2017 年北京大学“博雅计划”自主招生试题及解析

合集下载

2017年北京大学自主招生

2017年北京大学自主招生
2 3 5 7
19.已知圆 M 与两圆 x y 1 和 x y 6 x 7 0 都外切,则动圆 M 的圆 心轨迹是( ) A. 双曲线 B. 双曲线的一支 C. 抛物线 D. 前三个答案都不对 20.在△ABC 中, sin A A. 锐角三角形
4 4 , cos B ,则该三角形是( 5 13
C. 直角三角形
)
B. 4
C. 5
D. 前三个答案都不对
B. 钝角三角形
D. 前三个答案都不对
6 2 4
C.
1 3 8
D. 前三个答案都不对
12.已知某个三角形的两条高的长度分别为 10 和 20,则它的第三条高的长度的取 值范围为( )
3 ) 1 cos 的值为( 5 5 5 3 5 A. 1 B. C. 1 D. 前三个答案都不对 5 3 4 5.在圆周上逆时针摆放了 A, B, C , D 四个点,已知 BA 1 , BC 2 , BD 3 , ABD DBC ,则该圆的直径为( ) A. 2 5 B. 2 6 C. 2 7 D. 前三个答案都不对 6.已知三角形的三条中线长度分别为 9,12,15 ,则该三角形的面积为( ) A. 69 B. 72 C. 75 D. 前三个答案都不对 2 7.已知 x 为实数,使得 2, x, x 互不相同,且其中有一个数恰为另一个数的 2 倍,则这样的实数 x 的个数为( )
1 x x 1 在区间 1, 2 上的最大值与最小值的差所 2
2 是实数,则 z i 的最小值等于( ) z 3 2 A. B. C. 1 D. 前三个答案都不对 3 2 11.已知正方形 ABCD 的边长为 1, P 1, P 2, P 3, P 4 是正方形内部的 4 个点,使得 ABP 1 , BCP 2 , CDP 3 , DAP 4 都是正三角形,则四边形 P 1P 2P 3P 4 的面积等于( )

2017年北京大学博雅计划数学试题分析

2017年北京大学博雅计划数学试题分析

2017年北京大学博雅计划数学试题分析选择题共20小题(51题至70题);在每小题的四个选项中,只有一项符合题目要求,请把正确的代号填在表格中,选对得5分,选错扣1分,不选得0分.51.已知实数,a b 满足:22(4)(1)5(21)a b ab ,则1(b a a 的值为( ) A.32 B.52 C.72D.前三个答案都不对 51.解:由22(4)(1)5(21)a b ab ,展开,得222241090.a b b a ab 配方,得22(3)(2)0ab a b ,从而3ab ,12b a ,从而117(3.22b b a ab a a 故选C.52.函数21()|2||||1|2f x x x x,[1,2]x 上的最大值与最小值的差所在的区间是( )A.(2,3)B.(3,4)C.(4,5)D.前三个答案都不对52.B 53.不等式组2||1,3||5,y x y x所表示的平面区域的面积为( ) A.6 B.335 C.365 D.前三个答案都不对 53.C 54.π3π(1cos cos55 的值为( )A.1B.114C.1D.前三个答案都不对 54.解:π3ππ2ππ2ππ2π(1cos cos)(1cos cos 1cos cos cos cos .55555555令π2πcos cos 55x ,π2πcos cos 55y , 则222π4πcos 1cos 1π2π12ππ155cos cos (cos cos )55222552xy y ,从而12x ,即π2π1cos cos .552 又因为2π4πsin sin π2π155cos cos π2π5542sin sin 55,从而 原式11111.244故选B. 55.在圆周上逆时针摆放了4个点A 、B 、C 、D .已知1BA ,2BC ,3BD ,ABD DBC ,则该圆的直径为( )A.B.C. D.前三个答案都不对55.D56.已知三角形中线长度分别为9、12、15,则该三角形的面积为( )57.已知x 为实数,使得2、x 、2x 互不相同,且其是有一个数恰为别一个数的2倍,则这样的x 的个数为( )A.3B.4C.5D.前三个答案都不对 57.B 58.设整数a 、m 、n 满足 则这样的整数组(,,)a m n 的个数为( )A.0B.1C.2D.前三个答案都不对58.C59.设111123571111log πlog πlog πlog πS ,则不超过S ,且与S 最接近的整数为( )A.5B.4C.5D.前三个答案都不对59.A60.已知复数z 满足2z z是实数,则|i |z 的最小值等于( ) A.3 B.2C.1D.前三个答案都不对 60.解:设复数i z a b ,从而 222222222(i)22i i ((i a b a b z a b a b a b z a b a b a b a b , 由题意得222a b ,即在复平面内,复数z 对应的点在圆222a b 上运动,而|i |z 的几何意义是动点(,)P a b 到定点(0,1) 1.从而选D.61.已知正方形ABCD 的边长为1,1P 、2P 、3P 、4P 是正方形内部的4个点,使得1ABP 、2BCP 、3CDP 、4DAP 都是正三角形,则四边形1234PP P P 的面积等于( )A.2B.4C.18D.前三个答案都不对 61.解:以C 为坐标原点,CD ,CB 所在直线分别为x 、y 轴建立平面直角坐标系.由题意知11(,122P、21,22P、31(,)22P、41(1,)22P ,易知四边形1234PP P P为正方形,从而12342132411||||1)222P P P S PP P P 四边形P 选A.62.已知某个三角形的两条高线的长度分别为10和20,则它的第三条高线长度的取值区间为( ) A.10(,5)3 B.20(5,3 C.20(,20)3D.前三个答案都不对 62.解:设ABC 的面积为S ,所求的第三条高线为长为h ,则三边长分别为210S ,220S ,2S h .则22.1020S S 由三角形的三边关系,得222,20102222010.S S S h S S Sh 解得20203h ,从而选C. 63.正方形ABCD 与点P 在同一个平面内,已知该正方形的边长为1,且222||||||PA PB PC ,则||PD 的最大值为( )A.2B.C.1D.前三个答案都不对63.解:以A 为坐标原点,AB 、AD 所在直线分别为x 、y 轴建立平面直角坐标系,则(0,0)A 、(0,1)B 、(1,1)C 、(0,1)D ,设(,)P x y ,由题意得2221x y y ,即22(1)2x y ,即动点P 在圆22(1)2x y 上运动.||PD 的长即为圆上动点P 到定点(0,1)D 的距离,易知D 距离圆心的距离为2,从而最大值为2选A.64. 方程43log (23)log (42)x x x x的实根个数为( ) A.0 B.1 C.2 D.前三个答案都不对64.解:令43log (23)log (42)x x x x t ,从而234x x t ,423x x t,两式相加,得4343x x t t,令()43x x f x ,从而得()()f x f t .因为()f x 为增函数,从而.x t 所以原方程只有一个根,选B.65.使得2x x 和222x x都是整数的正实数x 的个数为( ) A.1 B.2 C.无穷多 D.前三个答案都不对 65.解:因这2x x 为整数,故22(x x 必为整数,即2244x x 为整数,由于222x x 为整数,所以22x 为整数.从而2x 必为2的因数.从而21x 或22x .因为0x ,所以1x或x当1x 时,2x x为整数,满足题意;当x 2x x不是整数,不合题意,舍去. 故满足题意的实数x 只有 1.x 故选A. 66.满足4(())()f f x f x 的实系数多项式()f x 的个数为( )A.2B.4C.无穷多D.前三个答案都不对66.D67.使得327p p 为平方数,且不大于100的素数p 的个数为( )A.0B.1C.2D. 前三个答案都不对67.解:因为3227(7)p p p p ,因为若327p p 是平方数,由27p p 无整数解,从而7p 为平方数.若p 为个位数字,且p 为质数,从而p 所有可能的取值为2,3,5,7,因为平方数的个位数字只可能是0,1,4,5,6,9,检验知只有2符合题意;若p 为两位质数,则7p 必为偶数,因为两位平方数的未两位数字是0偶、1偶、4偶、9偶、25、6奇,从而7P 的未两位数字必是0偶、4偶、6奇三种情况.(1)若p 7 未两位是0偶的形式,则p 只能是13、23、53、73、83,而此时7p 不是平方数;(2)若p 7 未两位是偶4的形式,则p 只能是17、37、47、67、97,而此时7p 不是平方数;(3)若p 7 未两位是6奇的形式,则p 只能是29、89,检验知29符号题意.综上知2p 或29p ,满足条件的p 只有2个,故选C.68. 函数()(1)(2)(3)f x x x x x 的最小值为( )A.1B.32C.2D.前三个答案都不对 68.解:令13[(1)(2)(3)]42t x x x x x ,从而3.2x t 所以22311319()()()(().222244f xg t t t t t t t 再令2221195[(()]2444m t t t ,从而254t m , 于是2()()(1)(1)1 1.g th m m m m当0m ,即2t (此时322x )时“=”成立.从而选A. 69.动圆与两圆1:C 221x y 和2:C 22670x y x 都外切,则动圆的圆心轨迹是( )A.双曲线B.双曲线的一支C.抛物线D.前三个答案都不对69.解:由圆2C 的方程22670x y x ,得22(3)2x y ,从而可知2C 的圆心为(3,0),半径为2r ,从而可知1C 与圆2C 相外离.设动圆的圆心P ,从而212121||||1 1.PC PC r r r r 由双曲线的定义可知,动圆的圆心轨迹是双曲线靠近2C 的那支,即双曲线的右支,故选B.70.在ABC 中,4sin 5A ,4cos 13B ,则该三角形是( ) A. 锐角三角形 B.钝角三角形 C.无法确定 D.前三个答案都不对70.解:4cos 13B ,得sin 13B ,由于4sin 5A 13 ,所以π2A B ,从而3sin 5A ,所以434cos cos()sin sin cos cos 0513513C A B A B A B ,从而C 为锐角,所以ABC 为锐角三角形. 故选A.总体评价1.保持了近几年北京大学博雅计划自主招生的几格(1)仍然是20道单选题,选对得5分,选错扣1分,不选得0分;(2)时间紧,题量大.三个小时内要完成语、数、外三科试题的解答,很少有学生完成;(3)D选项一律是“前三个答案都不对”.很具有迷惑性,有时候甚至比较棘手.例如第5题,答案数字不怎么完整.在考场时间紧张的情况下,是否相信自己的判断,对考生来说是一个考验;再如第9题,答案明显是个负数,但由于D选项的存在,在只有A选项为负整数的情况下仍然需要估算;(4)风格灵巧,强调多想少算.比如第1题,看出来配方的技巧就可以秒杀.如果硬算的话,可能比较造成悲剧;(5)不追求知识的全面覆盖.数论、函数、平面几何、三角等一向是北京大学各种自主招生考试中的高频考点.在2017年的自主招生考试中依然也是考查的重点. 而概率、统计、导数、立体几何等考点一向被北京大学冷落,2017年的这场考试也不例外;(6)经典试题有一定的重现率.比如第6题就是平面几何中的经典问题,第9题中用到对数运算公式等,这在北京大学的自主招生考试中也是屡见不鲜的.2.相对于近几年的北京大学的各场自主招生的相关考试而言,这份试卷的难度不高,在平均线以下;3.有较好的区分度,能够达到北京大学自主招选拔的目的.与高考试题的对比1.有些试题即使放在高考中也不是难题.比如第19题、第20题.这类题基本每份自主招生的试卷中都有,但一般来讲数量较少;2.有些试题的考点同时也是高考考查的重点,但相对高考而言,综合性较强.考生若想在有限的时间内顺利解决的话,得有很好的基本功. 比如第18题,如果做成四次函数求最值,将会十分麻烦.代数变形后进行换元,处理成二次函数才是解决此类问题的正途.再如第14题,每一步可能都不算难,用到的知识也是高考要求的,但步骤一多,考生可能就处理不好;3.一多半的试题或者为是高考重点要求的(如数论,同时也是自主招生考试中考查最多的知识点,但高考很少涉及),或者是在高考大纲范围内,但考查方法较为灵活(如12题,需要将多个高量之间的本质关系想清楚才能顺利解决).对考生的启示1.有针对性的训练是有必要的.比如在高考中很少考到数论的相关问题,即使考到,最多无非是奇偶性、简单的整除之类常识性的知识,但自主招生考试对数论的要求却较高.事实上,数论的相关问题很容易体现出“多想少算”的特点,非常符合自主招生的选拔要求.再如平面几何,高中生很可能还比不上初中生,毕竟高考中的平面几何问题都非常简单.如果平时没有有针对性的训练,考场上遇到不熟悉的考点就很容易抓瞎,遇到那些虽然在高考大纲范围内,但风格不太一样的试题,也很难顺利解决.2.研习真题真的很重要往年的自主招生试题,全国高中数学联赛的试题,甚至自省的预赛题,都是很好的备考材料.平时练习多思考、多总结,考场上遇到原题或者改编题的可能性就会相当大.3.试题的难度在总体上会保持稳定2017年北京大学博雅计划的自主招生试题相对容易,这只是正常的波动.2018年可能会比2017年稍微难一些,但难度应该也不会太大,对此大家应该有心理准备.4.选择题的“考场技巧”平时需要多练最近两年北京大学的博雅计划自主招生考试全是选择题,必要的时候可能猜.事实上,一道试题即使不完全会,也不能空着.可能会有同学问:“选错不是倒扣1分吗?”可是如果我们从数学角度算算期望的话,一道试题随机选择的得分期望是0.5分.如果能排除两个错误选项的话,得分的期望值就会更高.。

2017年北京大学自主招生数学试题及其参考答案

2017年北京大学自主招生数学试题及其参考答案

2017年北京大学自主招生数学试题及其参考答案甘志国;张荣华【期刊名称】《高中数理化》【年(卷),期】2018(000)005【总页数】5页(P19-23)【作者】甘志国;张荣华【作者单位】北京丰台二中;山西临汾三中【正文语种】中文2017年北京大学自主招生数学试题,包含20道单项选择题,试题简洁基础,涵盖面广,对自主招生及高考复习备考都有极高的参考价值.本文将给出其详细解答.1. 若实数 a、b 满足 (a2+4)(b2+1)=5(2ab-1),则的值为( ).A 3/2;B 5/2;C 7/2;D 前3个答案都不对解法1 由题设,可得(a2b2-6ab+9)+(a2-4ab+4b2)=0,(ab-3)2+(a-2b)2=0, ab=3且a=2b,解法2 由题设,可得(a2+4)b2-10a·b+(a2+9)=0.①因为关于b的一元二次方程①有实数解,所以Δ=(-10a)2-4(a2+4)(a2+9)=-4(a2-6)2≥0,因为关于b的一元二次方程①有2个相等的实数解,由根与系数的关系可得所以ab=3,从而故选C.2. 函数在[-1,2]上的最大值与最小值的差所在的区间是( ).A (2,3);B (3,4);C (4,5);D 前3个答案都不对解法1 可得当时,f(x)的取值范围分别是可得f(x)在[-1,2] 上的值域是所以 f(x)在[-1,2] 上的最大值与最小值的差是再由可得选项为B.解法2 在解法1中,已得可知函数f(x)在每一段的图象都是抛物线段,最值只可能在端点处或对称轴处取到.而抛物线段的端点是对称轴分别是得其中的最大值最小值就分别是函数 f(x)在[-1,2] 上的最大值与最小值.所以函数 f(x)在[-1,2] 上的最大值与最小值的差是再由可得选项为B.3. 不等式组所表示的平面区域的面积为( ).A 6;B 33/5;C 36/5;D 前3个答案都不对图1可得题设中的平面区域即图1中的四边形ABCD,其中进而可求得四边形ABCD的面积为选项为C.的值为( ).前3个答案都不对由题意可得1+2coscos+coscos=1+coscos=选项为B.5. 在圆周上逆时针摆放了 4个点A、B、C、D,若BA=1,BC=2,BD=3,∠ABD=∠DBC,则该圆的直径为( ).前3个答案都不对图2解法1 如图2所示,可设∠ABD=∠DBC=θ(0<θ<π).由∠ABD=∠DBC,可得DA=DC.在△ABD,△BCD中,由余弦定理可得12+32-2·1·3cos θ=22+32-2·2·3cos θ,θ=π/3.连结AC,在△ABC中,由余弦定理可求得在△ABC中,由正弦定理可求得△ABC的外接圆直径为解法2 如图2所示,由托勒密定理AB·CD+AD·BC=AC·BD,可得CD+2AD=3AC.由∠ABD=∠DBC,可得CD=AD,所以CD=AD=AC,得正再由题设可得连结AC,在△ABC中,由余弦定理可求得在△ABC中,由正弦定理可求得△ABC的外接圆直径为故选项为D.6. 若三角形3条中线长度分别为 9,12,15,则该三角形面积为( ).A 64;B 72;C 90;D 前3个答案都不对设△ABC的3边长分别为AB=c,BC=a,CA=b,3条中线长分别为AD=9,BE=12,CF=15.由余弦定理,可证得“平行四边形各边的平方和对于其2条对角线的平方和”.由此结论,可得把它们相加后,可得3(a2+b2+c2)=(2·3)2(52+32+42)=2(2·3·5)2,a2+b2+c2=600.进而可求得再由余弦定理,得所以△ABC的面积为故选项为B.7. 若x 为实数,使得 2,x,x2 互不相同,且其中有一个数恰为另一个数的 2 倍,则这样的实数 x的个数为( ).A 3;B 4;C 5;D 前3个答案都不对由题设知,包括下面的6种情形: 1) 由2=2·x,得x=1,检验知,不满足题意;2) 由x=2·2,得x=4,检验知,满足题意;3) 由2=2·x2,得x=±1,经检验知,仅有x=-1满足题意;4) 由x2=2·2,得x=±2,经检验知,仅有x=-2满足题意;5) 由x=2·x2,得x=0或检验知,仅有满足题意;6) 由x2=2·x,得x=0或2,检验知,均不满足题意.综上,可得进而可知选B.8. 若整数 a,m,n 满足则这样的整数组 (a,m,n) 的组数为( ).A 0;B 1;C 2;D 前3个答案都不对已知|a|、m、n∈N*,m>n,且此时题中的等式等价于②进而可得③所以8(m+n-a2)=0,a2=m+n(否则式③左边是无理数,右边是整数,不可能).再由式②得mn=20 (m>n,m、n∈N*),所以20=mn>n2,n≤4,因而n=1,2或4.可得(n,m)=(1,20),(2,10)或(4,5).再由a2=m+n(|a|∈N*),可得(a,m,n)=(±3,5,4),进而可知选C.9. 若则不超过 S且与 S 最接近的整数为( ).A -5;B 4;C 5;D 前3个答案都不对可得又因为所以不超过 S且与 S 最接近的整数为[S]=-5.故选A.10. 若复数 z 满足是实数,则 |z+i|的最小值等于( ).C 1;D 前3个答案都不对可设z=r(cos θ+i sin θ)(r>0),得由是实数,得sin θ=0或即当sin θ=0时,可得z是非零实数,故|z+i|=|z-(-i)|,表示复平面xOy上的点-i与x轴上非原点O的点z之间的距离.由“垂线段最短”可得|z+i|>1.当即时,可得当且仅当时,因为所以故选D.11. 已知正方形A、B、C、D的边长为1,若P1、P2、P3、P4是正方形内部的4个点使得△ABP1,△BCP2,△CDP3和△DAP4都是正三角形,则四边形P1P2P3P4的面积等于( ).前3个答案都不对图3如图3所示,建立平面直角坐标系xOy后,可求得可得四边形P1P2P3P4的对角线互相垂直平分且相等,所以四边形P1P2P3P4是正方形,其面积为故选A.12. 已知某个三角形的2条高的长度分别为10和20,则它的第三条高的长度的取值范围是( ).前3个答案都不对设该三角形3边分别为a、b、c,这些边上的高分别为10,20,h(h>0),可得2S△ABC=10a=20b=ch, a=2b, c=20b/h,进而可得该三角形3边分别为这样的三角形存在的充要条件是即故选C.13. 已知正方形ABCD与点P在同一平面内,该正方形的边长为1,且|PA|2+|PB|2=|PC|2,则|PD| 的最大值为( ).前3个答案都不对以A为原点,建立平面直角坐标系xAy,可得A(0,0),B(1,0),C(1,1),D(0,1).设P(x,y),由|PA|2+|PB|2=|PC|2,可得(x2+y2)+[(x-1)2+y2]=(x-1)2+(y-1)2,x2+y2=1-2y,因而|PD|2=x2+(y-1)2=x2+y2+1-2y=进而可得:当且仅当点P的坐标是时, 故选A.14. 方程log4(2x+3x)=log3(4x-2x)的实根个数为( ).A 0;B 1;C 2;D 前3个答案都不对可设log4(2x+3x)=log3(4x-2x)=t,得所以4t-3x=4x-3t, 3t+4t=3x+4x. 因为f(u)=3u+4u (u∈R)是增函数,所以t=x,得设可得它是减函数,且所以函数g(x)有唯一的零点,进而可知选B.15. 使得和都是整数的正实数x的个数为( ).A 1;B 2;C 无穷多;D 前3个答案都不对由及和都是整数,可得是正整数,因而可设由是整数,可得n=1或或1.再由是整数,可得x=1.进而可知选A.16. 满足f(f(x))=f4(x)的实系数多项式f(x)的个数为( ).A 2;B 4;C 无穷多;D 前3个答案都不对若f(x)是实数常数,则可设f(x)=k (k∈R),由题设得k=k4,k=0或1,得f(x)=0或f(x)=1.若f(x)不是实数常数,则可设f(x)=anxn+…+a2x2+a1x+a0(an,…,a2,a1,a0∈R;an≠0,n∈N*).再由题设,可得an(anxn+…+a2x2+a1x+a0)n+…+a1(anxn+…+a2x2+a1x+a0)+a0=(anxn+…+a2x2+a1x+a0)4.比较该等式两边的首项,得解得因而可设f(x)=x4+bx3+cx2+dx+e(b、c、d、e∈R),再由题设,可得(x4+bx3+cx2+dx+e)4+b(x4+bx3+cx2+dx+e)3+c(x4+bx3+cx2+dx+e)2+d(x4+bx3+cx2+dx+e)+e=(x4+bx3+cx2+dx+e)4.即b(x4+bx3+cx2+dx+e)3+c(x4+bx3+cx2+dx+e)2+d(x4+bx3+cx2+dx+e)+e=0.比较该等式两边x12的系数,可得b=0,所以c(x4+bx3+cx2+dx+e)2+d(x4+bx3+cx2+dx+e)+e=0.再比较该等式两边x8的系数,可得c=0,所以d(x4+bx3+cx2+dx+e)+e=0.又比较该等式两边x4的系数,可得d=0,所以e=0,所以f(x)=x4.检验知f(x)=x4满足题设,从而满足题设的f(x)有且仅有3个:f(x)=0或f(x)=1或f(x)=x4.故选D.17. 使得p3+7p2为完全平方数的不大于100的素数p的个数为( ).A 0;B 1;C 2;D 前3个答案都不对由已知,设p2(p+7)=a2 (a∈N*),因而p|a,设a=pb(b∈N*),得p+7=b2 (b∈N*).由p是不大于100的素数,可得9≤b2≤106,3≤b≤10,因而p+7=b2=9,16,25,36,49,64,81或100. p=2,9,18,29,42,57,64或93.再由p是素数,可得p=2或29,进而可得答案为C.18. 函数f(x)=x(x+1)(x+2)(x+3)的最小值为( ).A -1;B -1.5;C -2;D 前3个答案都不对由已知可得f(x)=x(x+3)·(x+1)(x+2)=(x2+3x)(x2+3x+2)=(x2+3x+1)2-1.设得进而可知选A.19. 若动圆与两圆x2+y2=1和x2+y2-6x+7=0都外切,则动圆圆心的轨迹是( ).A 双曲线;B 双曲线的一支;C 抛物线;D 前3个答案都不对可得圆x2+y2=1的圆心是O(0,0),半径是1;圆x2+y2-6x+7=0的圆心是A(3,0),半径是设动圆圆心为M(x,y),半径是r.再由题设“……都外切”,可得因而所以动圆的圆心M的轨迹是以O、A为焦点,实半轴长为的双曲线的右支.故选B.20. 在△ABC中,若则该三角形是( ).A 锐角三角形;B 钝角三角形;C 无法确定;D 前3个答案都不对由题设,可得B是锐角,所以再由正弦定理,可得B>A,进而可得A是锐角,所以所以cosC=-cos(A+B)=sin AsinB-cos Acos B=得C是锐角,因而△ABC是锐角三角形.故选A.(本文系北京市教育学会“十三五”教育科研滚动立项课题“数学文化与高考研究”(课题编号FT2017GD003,课题负责人:甘志国)阶段性研究成果.)。

北大博雅自主招生数学真题

北大博雅自主招生数学真题

辅导2与⾼考题的对比2017年北京⼤学⾃主招⽣数学试题1.保持了近年北⼤⾃招试题的风格.(a)20道单选题,选对得5分,选错扣1分,不选得0分.(b)时间紧张.三个⼩时内要完成语数外三科试题的解答,很少有学⽣能做完.(c)D选项⼀律是“前三个答案都不对”,很有迷惑性,有时候甚⾄⽐较棘⼿.例如第5题,答案数字不怎么整,考场上时间紧张的情况下,是否相信⾃⼰的判断选D,对考⽣来说是个考验;再⽐如第9题,答案明显是个负整数,但由于D选项的存在,在只有A选项为负整数的情况下仍然需要进⾏估算.(d)风格灵巧,强调多想少算.⽐如第1题,看出来配⽅的技巧就可以秒掉,如果硬算的话,考场上可能就悲剧了.(e)不追求知识点的全⾯覆盖.数论、函数、平⾯⼏何、三⾓等⼀向是北⼤各种⾃招相关的考试中的⾼频考点,在2017年的⾃主招⽣考试中也依然是考察重点.⽽概率、统计、导数、⽴体⼏何等考点⼀向被北⼤冷落,这场考试也不例外.(f)经典试题有⼀定的重现率.⽐如第6题就是平⾯⼏何中的经典问题,第9题中⽤到的对数运算公式在⾃招考试中也是屡见不鲜.2.相对于近年北⼤的各场⾃招相关的考试来说,这份试卷的难度不⾼,在平均线以下.3.有较好的区分度,可以达到北⼤⾃主选拔的⽬的.1.有些试题即使放到⾼考中也不是难题,⽐如第19题、第20题.这类题基本每份⾃招试卷中都有,但⼀般来讲数量较少.2.有些试题的考点同时也是⾼考的重要考点,但是综合性较强,考⽣要想短时间内顺利解决的话,得有很好的基本功.⽐如第18题,如果做成四次函数求最值就⿇烦了,代数变形之后换元,处理成⼆次函数才是正道.再⽐如第14题,每⼀步可能都不难,⽤到的知识也都是⾼考要求的,但是步骤⼀多,考⽣可能就会卡壳.3.还有⼀多半的试题,或者考点不是⾼考重点要求的,⽐如数论,恐怕是⾃主招⽣中考察最多的知识点,但⾼考却很少涉及;或者考点也许在⾼考范围内,但考法较为灵活,⽐如第12题,需要将多个变量之间的本质关系想清楚才能顺利解决.光光⼦辅导1.⼀定要有针对性的训练.⽐如⾼考很少考到数论相关的问题,即使考到,最多也就⽤到奇偶性、简单的整除之类常识性的知识,但是⾃主招⽣对于数论的要求却较⾼.事实上,数论相关的问题很容易体现出“多想少算”的特点,⾮常符合⾃招的选拔需求.再⽐如说平⾯⼏何,⾼中⽣很可能还⽐不上初中⽣,毕竟⾼考中的平⾯⼏何问题都⾮常简单.如果平时没有针对性的训练,考场上遇到不熟悉的考点很容易抓瞎;遇到那种考点在⾼考范围内,但风格不太⼀样的试题,也很难顺利解决.2.往年的⾃招真题,还有全国联赛的⼀试题、预赛题,都是很好的准备材料.平时多练习多思考多总结,考场上遇到原题或者改编题的可能性相当⼤,那就赚到了.3.试题难度总体上会保持稳定.今年北⼤⾃主招⽣数学试题相对容易,只是正常波动,明年很可能⽐今年稍难.对此⼤家要有⼼理准备.4.选择题的“考场技巧”平时要多练,毕竟北⼤这两年的⾃招、博雅全是选择题.必要的时候可以猜.事实上,⼀道题即使完全不会,也不能空着.有同学可能会问,选错不是倒扣1分吗?可是我们算算期望,⼀道题随机选择的得分期望是0.5分呀!如果能排除两个错误选项呢?期望只会更⾼.1.已知实数a,b 满⾜(a 2+4)(b 2+1)=5(2ab −1),则b Åa +1aã的值为()A.1.5B.2.5C.3.5D.前三个答案都不对解析C .2.函数f (x )= x 2−2 −12|x |+|x −1|,x ∈[−1,2]上的最⼤值与最⼩值的差所在的区间是()A.(2,3)B.(3,4)C.(4,5)D.前三个答案都不对解析B .3.不等式组y ⩾2|x |−1,y ⩽−3|x |+5所表⽰的平⾯区域的⾯积为()A.6B.335C.365D.前三个答案都不对解析C .4.(1+cos π5)Å1+cos 3π5ã的值为()A.1+1√5 B.1+14C.1+1√3D.前三个答案都不对解析B .光⼦辅导5.在圆周上逆时针摆放了4个点A,B,C,D ,已知BA =1,BC =2,BD =3,∠ABD =∠DBC ,则该圆的直径为()A.2√5B.2√6C.2√7D.前三个答案都不对解析D .6.已知三⾓形三条中线长度分别为9,12,15,则该三⾓形⾯积为()A.64B.72C.90D.前三个答案都不对解析B .7.已知x 为实数,使得2,x,x 2互不相同,且其中有⼀个数恰为另⼀个数的2倍,则这样的实数x 的个数为()A.3B.4C.5D.前三个答案都不对解析B .8.设整数a,m,n 满⾜√a 2−4√5=√m −√n ,则这样的整数组(a,m,n )的个数为()A.0B.1C.2D.前三个答案都不对解析C .9.设S =1log 12π+1log 13π+1log 15π+1log 17π,则不超过S 且与S 最接近的整数为()A.−5B.4C.5D.前三个答案都不对解析A .10.已知复数z 满⾜z +2z 是实数,则|z +i |的最⼩值等于()A.√33 B.√22C.1 D.前三个答案都不对解析D .11.已知正⽅形ABCD 的边长为1,P 1,P 2,P 3,P 4是正⽅形内部的4个点使得△ABP 1,△BCP 2,△CDP 3和△DAP 4都是正三⾓形,则四边形P 1P 2P 3P 4的⾯积等于()A.2−√3 B.√6−√24C.1+√38D.前三个答案都不对解析A .光⼦辅导12.已知某个三⾓形的两条⾼的长度分别为10和20,则它的第三条⾼的长度的取值区间为()A.Å103,5ãB.Å5,203ãC.Å203,20ãD.前三个答案都不对解析C .13.正⽅形ABCD 与点P 在同⼀平⾯内,已知该正⽅形的边长为1,且|P A |2+|P B |2=|P C |2,则|P D |的最⼤值为()A.2+√2B.2√2C.1+√2 D.前三个答案都不对解析A .14.⽅程log 4(2x +3x )=log 3(4x −2x )的实根个数为()A.0B.1C.2D.前三个答案都不对解析B .15.使得x +2x 和x 2+2x2都是整数的正实数x 的个数为()A.1 B.2C.⽆穷多D.前三个答案都不对解析A .16.满⾜f (f (x ))=f 4(x )的实系数多项式f (x )的个数为()A.2 B.4C.⽆穷多D.前三个答案都不对解析D .17.使得p 3+7p 2为平⽅数的不⼤于100的素数p 的个数为()A.0B.1C.2D.前三个答案都不对解析C .18.函数f (x )=x (x +1)(x +2)(x +3)的最⼩值为()A.−1B.−1.5C.−2D.前三个答案都不对解析A .19.动圆与两圆x 2+y 2=1和x 2+y 2−6x +7=0都外切,则动圆的圆⼼轨迹是()A.双曲线B.双曲线的⼀⽀C.抛物线D.前三个答案都不对解析B .光⼦辅导20.在△ABC 中,sin A =45,cos B =413,则该三⾓形是()A.锐⾓三⾓形 B.钝⾓三⾓形C.⽆法确定D.前三个答案都不对解析A .。

9大高校自主招生考试真题汇总(2017年)

9大高校自主招生考试真题汇总(2017年)

2017年C9高校自主招生考试真题汇总一、北京大学2017年1+北京大学有1522人通过了自主招生初审,最终767人拿到最终优惠资格1、笔试模式自主招生笔试分为常规笔试+现场作文(1)常规笔试大多数为优秀营员,时间从8:00-11:00(2容,么阅读3试方不同全面深入的评价与考核。

李袆说,北大自主招生考核方式不只限于传统的笔试、面试,对于一些具有特殊天赋和才能的学生还将量身定制测试方式4、面试试题1、对中国人口政策沿革的思考2、社会效应相关名词解读;3、集体行为逻辑和破窗效应,举两个事例说明破窗效应,并说明解决破窗效应的条件;4、古诗词题题目;5、高晓松的“诗和远方”的看法6、阅读理解材料选择莫言的小说《奇遇》,考的是原句填空。

7、英语阅读的题目涉及迪士尼的创始人事迹等等二、清华大学清华大学2017年自主招生测试主要分为笔试和面试,笔试依然采用机考的模式来进行个考点1的。

2要热点识的查学学科的学术价值,考查了考生的基础知识、综合能力、科学素养和创新精神,关注环境问题,讨论产生酸雨的原因及危害、食品中的增塑剂与人体健康等社会焦点问题。

物理试题注重基本概念的准确理解和灵活运用。

通过采用单选和多选题随机编排的方式,来考查学生构建正确、合理的物理模型,综合运用物理知识分析、解决实际问题的能力,同时増加了能力考查的区分度。

除了定量的分析和计算外,试题还设置了部分内容来考查学生运用物理学基本原理来定性和半定量分析题的能力3、面试模式复试中,领军人才选拔及自强计划考生需参加综合面试,自主招生考生及部分领军人オ选拔考生需参加学科专业面试。

清华大学2017年自主招生考核的特色有1到一生回想2在测弃美关清方面3继续在复试阶段针对经济管理、建筑学、车辆工程(车身方向)、医学、药学、英语等学科和专业开展特色选拔测试。

各院系都针对不同类型的考生设计了独特的面试方式。

4、面试真题综合面试:1、材料阅读:过去一年你关注的清华热点新闻。

北大博雅数学2017

北大博雅数学2017

北京大学2017年博雅计划测试数学学科注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考点名称填写在答题卡上,并在规定位置粘贴考试用条形码.2.客观题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号,主观题用黑色墨水的钢笔或签字笔将答案写在答题卡相应位置上,答在试卷上的无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:共14小题,在每题的四个选项中,只有一项符合题目要求.1. 若正整数,,a b c 满足402a b c ++=,则使得10n |abc ̅̅̅̅̅的最大正整数n 是________. ( )A.5B.6C.7D.以上答案均不正确2. 满足sin cos tan A B C ==的互不相似的ABC △个数为________. ( )A.0B.1C.2D.以上答案均不正确(有三个连续正整数构成的一个三角形,其中一个角是另一个角的两倍,下列那个选项是正确的?3. )三角形满足一个内角是另一个内角的两倍,且边长为连续正整数,则该三角形的三边长可能是________.( )A.4,5,6B.6,7,8C.7,8,9D.以上答案均不正确 4. π3π5π1cos 1cos 1cos 777⎛⎫⎛⎫⎛⎫+++ ⎪⎪⎪⎝⎭⎝⎭⎝⎭的值是________. ( ) A.98 B.34C.78D.以上答案均不正确 5. 由1,4,7,10,…2014,2017构造的数1471013…20142017除以9的余数是________.( )A.1B.4C.7D.以上答案均不正确6. 正整数,,x y z 使得111x y z y z x ⎛⎫⎛⎫⎛⎫--- ⎪⎪⎪⎝⎭⎝⎭⎝⎭也是正整数,则235x y z ++的最大值与最小值之差为________. ( )A.9B.15C.22D.以上答案均不正确7. 若四边形ABCD 的对角线,AC BD 相交于点O ,,,,AOB BOC COD DOA △△△△的周长相等,且,,AOB BOC COD △△△的内切圆半径分别为3,4,6,则DOA △的内切圆半径是________. ( ) A.92 B.32 C.72D.以上答案均不正确 8. 9,95,995,…201499995个之和中1的个数为________. ( )A.2012B.2013C.2014D.以上答案均不正确9. 已知222222tan tan sin sin 1tan tan αβαβαβ+=+++,则sin sin αβ的最大值是________. ( ) A.0 B.2013C.2014D.以上答案均不正确10. 单位圆内接五边形的所有边长与对角线的平方和的最大值是________. ( )A.15B.20C.25D.以上答案均不正确11. 若1,()()100a b c s a bc b ac ++==++>,则min s ∈________. ( )A.(100,110)B.(110,120)C.(120,130)D.以上答案均不正确12. 设sin14cos14,sin16cos16,a b c =︒+︒=︒+︒=,,a b c 的大小关系是________. ( )A.b c a >>B.b a c >>C.c b a >>D.以上答案均不正确13. 现将正整数数列分成两组,使得两组中均不包含无穷等差数列,则满足上述分组要求的分组方法数为________. () A.0 B.1C.无穷种D.以上答案均不正确14. 使得2017(2017)n n --和20172017个位数字相同的最小正整数n 是________. () A.3 B.5C.6D.以上答案均不正确1)求方程x 4−2x 3−x +2=0的解2)整系数多项式F (x )=A n x n +A n−1x n−1+⋯+A 1x +A 0 (A n ≠0)有多少个整数根?3)方程x 3−y 2=2有多少组整数解、多少组有理解?。

2017年北大博雅计划数学试题及答案

2017年北大博雅计划数学试题及答案

【5】C
1471013…20142017 的数值即
lx1Cf1 +4xl<f4 +7xl<f'1 代.+2014xl俨14 +2017xl庐17
其中 a1, a4, a1,…, ll2014,ll2011是对应数宇出现的数位数,比如 2017 出现在原数字的笫 0 位,
2014 出现在第 4 位等。 注意到 10 的方幕除以 9 的余 数一定是 1' 1471013...20142017 =1+4+7+…+2014+2017 = 673 X1009 三 7(mod9)
=-9 , s

SMoD=— 92x.
故 liDOA 的内切圆半径是?雾 2
答案为 A.
【评析】此题导向非常明确:通过周长和内切圆半径来求得三角形面积。有了面积之后,再 通过共边定理获得另一个三角形的面积值。 较为容易。
【8】C.
9 +95+995+… +99 …95=(10-1)+(100 -5)+(1000-5)+… +(102017 -5)
故n的最大可能值 不大于5 .我们设法构造取到 5 的情形。 a,b,c 所含 5 的幕次和 不小于 5 。 幕次和为6的情形上已排除, 故幕次和为 5 。 由于a,b,c
中至少有一个不是 5 的倍数,故 a,b,c必有一个被 2 5 整除,一个被 125 整除。我们尽力使这
两数所含 2 的幕次更大。为此, 取a==IOO, b=250 , 那么 C == 52 。此时 a,b,c 所含 2 的幕
小于n。而由于2,4,8... 的倍数在正整数集中分布比5,25,125的倍数密,即2的幕次不小于 n更容易达到。 故我们考虑 5 的幕次。 不大 于 402 的 5 的正 整 数幕最 大是 125, 故 a,b,c 各自所 含 5 的 幕 次最 高 是 3 . 而

北京大学2017年自主招生试题

北京大学2017年自主招生试题

北京大学2017年自主招生数学试卷选择题共20小题,在每小题的四个选项中,只有一项符合题目要求,请把正确选项的代号填写在表格中,选对得5分,选错扣1分,不选得0分. 1.实数,a b 满足22(4)(1)5(21)a b ab ++=-,则1()b a a+的值为 () 1.5A () 2.5B () 3.5C ()D 前三个答案都不对解答:由柯西不等式()()()()()222221054126930ab a b ab ab ab ab -=++≥+⇒-+=-≤,所以13 3.5ab a b b a a ⎛⎫=⇒==⇒+= ⎪⎝⎭. 答案:C. 2.函数21212y x x x =--+-在区间[]1,2-上的最大值与最小值的差位于的区间是 5()32A ⎛⎫ ⎪⎝⎭, 7()32B ⎛⎫ ⎪⎝⎭, 7()42C ⎛⎫⎪⎝⎭, ()D 前三个答案都不对解答:2222213,10233,011221121,12122x x x x x x y x x x x x x x x x ⎧--+-≤<⎪⎪⎪--+≤<⎪=--+-=⎨⎪-++≤<⎪⎪+-≤≤⎪⎩,当14x =-时,max 4916y =;当x =时,min 12y =-;最大值与最小值的差为6516-,在732⎛⎫⎪⎝⎭,内.3.由21y x ≥-和35y x ≤-+所围成的平面区域的面积为()6A 33()5B 36()5C ()D 前三个答案都不对解答:画出平面区域,由21y x ≥-和35y x ≤-+所围成的平面区域面积为:6366=55⨯,答案C. 4. 3(1cos)(1cos)55ππ++的值为(A 1()14B +()C ()D 前三个答案都不对解答:3331cos1cos 1cos cos cos cos 555555ππππππ⎛⎫⎛⎫++=+++ ⎪⎪⎝⎭⎝⎭ 2221coscos2cos cos 1cos cos555555ππππππ=-+=+ 24sincoscossin1555551144sinsin 55ππππππ=+=+⋅=, 答案:B.5.在圆周上逆时针摆放了4个点,,,A B C D 已知1BA =,2BC =,3BD =,ABD DBC ∠=∠,则该圆的直径为()A()B()C ()D 前三个答案都不对解答:由ABD DBC ∠=∠,得AD DC =.在,ABD DBC ∆∆内,由余弦定理得:229194612AD CD AD CD +-+-=⇒==所以1cos 23ABD ABD π∠=⇒∠=,在ABD ∆内由正弦定理可得,2sin 3ADR ABD==∠, 答案:D. 6.已知三角形三条中线长度分别为9,12,15,则三角形的面积为()69A ()72B ()75C ()D 前三个答案都不对解答:在AIE ∆中,6,5AI IE ==,在AIE ∆中,8,5CI IE ==,AEI CEI π∠+∠=,由余弦定理可得222536256401010AE CE AE CE+-+-+=,其中AE CE =,得=5AE CE =,则10AC =,同理可得另外两条边长分别为所以三角形面积为72.答案B. 7.已知x 为实数,使得22,,x x 互不相同,且其中有一个数恰为另一个数的2倍,则这样的实数x 的个数为()3A ()4B ()5C ()D 前三个答案都不对解答:2221,1x x x =⇒==,不符合题意;222211x x x =⇒=⇒=-符合题意;24,16x x ==,符合题意;242,2x x x =⇒==-,舍去2x =;2120,2x x x x =⇒==,舍去0x =;220,2x x x x =⇒==,舍;综上,x 的值可以为4,-2,-1,0.5. 答案B.8.设整数,,a m n=(,,)a m n 的个数为()A 无穷个 ()4B ()2C ()D 前三个答案都不对解答:=2a m n -=+-由于,,a m n 都是整数,所以20mn =,则2a m n =+,且m n >所以整数组(,,)a m n 可以为()()3,5,4,3,5,4-,答案C. 9.设111123571111log log log log S ππππ=+++,则不超过S 且与S 最接近的整数为 ()5A - ()4B ()5C ()D 前三个答案都不对解答:()11112357111111111log log 5,4log log log log 2357210S ππππππ⎛⎫=+++=⋅⋅⋅=∈-- ⎪⎝⎭,答案A.10.已知复数z 满足2z z+是实数,则z i +的最小值等于()3A()2B ()1C ()D 前三个答案都不对解答: 由2z z +是实数可得22z z z z +=+,即22z z z z+=+,整理得2()10z z z z ⎛⎫--= ⎪⋅⎝⎭,所以z z =或z =若z z =,则z 为实数,当0z =时,z i +有最小值1;若z =z i +1; 综上可得z i +1. 答案D. 11.已知正方形ABCD 的边长为1,1234,,,P P P P 是正方形内部的4个点使得1234,,ABP BCP CDP DAP ∆∆∆∆和都是正三角形,则四边形1234PP P P 的面积等于()2A()B()C ()D 前三个答案都不对解答:四边形1234PP P P为边长为)12的正方形,故面积为2.答案:A.12.已知某个三角形的两条高的长度分别为10和20,则它的第三条高的长度取值区间为10()53A ⎛⎫ ⎪⎝⎭, 20()5,3B ⎛⎫ ⎪⎝⎭ 20(),203C ⎛⎫ ⎪⎝⎭()D 前三个答案都不对解答: 由面积相等,两条高之比为1:2,所对应的底边之比为2:1,设为2,x x ,则第三条边长的取值范围为(,3)x x ,由面积相等可知第三条高的长度取值区间为20,203⎛⎫⎪⎝⎭,答案C. 13.正方形ABCD 与点P 在同一平面内,已知该正方形的边长为1,且222PA PB PC +=,则PD 的最大值为()2A +(B()1C +()D 前三个答案都不对解答:以点A 为坐标原点,AB 为x 轴正方向建立平面直角坐标系,则()()()()0,0,1,0,1,1,0,1A B C D .设(),P x y ,由222PA PB PC +=得(),P x y 的轨迹方程为()2212x y ++=,所以PD的最大值为2答案A. 14.方程()()43log 23log 42x x x x +=-的实根个数为()0A ()1B ()3C ()D 前三个答案都不对解答:设()()43log 23log 42xxxxm +=-=234423x x mx x m⎧+=⎪⇒⎨-=⎪⎩两式相加得4343x x m m +=+,由函数34x x y =+单调递增,x m =;23413234124423x x x x xx x xx x x⎧+=⎪⎛⎫⎛⎫⇒+=⇒+=⎨ ⎪ ⎪-=⎝⎭⎝⎭⎪⎩,由介值定理易知其实根个数为1.答案A.15.使得2+x x 和222x x+都是整数的正实数x 的个数为 ()1A ()3B ()C 无穷多 ()D 前三个答案都不对解答:因为2+x x是整数,所以 22222222221111222224x x x x x x x x x x x x ⎛⎫⎛⎫+=++=+++++=+++ ⎪ ⎪⎝⎭⎝⎭是整数, 又222x x+和4是整数,所以22x是整数,所以221,21,x x x x ==⇒=±=;当x =2+x x不是整数,所以1x =±,正实数x 的值为1. 答案A.16.满足()()()4ff x f x =的实系数多项式()f x 的个数为()2A ()4B ()C 无穷多 ()D 前三个答案都不对解答:()()()40,1,f x f x f x x ===, 答案D. 17.有多少个不大于100的素数p 满足327p p +为平方数.()0A ()1B ()2C ()D 前三个答案都不对解答:设()322277p p p p n +=+=,则7p +是完全平方数,所以2,29p p ==,答案C. 18.函数()(1)(2)(3)f x x x x x =+++的最小值为()1A - () 1.5B - ()2C - ()D 前三个答案都不对解答:()()()22(1)(2)(3)332f x x x x x x xxx =+++=+++,设223993244t x x x ⎛⎫=+=+-≥- ⎪⎝⎭,则()()222211y t t t t t =+=+=+-,min 1y =-, 答案A.19.动圆与两圆221x y +=和22670x y x +-+=都外切.则动圆的圆心的轨迹是()A 双曲线 ()B 双曲线的一支 ()C 抛物线 ()D 前三个答案都不对解答:设动圆圆心为点P ,半径为r ,已知两圆圆心为()()120,0,3,0F F .由已知得122112||1,||||||1||3PF r PF r PF PF F F =+=⇒-=<=,所以动圆圆心的轨迹为双曲线的一支. 答案B. 20.在三角形ABC 中,44sin ,cos 513A B ==,则该三角形是 ()A 锐角三角形 ()B 钝角三角形 ()C 无法确定 ()D 前三个答案都不对解答:sin sin 132B A A B π=>⇒<<,又3cos 5A =,()cos cos sin sin cos cos 0C A B A B A B =-+=-=>,所以为锐角三角形, 答案A.本文档由华夏园教育提供。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解:m1 相对于悬点 O 做圆周运动,根据牛顿第二定律,有 T1 − m 1 g − T2 = m 1 v2 l1
v2 ,m1 l1
(1) 是一个非惯性系,
m2 相对于 m1 做圆周运动,此时 m1 的向心加速度为
2
做 m2 所受的惯性力为 m2 v ,方向竖直向下,根据牛顿第二定律,有: l1 v2 v2 T2 − m2 g − m2 = m2 l1 l2 联立式 (1) 和式 (2),得 T1 = m1 g + m1 v + m2 g + m2 l1 ( 2 ) v v2 T2 = m2 g + m2 l1 + l2
第 2 页 (共 5 页)
解得 C = 45◦ 发生全反射的条件是入射角 i2 = γ1 + θ 大于临界角 C ,则有 cos θ arcsin √ + θ > 45◦ 2 (9) (8)
4. 长度分别为 l1 和 l2 的两根不可伸长的细绳悬挂着质量分别为 m1 和 m2 的两个小 球,处于静止状态,如图 5 所示。中间小球突然受到一水平方向的冲击力,瞬间获 得水平向右的速度 v ,求此时两绳中的拉力。
(5) (6)
达到热稳定时,有 QC 左 + QC 右 = 0 联立式 (5)∼(7),得:
4 4 4 T2 + T4 = 2 T3
(7)
(8)
联立式 (4) 和 (8),得 T2 =

4
4 4 2T1 + T4 3
第 5 页 (共 5 页)
2017 年北京大学“博雅计划”自主招生试题及解析
1. 空间直角坐标系中,六个完全相同、均匀带电的正方形绝缘平板构成一个正方体, 其中心 O 位于坐标原点,各棱方向与坐标轴平行。记与 x 轴平行的棱中点为 A,正 方体与 x 轴的交点为 B ,则 A、B 、O 三点的电场强度( )
A .全部为 0 B .全部不为 0 C .有两个满足至少在两个方向上的分量不为 0 D .有一个满足恰好在两个方向上的分量不为 0
6. 如图 6 所示,真空中有四块完全相同且彼此靠近的大金属板 A、B 、C 、D 平行放 置,表面涂黑(可看成黑体) ,最外侧两块板的热力学温度各维持为 T1 和 T4 ,且 T1 > T4 。当达到热稳定时,求 B 板的温度。
解:温度为 T2 的 B 板左、右侧单位面积上净获得的辐射热量分别为
4 4 ) − T2 QB 左 = σ ( T 1 4 4 ) − T2 QB 右 = σ ( T 3
(1) (2)
达到热稳定时有: QB 左 + QB 右 = 0 联立式 (1)∼(3),得:
4 4 4 = 2 T2 + T3 T1
(3)
(4)
第 4 页 (共 5 页)
温度为 T3 的 C 板左、右侧单位时间内单位面积上净获得的辐射热量分别为
4 4 QC 左 = σ (T2 − T3 ) 4 4 QC 右 = σ (T4 − T3 )
2
(2)
(
ቤተ መጻሕፍቲ ባይዱ
v2 l1
+
v2 l2
)
第 3 页 (共 5 页)
5. 一平行板电容器,极板面积为 S ,板间距离为 d,与电动势为 U 的稳恒电源串联。 现将一厚度为 d、面积为 S 、相对介电常数为 εr 的电介质插入极板之间,求该过程 中外力做的功。
S 解:插入电介质前电容器的电容为 C1 = ,插入电介质后电容器的电容为 4πkd εr S C2 = 。该过程中外力做的功为 4πkd 1 SU 2 1 (εr − 1) W = C2 U 2 − C1 U 2 = 2 2 8πkd
解:O 点的电场强度为 0,A 点的电场强度有 x 分量和 y 分量,B 点的电场强 度只有 x 分量。D 选项正确。
2. 如图 2 所示,用轻绳悬挂一带电小球 A,绳长为 l,小球质量为 m。现将一无穷远 处的相同小球 B 移至图示位置,原小球偏转角度为 θ,求移动小球过程中外力做的 功。
第 1 页 (共 5 页)
θ 2l sin 2
)2 = 2mg sin
θ 2
(1)
3. 如图 4 所示,有一等腰三棱镜,底角为 θ,从侧面沿平行于底边方向射入一光束, √ 其折射后在底面发生全反射并从另一侧面射出。已知三棱镜材料的折射率为 2,求 θ 需满足的条件。
解:第一次折射,入射角 i1 = 90◦ − θ,根据折射定律,有 sin i1 =n sin γ1 解得 cos θ γ1 = arcsin √ 2 光线在底面发生全反射的临界角 C 与折射率 n 的关系为 sin C = 1 n (7) (6) (5)
解:以 A 球为研究对象,受力分析如图 3 所示,则有 F =( 电势能增量为 ∆Ep1 重力势能的增量为 ∆Ep2 = mgl (1 − cos θ) 所以外力做功为 W = ∆Ep1 + ∆Ep2 = 3mgl (1 − cos θ) (4) (3) kq 2 θ = 4mglsin2 = 2mgl (1 − cos θ) = θ 2 2l sin 2 (2) kq 2
相关文档
最新文档