系来表示复数的平面叫做复平面,也叫高斯平面,x 轴叫做实轴,y 轴叫做虚轴实轴上的点都表示实数

对于虚轴上的点要除原点外,因为原点对应的有序实数对为(0,0), 它所确定的复数是z =0+0i =0表示是实数.故除了原点外,虚轴上的点都表示纯虚数

在复平面内的原点(0,0)表示实数0,实轴上的点(2,0)表示实数2,虚轴上的点(0,-1)表示纯虚数-i ,虚轴上的点(0,5)表示纯虚数5i

非纯虚数对应的点在四个象限,例如点(-2,3)表示的复数是-2+3i ,z =-5-3i 对应的点(-5,-3)在第三象限等等.

复数集C 和复平面内所有的点所成的集合是一一对应关系,即

这是因为,每一个复数有复平面内惟一的一个点和它对应;反过来,复平面内的每一个

点,有惟一的一个复数和它对应.

这就是复数的一种几何意义.也就是复数的另一种表示方法,即几何表示方法.

复平面内的点(,)Z a b ←???

→一一对应

平面向量OZ uuu r

3.2复数代数形式的四则运算

复数代数形式的加减运算

1.复数z 1与z 2的和的定义:z 1+z 2=(a +bi )+(c +di )=(a +c )+(b +d )i . 2. 复数z 1与z 2的差的定义:z 1-z 2=(a +bi )-(c +di )=(a -c )+(b -d )i . 3. 复数的加法运算满足交换律: z 1+z 2=z 2+z 1.

证明:设z 1=a 1+b 1i ,z 2=a 2+b 2i (a 1,b 1,a 2,b 2∈R). ∵z 1+z 2=(a 1+b 1i )+(a 2+b 2i )=(a 1+a 2)+(b 1+b 2)i . z 2+z 1=(a 2+b 2i )+(a 1+b 1i )=(a 2+a 1)+(b 2+b 1)i . 又∵a 1+a 2=a 2+a 1,b 1+b 2=b 2+b 1.

∴z 1+z 2=z 2+z 1.即复数的加法运算满足交换律.

4. 复数的加法运算满足结合律: (z 1+z 2)+z 3=z 1+(z 2+z 3)

证明:设z 1=a 1+b 1i .z 2=a 2+b 2i ,z 3=a 3+b 3i (a 1,a 2,a 3,b 1,b 2,b 3∈R). ∵(z 1+z 2)+z 3=[(a 1+b 1i )+(a 2+b 2i )]+(a 3+b 3i )

=[(a 1+a 2)+(b 1+b 2)i ]+(a 3+b 3)i =[(a 1+a 2)+a 3]+[(b 1+b 2)+b 3]i =(a 1+a 2+a 3)+(b 1+b 2+b 3)i .

z 1+(z 2+z 3)=(a 1+b 1i )+[(a 2+b 2i )+(a 3+b 3i )]

=(a 1+b 1i )+[(a 2+a 3)+(b 2+b 3)i ] =[a 1+(a 2+a 3)]+[b 1+(b 2+b 3)]i =(a 1+a 2+a 3)+(b 1+b 2+b 3)i

∵(a 1+a 2)+a 3=a 1+(a 2+a 3),(b 1+b 2)+b 3=b 1+(b 2+b 3).

∴(z 1+z 2)+z 3=z 1+(z 2+z 3).即复数的加法运算满足结合律

复数加法的几何意义:

设复数z 1=a +bi ,z 2=c +di ,在复平面上所对应的向量为1OZ 、2OZ ,即1OZ 、2OZ 的坐标形式为1OZ =(a ,b ),2OZ =(c ,d )以1OZ 、2OZ 为邻边作平行四边形

OZ 1ZZ 2,则对角线OZ 对应的向量是OZ ,

∴OZ =

1OZ +2OZ =(a ,b )+(c ,d )=(a +c ,b +d )=(a +c )+(b +d )i

复数减法的几何意义:复数减法是加法的逆运算,设z =(a -c )+(b -d )i ,所

以z -z 1=z 2,z 2+z 1=z ,由复数加法几何意义,以OZ 为一条对角线,1OZ 为一条边画平行四边形,那么这个平行四边形的另一边OZ 2所表示的向量2OZ 就与复数z -z 1的差(a -c )+(b

-d )i 对应由于21OZ Z Z u u u u r u u u r

,所以,两个复数的差z -z 1与连接这两个向量终点并指向被减

数的向量对应.

1.乘法运算规则:

规定复数的乘法按照以下的法则进行:

设z 1=a +bi ,z 2=c +di (a 、b 、c 、d ∈R)是任意两个复数,那么它们的积(a +bi )(c +di )=(ac -bd )+(bc +ad )i .

其实就是把两个复数相乘,类似两个多项式相乘,在所得的结果中把i 2换成-1,并且把实部与虚部分别合并.两个复数的积仍然是一个复数.

2.乘法运算律: (1)z 1(z 2z 3)=(z 1z 2)z 3

证明:设z 1=a 1+b 1i ,z 2=a 2+b 2i ,z 3=a 3+b 3i (a 1,a 2,a 3,b 1,b 2,b 3∈R).

∵z 1z 2=(a 1+b 1i )(a 2+b 2i )=(a 1a 2-b 1b 2)+(b 1a 2+a 1b 2)i , z 2z 1=(a 2+b 2i )(a 1+b 1i )=(a 2a 1-b 2b 1)+(b 2a 1+a 2b 1)i . 又a 1a 2-b 1b 2=a 2a 1-b 2b 1,b 1a 2+a 1b 2=b 2a 1+a 2b 1. ∴z 1z 2=z 2z 1. (2)z 1(z 2+z 3)=z 1z 2+z 1z 3

证明:设z 1=a 1+b 1i ,z 2=a 2+b 2i ,z 3=a 3+b 3i (a 1,a 2,a 3,b 1,b 2,b 3∈R).

∵(z 1z 2)z 3=[(a 1+b 1i )(a 2+b 2i )](a 3+b 3i )=[(a 1a 2-b 1b 2)+(b 1b 2+a 1b 2)i ](a 3+b 3i )

=[(a 1a 2-b 1b 2)a 3-(b 1a 2+a 1b 2)b 3]+[(b 1a 2+a 1b 2)a 3+(a 1a 2-b 1b 2)b 3]i =(a 1a 2a 3-b 1b 2a 3-b 1a 2b 3-a 1b 2b 3)+(b 1a 2a 3+a 1b 2b 3+a 1a 2b 3-b 1b 2b 3)i ,

同理可证:

z 1(z 2z 3)=(a 1a 2a 3-b 1b 2a 3-b 1a 2b 3-a 1b 2b 3)+(b 1a 2a 3+a 1b 2a 3+a 1a 2b 3-b 1b 2b 3)i , ∴(z 1z 2)z 3=z 1(z 2z 3). (3)z 1(z 2+z 3)=z 1z 2+z 1z 3.

证明:设z 1=a 1+b 1i ,z 2=a 2+b 2i ,z 3=a 3+b 3i (a 1,a 2,a 3,b 1,b 2,b 3∈R). ∵z 1(z 2+z 3)=(a 1+b 1i )[(a 2+b 2i )+(a 3+b 3i )]=(a 1+b 1i )[(a 2+a 3)+(b 2+b 3)i ]

=[a 1(a 2+a 3)-b 1(b 2+b 3)]+[b 1(a 2+a 3)+a 1(b 2+b 3)]i =(a 1a 2+a 1a 3-b 1b 2-b 1b 3)+(b 1a 2+b 1a 3+a 1b 2+a 1b 3)i .

z 1z 2+z 1z 3=(a 1+b 1i )(a 2+b 2i )+(a 1+b 1i )(a 3+b 3i )

=(a 1a 2-b 1b 2)+(b 1a 2+a 1b 2)i +(a 1a 3-b 1b 3)+(b 1a 3+a 1b 3)i =(a 1a 2-b 1b 2+a 1a 3-b 1b 3)+(b 1a 2+a 1b 2+b 1a 3+a 1b 3)i =(a 1a 2+a 1a 3-b 1b 2-b 1b 3)+(b 1a 2+b 1a 3+a 1b 2+a 1b 3)i

∴z 1(z 2+z 3)=z 1z 2+z 1z 3. 例1计算(1-2i)(3+4i)(-2+i)

解:(1-2i)(3+4i)(-2+i)=(11-2i) (-2+i)= -20+15i. 例2计算:

(1)(3+4i) (3-4i) ; (2)(1+ i)2. 解:(1)(3+4i) (3-4i) =32-(4i )2=9-(-16)=25; (2) (1+ i)2=1+2 i+i 2=1+2 i-1=2 i.

3.共轭复数:当两个复数的实部相等,虚部互为相反数时,这两个复数叫做互为共轭复数虚部不等于0的两个共轭复数也叫做共轭虚数

通常记复数z 的共轭复数为z 。

4. 复数除法定义:满足(c+di)(x+yi)=(a+bi)的复数x+yi(x,y ∈R)叫复数a+bi 除以复数c+di 的商,记为:(a+bi)÷(c+di)或者

di

c bi

a ++ 5.除法运算规则:

①设复数a +bi (a ,b ∈R),除以c +di (c ,d ∈R),其商为x +yi (x ,y ∈R), 即(a +bi )÷(c +di )=x +yi

∵(x +yi )(c +di )=(cx -dy )+(dx +cy )i . ∴(cx -dy )+(dx +cy )i =a +bi . 由复数相等定义可知??

?=+=-.

,

b cy dx a dy cx

解这个方程组,得???

????+-=++=.,2222d c ad bc y d

c b

d ac x

于是有:(a +bi )÷(c +di )=

2

222d

c ad

bc d c bd ac +-+++ i . ②利用(c +di )(c -di )=c 2+d 2.于是将

di

c bi

a ++的分母有理化得:

原式=

22

()()[()]()()()a bi a bi c di ac bi di bc ad i

c di c di c di c

d ++-+?-+-==++-+ 222222

()()ac bd bc ad i ac bd bc ad

i c d c d c d ++-+-=

=++++.

∴(a +bi )÷(c +di )=

i d

c ad

bc d c bd ac 2

222+-+++.

点评:①是常规方法,②是利用初中我们学习的化简无理分式时,都是采用的分母有理

3+的对偶式化思想方法,而复数c+di与复数c-di,相当于我们初中学习的2

3-,它们之积为1是有理数,而(c+di)·(c-di)=c2+d2是正实数.所以可以分母实数化.

2

把这种方法叫做分母实数化法

人教版高中数学选修44坐标系与参数方程全套教案

人教版高中数学选修4-4坐标系与参数方程全套教案 课型: 复习课 课时数: 1 讲学时间: 2010年1月18号 班级: 学号: 姓名: 一、【学习目标】: 1、了解在平面直角坐标系伸缩变换作用下平面图形的变化情况。 2、能在极坐标系中用极坐标刻画点的位置,体会在极坐标系和平面直角坐标系中刻画点的位置的区别,能进行极坐标和直角坐标的互化。 3、能在极坐标系中给出简单图形(如过极点的直线、过极点或圆心在极点的圆)的方程。通过比较这些图形在极坐标系和平面直角坐标系中的方程,体会在用方程刻画平面图形时选择适当坐标系的意义。 4、分析直线、圆和圆锥曲线的几何性质,选择适当的参数写出它们的参数方程,能进行参数方程与普通方程的互化。 二、【回归教材】: 1、阅读选修4-4《坐标系与参数方程》152P P -,试了解以下内容: (1)设点),(y x P 是平面直角坐标系中的任意一点,在伸缩变换公式???>?='>?=') 0()0(:μμλλ?y y x x 的作用下,如何找到点P 的对应点),(y x P '''?试找出x y sin =变换为x y 2sin 3=的伸缩变换公式 . (2)极坐标系是如何建立的?试类比平面直角坐标系的建立过程画一个,并写出点M 的极径与极角来 表示它的极坐标,体会在极坐标系和平面直角坐标系中刻画点的位置的区别,写出极坐标和直角坐标的互化公式 . (3)在平面直角坐标系中,曲线C 可以用方程0),(=y x f 来表示,在极坐标系中,我们用什么方程来 表示这段曲线呢?例如圆222r y x =+,直线x y =,你是如何用极坐标方程表示它们的? 2、阅读选修4-4《坐标系与参数方程》3721P P -,了解以下内容: (1)直接给出这条曲线上点的坐标间的关系的方程叫做普通方程,那如果变数t 都是点坐标x ,y 的函 数,我们如何建立这条曲线的参数方程呢? (2)将曲线的参数方程化为普通方程,有利于识别曲线的类型,我们是如何做到的?在互化的过程中, 必须注意什么问题?试探究一下圆锥曲线的参数方程与普通方程的互化。

高中数学必修和选修知识点归纳总结

高中数学必修+选修知识点归纳 引言 1.课程内容: 必修课程由5个模块组成: 必修1:集合、函数概念与基本初等函数(指、对、幂函数) 必修2:立体几何初步、平面解析几何初步。必修3:算法初步、统计、概率。 必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。 必修5:解三角形、数列、不等式。 以上是每一个高中学生所必须学习的。 上述内容覆盖了高中阶段传统的数学基础知识和基本技能的主要部分,其中包括集合、函数、数列、不等式、解三角形、立体几何初步、平面解析几何初步等。不同的是在保证打好基础的同时,进一步强调了这些知识的发生、发展过程和实际应用,而不在技巧与难度上做过高的要求。 此外,基础内容还增加了向量、算法、概率、统计等内容。 选修课程有4个系列: 系列1:由2个模块组成。 选修1—1:常用逻辑用语、圆锥曲线与方程、 导数及其应用。 选修1—2:统计案例、推理与证明、数系的扩 充与复数、框图 系列2:由3个模块组成。 选修2—1:常用逻辑用语、圆锥曲线与方程、 空间向量与立体几何。 选修2—2:导数及其应用,推理与证明、数系 的扩充与复数选修2—3:计数原理、随机变量及其分布列, 统计案例。 系列3:由6个专题组成。 选修3—1:数学史选讲。 选修3—2:信息安全与密码。 选修3—3:球面上的几何。 选修3—4:对称与群。 选修3—5:欧拉公式与闭曲面分类。 选修3—6:三等分角与数域扩充。 系列4:由10个专题组成。 选修4—1:几何证明选讲。 选修4—2:矩阵与变换。 选修4—3:数列与差分。 选修4—4:坐标系与参数方程。 选修4—5:不等式选讲。 选修4—6:初等数论初步。 选修4—7:优选法与试验设计初步。 选修4—8:统筹法与图论初步。 选修4—9:风险与决策。 选修4—10:开关电路与布尔代数。 2.重难点及考点: 重点:函数,数列,三角函数,平面向量,圆锥曲线,立体几何,导数 难点:函数、圆锥曲线 高考相关考点: ⑴集合与简易逻辑:集合的概念与运算、简易逻 辑、充要条件 ⑵函数:映射与函数、函数解析式与定义域、 值域与最值、反函数、三大性质、函 数图象、指数与指数函数、对数与对 数函数、函数的应用 ⑶数列:数列的有关概念、等差数列、等比数 列、数列求和、数列的应用

最新高中数学参数方程大题(带答案)精选

参数方程极坐标系 解答题 1.已知曲线C:+=1,直线l:(t为参数) (Ⅰ)写出曲线C的参数方程,直线l的普通方程. (Ⅱ)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值. +=1 , , 的距离为 则 取得最小值,最小值为 2.已知极坐标系的极点在直角坐标系的原点处,极轴与x轴的正半轴重合,直线l的极坐标方程为: ,曲线C的参数方程为:(α为参数). (I)写出直线l的直角坐标方程; (Ⅱ)求曲线C上的点到直线l的距离的最大值. 的极坐标方程为: cos= ∴

y+1=0 ( d= 的距离的最大值. 3.已知曲线C1:(t为参数),C2:(θ为参数). (1)化C1,C2的方程为普通方程,并说明它们分别表示什么曲线; (2)若C1上的点P对应的参数为t=,Q为C2上的动点,求PQ中点M到直线C3:(t为参数)距离的最小值. :(化为普通方程得:+ t=代入到曲线 sin =,),﹣

4.在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立直角坐标系,圆C的极坐标方程为 ,直线l的参数方程为(t为参数),直线l和圆C交于A,B两点,P是圆C 上不同于A,B的任意一点. (Ⅰ)求圆心的极坐标; (Ⅱ)求△PAB面积的最大值. 的极坐标方程为,把 ,利用三角形的面积计算公式即可得出. 的极坐标方程为,化为= 把 ∴圆心极坐标为; (t , = 距离的最大值为 5.在平面直角坐标系xoy中,椭圆的参数方程为为参数).以o为极点,x轴正半轴为极轴建立极坐标系,直线的极坐标方程为.求椭圆上点到直线距离的最大值和最小值. 由题意椭圆的参数方程为为参数)直线的极坐标方程为

高中数学选修内容知识点归纳

选修之1常用逻辑用语 一、命题及其关系 1.命题 (1)用语言、符号或式子表达的,可以判断真假的陈述句叫做命题. 其中判断为真的语句叫做真命题,判断为假的语句叫做假命题. (2)对于“若p,则q”形式的例题,p叫做命题的条件,q叫做命题的结论. 2.四种命题 原命题:若p,则q . 逆命题:若q,则p . (2)如果q成立时,p一定成立,即q?p,则称p是q的必要条件; (3)如果既有p?q,又有q?p,则p是q的充分必要条件,简称充要条件. 三、简单的逻辑联结词 1.联结词及记号

逻辑联结词记号意义且p∧q p且q 或p∨q p或q ?非p 非p (2)全称命题“对M中任意一个x,有p (x)成立”可用符号简记为 ?∈, x M p x ,() 读作“对任意x属于M,有p (x)成立”. 2.存在量词 (1)短语“存在一个”、“至少有一个”在逻辑中通常叫做存在量词,并用符号“?”表示.含有存在量词的命题,叫做特称命题. 注:常见的存在量词还有“有些”、“有一个”、“对某个”、“有的”等. (2)特称命题“存在M中的一个x,使p(x)成立”可用符号简记为 ?∈, ,() x M p x 读作“存在一个x属于M,使p(x)成立”. 3.含有一个量词的命题的否定 (1)全称命题:,(). p x M p x ?∈ 否定:,(). ??∈? p x M p x (2)特称命题:,(). ?∈ p x M p x 否定:,(). ??∈? p x M p x

选修之2圆锥曲线 一、椭圆 1.定义 平面内与两个定点F1,F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距. 2.标准方程 (1)焦点在x轴上: 22 22 1 x y a b +=. 二、双曲线 1.定义 平面内与两个定点F1,F2的距离的差的绝对值等于常数(小于|F1F2|)的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距. 2.标准方程 (1)焦点在x轴上: 22 22 1 x y a b -=. (2)焦点在y轴上: 22 22 1 y x a b -=. 说明:注意双曲线中c为a,b,c中的最大数,c2=a2+b2.

高中数学 《参数方程的概念》教案 新人教A版选修4-4

参数方程 目标点击: 1.理解参数方程的概念,了解某些参数的几何意义和物理意义; 2.熟悉参数方程与普通方程之间的联系和区别,掌握他们的互化法则; 3.会选择最常见的参数,建立最简单的参数方程,能够根据条件求出直线、圆锥曲线等常用曲线的一些参数方程并了解其参数的几何意义; 4.灵活运用常见曲线的参数方程解决有关的问题. 基础知识点击: 1、曲线的参数方程 在取定的坐标系中,如果曲线上任意一点的坐标x,y 都是某个变数t 的函数,?? ?==)()(t g y t f x (1) 并且对于t 的每一个允许值,由方程组(1)所确定的点M(x,y)都在这条曲线上,那么方程组(1)叫做这条曲线的参数方程. 联系x 、y 之间关系的变数叫做参变数,简称参数. 2、求曲线的参数方程 求曲线参数方程一般程序: (1) 设点:建立适当的直角坐标系,用(x,y)表示曲线上任意一点M 的坐标; (2) 选参:选择合适的参数; (3) 表示:依据题设、参数的几何或物理意义,建立参数与x ,y 的关系 式,并由此分别解出用参数表示的x 、y 的表达式. (4) 结论:用参数方程的形式表示曲线的方程 3、曲线的普通方程 相对与参数方程来说,把直接确定曲线C 上任一点的坐标(x,y )的方程F (x,y )=0叫做曲线C 的普通方程. 4、参数方程的几个基本问题 (1) 消去参数,把参数方程化为普通方程. (2) 由普通方程化为参数方程. (3) 利用参数求点的轨迹方程. (4) 常见曲线的参数方程. 5、几种常见曲线的参数方程 (1) 直线的参数方程 (ⅰ)过点P 0(00,y x ),倾斜角为α的直线的参数方程是 ? ??+=+=αα s i n c o s 00t y y t x x (t 为参数)t 的几何意义:t 表示有向线段P P 0的数量,P(y x ,) 为直线上任意一点. (ⅱ)过点P 0(00,y x ),斜率为a b k =的直线的参数方程是 ???+=+=bt y y at x x 00 (t 为参数) (2)圆的参数方程

对高中数学选修课的几点思考

龙源期刊网 https://www.360docs.net/doc/2012731945.html, 对高中数学选修课的几点思考 作者:黄银海 来源:《文理导航》2017年第02期 【摘要】本文从现状与建议两个维度阐述了自己的主张。 【关键词】数学;选修课程;现状;评价;统筹 普通高中新课程在安徽省各地市已经实施了近九年的的时间了,在充分体现新课程理念的前提下,选择性的数学选修课程的实施现状如何,备受我们教育界关注。基本上每个学校都是把选修系列1和2的课程作为必修课程进行教学,可由学生自选的选修系列3、4开设状况,以及如何面对。就笔者自己的一点学习经验和教学中的一些现状,本文将加以分析和思考。 一、课程开设不容乐观 1.旧瓶装新酒。必修内容以及选修系列1,系列2,基本覆盖了《大纲》的内容,所以基本上每个学校对选修系列1,系列2都是按照高考要求同等对待,开设的课时数,作业量,师生的重视程度和必修实际上是没有任何差别。 选修系列3的6个专题基本上没有高中开设课程,只有少数学校为学生配发了《数学史选讲》教材;没有安排具体的课时,极少数学校在适当的时候请一些高校教授为中学生做一些讲座的形式加以补充,以此来增加学生的学习兴趣。 选修系列4只有3个与传统课程内容相关的专题很多学校高中开了课。基本上所有高中都开设了4-4:坐标系与参数方程;4-5:不等式选讲;而几何证明选讲课程基本没有学校开设课程,只有极少数学校通过初高中衔接以及数学竞赛辅导的形式加以补充;目前还没有学校开设过4-2:矩阵与变换;4-3:数列与差分;4-7:优选法与试验设计初步;4-8:统筹法与图论初步;4-9:风险与决策;4-10:开关电路与布尔代数。 2.心有余而力不足。很多非示范高中在开设选修系列4专题课程课时投入不足。由于众所周知的高考考查方向问题,所以少数学校一直持观望态度,等高考方案下达后才开设系列4课程,所以开设系列4课程存在困难,一直普片于一些学情较一般的学校。理论上按新课程计划,学生可根据自己的兴趣和发展方向选择2至4个专题,并取得相应学分,实际上这些设想基本落空。现实状况是高考考什么,教师就教什么,学生也就学什么,根本就没有改变传统的教育理念,这些新的理论本质上就没有操作的空间。 虽然在我们选修课程中,系列1的2个模块,为想在人文、社会科学等方面发展的学生选择;系列2的3个模块,为想在理工(含部分经济类)等方面发展的学生选择;系列3有6个

最新高考数学解题技巧-极坐标与参数方程

2018高考数学解题技巧 解答题模板3:极坐标与参数方程 1、 题型与考点(1){极坐标与普通方程的互相转化 极坐标与直角坐标的互相转化 (2) {参数方程与普通方程互化参数方程与直角坐标方程互化 (3) {利用参数方程求值域参数方程的几何意义 2、【知识汇编】 参数方程:直线参数方程:00cos ()sin x x t t y y t θθ=+??=+?为参数 00(,)x y 为直线上的定点, t 为直线上任一点(,)x y 到定 点00(,)x y 的数量; 圆锥曲线参数方程:圆的参数方程:cos ()sin x a r y b r θθθ=+?? =+?为参数(a,b)为圆心,r 为半径; 椭圆22221x y a b +=的参数方程是cos ()sin x a y b θθθ=??=? 为参数; 双曲线2222-1x y a b =的参数方程是sec ()tan x a y b φθφ=??=? 为参数; 抛物线22y px =的参数方程是2 2()2x pt t y pt ?=?=?为参数 极坐标与直角坐标互化公式: 若以直角坐标系的原点为极点,x 轴正半轴为极轴建立坐标系,点P 的极坐标为(,)ρθ,直角坐标为(,)x y , 则cos x ρθ=, sin y ρθ=, 222x y ρ=+, tan y x θ=。 解题方法及步骤 (1)、参数方程与普通方程的互化 化参数方程为普通方程的基本思路是消去参数,常用的消参方法有代入消去法、加减消去法、恒等式(三角的或代数的)消去法;化普通方程为参数方程的基本思路是引入参数,即选定合适的参数t ,先确定一个关系()x f t =(或()y g t =,再代入普通方程(),0F x y =,求得另一关系()y g t =(或()x f t =).一般地,常选择的参数有角、有向线段的数量、斜率,某一点的横坐标(或纵坐标) 例1、方程?????+=-=--t t t t y x 2 222(t 为参数)表示的曲线是( ) A. 双曲线 B.双曲线的上支 C.双曲线的下支 D.圆 解析:注意到2t t 与2t -互为倒数,故将参数方程的两个等式两边分别平方,再相减,即可消去含t 的项,4)22()22(2222-=+--=---t t t t y x ,即有422=+y x ,又注意到 02>t ,222222=?≥+--t t t t ,即

数学高中选修课校本课程介绍.doc

数学与逻辑思维选修课程 一、总体目标 数学不仅具有基础性、工具性和广泛的应用性价值,而且蕴含了丰富的人文价值。数学在育人方面主要有以下体现:一是有利于学生思维能力与创新能力的培养,二是可以为学生的发展奠定基础,三是可以优化学生的个性品质。 着眼于学生发展和社会发展的需要,学生在学习数学知识的同 时,应当对数学问题的破题思路和解题方法有所了解和认识,这不仅因为数学的发展为人类文明积累了大量宝贵的科学思想和科学方 法,需要学生去学习和掌握,更重要的是为学生将来能独立地开展科 学探究、创新活动奠定坚实的基础和所必须具有的思想与方法。因此本课程着眼于:把“学生所求的、把学生所缺的、把学生所急的” 数学好东西尽可能以通俗易懂、深入浅出的方式传授给学生;引领学生拓宽数学知识视野,渗透常用数学思想方法,加深对数学本质的认识;培养学生的应用意识、创新意识、协作意识和良好的思维品质与 科学态度;感受数学文化的博大精深和数学方法的巨大创造力,让学生学得兴致,学有所成。 二、具体目标 具体目标表现为以下几个方面: 1.知识与技能 学习和掌握高中数学知识基底,完成高中知识与大学知识的衔

接。深刻理解数学的有关概念,掌握数学相关规律。掌握数学的科学 思想和科学方法,初步能应用数学的思想和方法来分析数学问题和解决数学问题。 2.过程与方法 经历学习过程,懂得如何进行科学探究的活动;体会数学的科学思想和科学研究方法;学会如何分析数学情景,学会如何进行建模, 熟练掌握分析问题和解决问题的常规和典型的方法与技巧。 3.情感态度及价值观 通过对数学思想和方法的学习,培养学生热爱数学、关注数学的 发展和数学为社会的发展所带来的巨大贡献,树立热爱科学、崇尚科学的科学观和人生观。 三、课程内容 本课程以高中数学与大学数学衔接点为抓手,充分注意到现有高中数学教材的课程简介:通常定位于那些核心类、支撑性知识。选修 课程中的基础性内容是为那些希望在人文、社会科学等方面发展的学生而设置的。提高性内容则是为那些希望在理工、经济等方面发展的学生而设置的.拓展性内容则是对数学有兴趣和希望进一步提高数学 素养的学生而设置的。对于数学探究、数学思想方法、数学建模、数 学文化则是贯穿于整个选修数学课程的重要内容,这些内容不单独设置。

高中数学全参数方程知识点大全

高考复习之参数方程 一、考纲要求 1.理解参数方程的概念,了解某些常用参数方程中参数的几何意义或物理意义,掌握参数方 程与普通方程的互化方法.会根据所给出的参数,依据条件建立参数方程. 2.理解极坐标的概念.会正确进行点的极坐标与直角坐标的互化.会正确将极坐标方程化为 直角坐标方程,会根据所给条件建立直线、圆锥曲线的极坐标方程.不要求利用曲线的参数 方程或极坐标方程求两条曲线的交点. 二、知识结构 1.直线的参数方程 (1)标准式 过点Po(x 0,y 0),倾斜角为α的直线l(如图)的参数方程是 ? ? ?+=+=a t y y a t x x sin cos 00 (t 为参数) (2)一般式 过定点P 0(x 0,y 0)斜率k=tg α= a b 的直线的参数方程是 ?? ?+=+=bt y y at x x 00(t 不参数) ② 在一般式②中,参数t 不具备标准式中t 的几何意义,若a 2 +b 2 =1,②即为标准式,此 时, | t |表示直线上动点P 到定点P 0的距离;若a 2+b 2 ≠1,则动点P 到定点P 0的距离是 22b a +|t |. 直线参数方程的应用 设过点P 0(x 0,y 0),倾斜角为α的直线l 的参数方程是 ? ??+=+=a t y y a t x x sin cos 00 (t 为参数) 若P 1、P 2是l 上的两点,它们所对应的参数分别为t 1,t 2,则 (1)P 1、P 2两点的坐标分别是 (x 0+t 1cos α,y 0+t 1sin α) (x 0+t 2cos α,y 0+t 2sin α); (2)|P 1P 2|=|t 1-t 2|; (3)线段P 1P 2的中点P 所对应的参数为t ,则 t= 2 2 1t t + 中点P 到定点P 0的距离|PP 0|=|t |=|2 2 1t t +| (4)若P 0为线段P 1P 2的中点,则 t 1+t 2=0.

高中数学选修2-1主要内容

第一章常用逻辑用语 1.1命题及其关系 定义:一般地,我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫做真命题,判断为假的语句叫做假命题。 命题的构成――条件和结论 定义:从构成来看,所有的命题都具由条件和结论两部分构成.在数学中,命题常写成“若p,则q”或者“如果p,那么q”这种形式,通常,我们把这种形式的命题中的p叫做命题的条件,q叫做命题结论. 真命题:如果由命题的条件P通过推理一定可以得出命题的结论q,那么这样的命题叫做真命题. 假命题:如果由命题的条件P通过推理不一定可以得出命题的结论q,那么这样的命题叫做假命题. 四种命题:定义1:一般地,对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么我们把这样的两个命题叫做互逆命题.其中一个命题叫做原命题,另一个命题叫做原命题的逆命题. 定义2:一般地,对于两个命题,如果一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,那么我们把这样的两个命题叫做互否命题.其中一个命题叫做原命题,另一个命题叫做原命题的否命题. 定义3:一般地,对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,那么我们把这样的两个命题叫做互为逆否命题.其中一个命题叫做原命题,另一个命题叫做原命题的逆否命题. 形式: 原命题:若P,则q.则: 逆命题:若q,则P. 否命题:若¬P,则¬q.(说明符号“¬”的含义:符号“¬”叫做否定符号.“¬p”表示 p的否定;即不是p;非p) 逆否命题:若¬q,则¬P. 四种命题间的相互关系:

由于逆命题和否命题也是互为逆否命题,因此四种命题的真假性之间的关系如下: (1)两个命题互为逆否命题,它们有相同的真假性; (2)两个命题为互逆命题或互否命题,它们的真假性没有关系. 1.2 充分条件与必要条件 定义:如果命题“若p,则q”为真命题,即p ? q,那么我们就说p是q的充分条件;q 是p必要条件. 一般地,如果既有p?q ,又有q?p 就记作 p ? q. 此时,我们说,那么p是q的充分必要条件,简称充要条件.显然,如果p是q的充要条件,那么q也是p的充要条件.概括地说,如果p ? q,那么p 与 q互为充要条件. 一般地, 若p?q ,但q ≠>p,则称p是q的充分但不必要条件; 若p≠>q,但q ?p,则称p是q的必要但不充分条件; 若p≠>q,且q ≠>p,则称p是q的既不充分也不必要条件. 1.3 简单的逻辑连接词 一般地,用联结词“且”把命题p和命题q联结起来,就得到一个新命题,记作p∧q 读作“p且q”。 一般地,用联结词“或”把命题p和命题q联结起来,就得到一个新命题,记作p∨q,读作“p或q”。 一般地,我们规定: 当p,q都是真命题时,p∧q是真命题;当p,q两个命题中有一个命题是假命题时,p ∧q是假命题;当p,q两个命题中有一个是真命题时,p∨q是真命题;当p,q两个命题都是假命题时,p∨q是假命题。 一般地,对一个命题p全盘否定,就得到一个新命题,记作¬p,读作“非p”或“p 的否定”。 若p是真命题,则¬p必是假命题;若p是假命题,则¬p必是真命题; 命题的否定是否定命题的结论,而命题的否命题是对原命题的条件和结论同时进行否定。 1.4全称量词与存在量词 所有的”“任意一个”这样的词语,这些词语一般在指定的范围内都表示整体或全部,这样的词叫做全称量词,用符号“?”表示,含有全称量词的命题,叫做全称命题。 “存在一个”“至少有一个”这样的词语,这些词语都是表示整体的一部分的词叫做存在量词。并用符号“?”表示。含有存在量词的命题叫做特称命题(或存在命题)。 一般地,对于含有一个量词的全称命题的否定,有下面的结论: 全称命题P: ?∈ ,() x M p x 它的否定¬P ¬P(x)

高中数学选修4-4-极坐标与参数方程-知识点与题型

选做题部分 极坐标系与参数方程 一、极坐标系 1.极坐标系与点的极坐标 (1)极坐标系:如图4-4-1所示,在平面内取一个定点O ,叫做极点,自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系. (2)极坐标:平面上任一点M 的位置可以由线段OM 的长度ρ和从Ox 到OM 的角度θ来刻画,这两个数组成的有序数对(ρ,θ)称为点M 的极坐标.其中ρ称为点M 的极径,θ称为点M 的极角. 2.极坐标与直角坐标的互化 点M 直角坐标(x ,y ) 极坐标(ρ,θ) 互化公式 题型一 极坐标与直角坐标的互化 1、已知点P 的极坐标为)4 ,2(π ,则点P 的直角坐标为 ( ) A.(1,1) B.(1,-1) C.(-1,1) D.(-1,-1) 2、设点P 的直角坐标为(3,3)-,以原点为极点,实轴正半轴为极轴建立极坐标系(02)θπ≤<,则点P 的极坐标为( ) A .3(32, )4π B .5(32,)4π- C .5(3,)4π D .3(3,)4 π- 3.若曲线的极坐标方程为ρ=2sin θ+4cos θ,以极点为原点,极轴为x 轴正半轴建立直角坐标系,则该曲线的直角坐标方程为________. 4.在极坐标系中,过点(1,0)并且与极轴垂直的直线方程是( ) A .ρ=cos θ B .ρ=sin θ C .ρcos θ=1 D .ρsin θ=1 5.曲线C 的直角坐标方程为x 2+y 2-2x =0,以原点为极点,x 轴的正半轴为极轴建立极坐标系,则曲线C 的极坐标方程为________. 6. 在极坐标系中,求圆ρ=2cos θ与直线θ=π 4 (ρ>0)所表示的图形的交点的极坐标.

高中数学选修4-4-极坐标与参数方程-知识点与题型

一、极坐标系 1.极坐标系与点的极坐标 (1)极坐标系:如图4-4-1所示,在平面内取一个定点O ,叫做极点,自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系. (2)极坐标:平面上任一点M 的位置可以由线段OM 的长度ρ和从Ox 到OM 的角度θ来刻画,这两个数组成的有序数对(ρ,θ)称为点M 的极坐标.其中ρ称为点M 的极径,θ称为点M 的极角. 2 题型一 极坐标与直角坐标的互化 1、已知点P 的极坐标为,则点P 的直角坐标为 ( ) A.(1,1) B.(1,-1) C.(-1,1) D.(-1,-1) 2、设点的直角坐标为,以原点为极点,实轴正半轴为极轴建立极坐标系,则点的极坐标为( ) A . B . C . D . 3.若曲线的极坐标方程为ρ=2sin θ+4cos θ,以极点为原点,极轴为x 轴正半轴建立直角坐标系,则该曲线的直角坐标方程为________. 4.在极坐标系中,过点(1,0)并且与极轴垂直的直线方程是( ) A .ρ=cos θ B .ρ=sin θ C .ρcos θ=1 D .ρsin θ=1 5.曲线C 的直角坐标方程为x 2+y 2-2x =0,以原点为极点,x 轴的正半轴为极轴建立极坐标系,则曲线C 的极坐标方程为________. 6. 在极坐标系中,求圆ρ=2cos θ与直线θ=π 4 (ρ>0)所表示的图形的交点的极坐标. 题型二 极坐标方程的应用 由极坐标方程求曲线交点、距离等几何问题时,如果不能直接用极坐标解决,可先转化为直角坐标方程,然后求解.

高中数学选修22主要内容

第一章 导数及其应用 变化率与导数 问题中的变化率可用式子 1 212) ()(x x x f x f --表示, 称为函数f (x )从x 1到x 2的平均变化率 若设12x x x -=?, )()(12x f x f f -=? (这里x ?看作是对于x 1的一个“增量”可用x 1+x ?代 替 x 2, 同 样 ) ()(12x f x f y f -=?=?)则平均变化率为 = ??=??x f x y x x f x x f x x x f x f ?-?+=--)()()()(111212 在前面我们解决的问题: 1、求函数2 )(x x f =在点(2,4)处的切线斜率。 x x x f x f x y ?+=?-?+=??4)()2(,故斜率为4 2、直线运动的汽车速度V 与时间t 的关系是12 -=t V ,求o t t =时的瞬时速度。 t t t t v t t v t V o o o ?+=?-?+=??2) ()(,故斜率为4 二、知识点讲解 上述两个函数)(x f 和)(t V 中,当x ?(t ?)无限趋近于0时,t V ??(x V ??)都无限趋近于一个常数。 归纳:一般的,定义在区间(a ,b )上的函数)(x f ,)(b a x o ,∈,当x ?无限趋近于0 时, x x f x x f x y o o ?-?+=??)()(无限趋近于一个固定的常数A ,则称)(x f 在o x x =处可导,并称A 为)(x f 在o x x =处的导数,记作)('o x f 或o x x x f =|)(', 函数y =f (x )在x =x 0处的瞬时变化率是: 000 0()()lim lim x x f x x f x f x x ?→?→+?-?=?? 我们称它为函数()y f x =在0x x =出的导数,记作'0()f x 或0' |x x y =,即

高中数学选修4-4坐标系与参数方程-高考真题演练

高中数学选修4-4坐标系与参数方程------高考真题演练 1(1)(2018全国卷III ) 在平面直角坐标系xOy 中,O ⊙的参数方程为cos sin x y θθ=?? =? , (θ为参数), 过点(0,且倾斜角为α的直线l 与O ⊙交于A B ,两点. (1)求α的取值范围; (2)求AB 中点P 的轨迹的参数方程. 1(2)(2018全国卷II )在直角坐标系中,曲线的参数方程为(为参 数),直线的参数方程为(为参数). (1)求和的直角坐标方程; (2)若曲线截直线所得线段的中点坐标为,求的斜率. 1(3)(2018全国卷I )在直角坐标系 中,曲线的方程为,以坐标原点为 极点,轴正半轴为极轴建立极坐标系,曲线 的极坐标方程为 (1)求的直角坐标方程 (2)若 与有且仅有三个公共点,求 的方程 1(1)(2018全国卷III ) 在平面直角坐标系xOy 中,O ⊙的参数方程为cos sin x y θθ =?? =?, (θ为参数), 过点(0,且倾斜角为α的直线l 与O ⊙交于A B ,两点. (1)求α的取值范围; (2)求AB 中点P 的轨迹的参数方程. xOy C 2cos 4sin x θy θ=?? =? , θl 1cos 2sin x t αy t α=+??=+? , t C l C l (1,2) l

解:(1)O e 的参数方程为cos sin x y θθ =?? =?,∴O e 的普通方程为22 1x y +=,当90α=?时, 直线::0l x =与O e 有两个交点,当90α≠?时,设直线l 的方程为tan y x α=-直线l 与O e 1<,得2tan 1α>,∴tan 1α>或tan 1α<-,∴ 4590α?<

高中数学必修与选修课程下的整合

高中数学必修与选修课程下的整合随着社会进步,经济高速发展,社会对人才的要求也变得越来越高。然而,社会对我们的学校教育的要求更高,从而,教育为了适应社会发展,满足人们的心声,只有对教育制度及政策实施改革,顺应社会的发展,才能让我们的教育得到发展。根据社会对人才多样化得需求,适应学生不同潜能和发展的需要,在共同必修的基础上,各科课程标准分类别、分层次设置若干选修模块,供学生选择。根据社会、经济、科技、文化发展的需要和学生的兴趣,开设必修与若干选修模块,供学生选择。高中数学分为必修课和选修课:在课程安排上,《大纲》指出:必修课为所有学生必须掌握的,面向高校的需求,文史专业必须选修选修Ⅰ,理工专业和经济类需选修选修Ⅱ。必修课总计280课时,选修Ⅰ总计52课时,选修Ⅱ总计104课时。学校根据教学实际目标自行安排必修课、选修课的开设。每学期至少安排一个研究课程。在课程结构设置方面,《标准》有较大的变化,课程结构框架彻底打破了传统模式,在整个高中课程领域一学科一模块的统一安排下,进行高中课程框架的重新构建。 重视“双基”是我们的传统,基础知识和基本技能,“双基”需要与时俱进也是我们的共识,整体地把握数学课程是值得特别关注的。知识和技能是需要一个一个的学习,数学课也需要一节一节地上,但是,在高中数学课程中,还是有一些“内容”或“思想”更重要,更基础,贯穿在课程的始终。 在本次课程改革中,高中数学本着十大基本理念,构建共同的

基础,提供发展平台;提供多样课程,适应个性选择;倡导积极主动、勇于探索的学习方式;注意提高学生的数学思维能力;发展学生的数学应用意识;与时俱进地认识“双基”;强调本质;注意适度形式化;体现数学文化价值;注重信息技术与数学课程的整合;建立合理科学的评价体系。 在课程知识点方面,内容如下:必修1:包含集合、函数概念及基本初等函数(指数函数、对数函数、幂函数)三个章节内容。必修2:为立体几何初步和平面解析几何初步两个大方向。必修3:是算法初步、统计、概率。必修4:三角函数、平面向量、三角恒等变换。必修5:解三角形、数列、不等式。选修内容为:常用逻辑用语、圆锥曲线与方程、导数及应用、统计案例、推理与证明、数系的扩充与复数的引入、框图、常用逻辑用语、园锥曲线与方程、空间中的向量与立体几何、推理与证明、数系的扩充与复数的引入、计算原理、统计案例、概率、几何证明选讲、矩阵与变换、数列与差分、坐标系与参数方程、不等式选讲、初等数论初步、优选法与试验设计初步、统筹法与图论初步、风险与决策、开关电路与布尔代数、数学史选讲、信息安全与密码、球面上的几何、对称与群、欧拉公式与曲面分类、三等分角与数域扩充。这其中,必修中的集合贯穿于整个高中数学课程中,函数是高中教材中的主流,数列作为一种特舒的函数放在必修4中,同时,选修中的导数的应用和必修中的函数单调性联系起来,必修中的立体几何简单化,而在选修中加入几何学证明、球面上的几何和欧拉公式。在必修中体现了不

高考数学参数方程所有经典类型

高考数学参数方程所有经典类型(必刷题) 1.极坐标系与直角坐标系xoy 有相同的长度单位,以原点O 为极点,以x 轴正半轴为 极轴.已知直线l 的参数方程为1222 x t y ?=+????=??(t 为参数),曲线C 的极坐标方程为 2sin 8cos ρθθ=. (Ⅰ)求C 的直角坐标方程; (Ⅱ)设直线l 与曲线C 交于,A B 两点,求弦长||AB . 2.已知直线l 经过点1 (,1)2P ,倾斜角α=6 π,圆C 的极坐标方程为)4πρθ=-. (1)写出直线l 的参数方程,并把圆C 的方程化为直角坐标方程; (2)设l 与圆C 相交于两点A 、B ,求点P 到A 、B 两点的距离之积. 3.在平面直角坐标系xOy 中,已知曲线1C :cos sin θθ=??=? x y (θ为参数),将1C 上的所有 和2倍后得到曲线2C .以平面直角坐标系xOy 的原点O 为极点,x 轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线l :sin )4ρθθ+=. (1)试写出曲线1C 的极坐标方程与曲线2C 的参数方程; (2)在曲线2C 上求一点P ,使点P 到直线l 的距离最小,并求此最小值. 4.在直角坐标系xoy 中,直线l 的方程为40x y -+=,曲线C 的参数方程为

x 3cos y sin ααα ?=??=??(为参数). (1)已知在极坐标系(与直角坐标系xoy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,点P 的极坐标为(4,)2π ,判断点P 与直线l 的位置关系; (2)设点Q 是曲线C 上的一个动点,求它到直线l 的距离的最小值. 5.在平面直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐V 标方程为πcos =13ρθ? ?- ??? ,M ,N 分别为曲线C 与x 轴、y 轴的交点. (1)写出曲线C 的直角坐标方程,并求M ,N 的极坐标; (2)求直线OM 的极坐标方程. 6.(本小题满分10分)选修4-4:坐标系与参数方程 已知曲线 (为参数),(为参数). (1)化 的方程为普通方程; (2)若上的点P 对应的参数为为上的动点,求中点到直线 (为参数)距离的最小值.

高中数学选修4-4坐标系与参数方程完整教案

第一讲坐标系 一平面直角坐标系 课题:1、平面直角坐标系 教学目的: 知识与技能:回顾在平面直角坐标系中刻画点的位置的方法 能力与与方法:体会坐标系的作用 情感、态度与价值观:通过观察、探索、发现的创造性过程,培养创新意识。 教学重点:体会直角坐标系的作用 教学难点:能够建立适当的直角坐标系,解决数学问题 授课类型:新授课 教学模式:启发、诱导发现教学. 教具:多媒体、实物投影仪 教学过程: 一、复习引入: 情境1:为了确保宇宙飞船在预定的轨道上运行,并在按计划完成科学考察任务后,安全、准确的返回地球,从火箭升空的时刻开始,需要随时测定飞船在空中的位 置机器运动的轨迹。 情境2:运动会的开幕式上常常有大型团体操的表演,其中不断变化的背景图案是由看台上座位排列整齐的人群不断翻动手中的一本画布构成的。要出现正确的背景 图案,需要缺点不同的画布所在的位置。 问题1:如何刻画一个几何图形的位置? 问题2:如何创建坐标系? 二、学生活动 学生回顾 刻画一个几何图形的位置,需要设定一个参照系 1、数轴它使直线上任一点P都可以由惟一的实数x确定 2、平面直角坐标系 在平面上,当取定两条互相垂直的直线的交点为原点,并确定了度量单位和这两条直线的方向,就建立了平面直角坐标系。它使平面上任一点P都可以由惟一的实数对(x,y)确定 3、空间直角坐标系 在空间中,选择两两垂直且交于一点的三条直线,当取定这三条直线的交点为原点,并确定了度量单位和这三条直线方向,就建立了空间直角坐标系。它使空间上任一点P 都可以由惟一的实数对(x,y,z)确定 三、讲解新课: 1、建立坐标系是为了确定点的位置,因此,在所建的坐标系中应满足: 任意一点都有确定的坐标与其对应;反之,依据一个点的坐标就能确定这个点的位置 2、确定点的位置就是求出这个点在设定的坐标系中的坐标 四、数学运用 例1 选择适当的平面直角坐标系,表示边长为1的正六边形的顶点。

高考数学参数方程大题

高考数学参数方程大题 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

高三最后一题 1、以平面直角坐标系的原点为极点,x 轴正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,设点A 的极坐标为)6 ,2(π ,直线l 过点A 且与极轴成角 为 3π,圆C 的极坐标方程为)4 cos(2πθρ-=. (1)写出直线l 参数方程,并把圆C 的方程化为直角坐标方程; (2)设直线l 与曲线圆C 交于B 、C 两点,求AC AB .的值. 【答案】(1)直线l C 的直角坐标方程为02222=--+y x y x ;(2 2、已知曲线C 的参数方程为31x y α α ?=+??=+??(α为参数),以直角坐标系原点 为极点,x 轴正半轴为极轴建立极坐标系. (1)求曲线C 的极坐标方程,并说明其表示什么轨迹. (2)若直线的极坐标方程为1 sin cos θθρ -= ,求直线被曲线C 截得的弦长. 【答案】(1)6cos 2sin ρθθ=+(2 3、在直角坐标系xOy 中,直线l 的参数方程为t t y t x (22522 5??? ??? ?+=+ -=为参数),若以 O 点为极点,x 轴正半轴为极轴建立极坐标系,则曲线C 的极坐标方程为 θρcos 4=。 (1)求曲线C 的直角坐标方程及直线l 的普通方程; (2)将曲线C 上各点的横坐标缩短为原来的 2 1 ,再将所得曲线向左平移1个单位,得到曲线1C ,求曲线1C 上的点到直线l 的距离的最小值 【答案】(1)() 422 2 =+-y x ,052=+-y x (2 )

(完整word)高中数学选修2-2主要内容

第一章 导数及其应用 1.1 变化率与导数 问题中的变化率可用式子 1 212) ()(x x x f x f --表示, 称为函数f (x )从x 1到x 2的平均变化率 若设12x x x -=?, )()(12x f x f f -=? (这里x ?看作是对于x 1的一个“增量”可用x 1+x ?代 替 x 2, 同 样 ) ()(12x f x f y f -=?=?)则平均变化率为 = ??=??x f x y x x f x x f x x x f x f ?-?+=--)()()()(111212 在前面我们解决的问题: 1、求函数2 )(x x f =在点(2,4)处的切线斜率。 x x x f x f x y ?+=?-?+=??4)()2(,故斜率为4 2、直线运动的汽车速度V 与时间t 的关系是12 -=t V ,求o t t =时的瞬时速度。 t t t t v t t v t V o o o ?+=?-?+=??2) ()(,故斜率为4 二、知识点讲解 上述两个函数)(x f 和)(t V 中,当x ?(t ?)无限趋近于0时,t V ??(x V ??)都无限趋近于一个常数。 归纳:一般的,定义在区间(a ,b )上的函数)(x f ,)(b a x o ,∈,当x ?无限趋近于0 时, x x f x x f x y o o ?-?+=??)()(无限趋近于一个固定的常数A ,则称)(x f 在o x x =处可导,并称A 为)(x f 在o x x =处的导数,记作)('o x f 或o x x x f =|)(', 函数y =f (x )在x =x 0处的瞬时变化率是: 000 0()()lim lim x x f x x f x f x x ?→?→+?-?=?? 我们称它为函数()y f x =在0x x =出的导数,记作'0()f x 或0' |x x y =,即

相关文档
最新文档