中考数学平行四边形-经典压轴题含答案

合集下载

中考数学与平行四边形有关的压轴题含答案解析

中考数学与平行四边形有关的压轴题含答案解析
【点睛】
本题考查四边形综合题、等腰直角三角形的判定和性质、等边三角形的判定和性质、等腰三角形的性质、锐角三角函数等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题.
7.(1)问题发现:
如图①,在等边三角形ABC中,点M为BC边上异于B、C的一点,以AM为边作等边三角形AMN,连接CN,NC与AB的位置关系为;
6.问题情境
在四边形ABCD中,BA=BC,DC⊥AC,过点D作DE∥AB交BC的延长线于点E,M是边AD的中点,连接MB,ME.
特例探究
(1)如图1,当∠ABC=90°时,写出线段MB与ME的数量关系,位置关系;
(2)如图2,当∠ABC=120°时,试探究线段MB与ME的数量关系,并证明你的结论;
∴∠DEC=90°,
∴∠DCE=∠CDE=45°,
∴EC=ED,∵MC=MD,
∴EM垂直平分线段CD,EM平分∠DEC,
∴∠MEC=45°,
∴△BME是等腰直角三角形,
∴BM=ME,BM⊥EM.
故答案为BM=ME,BM⊥EM.
(2)ME= MB.
证明如下:连接CM,如解图所示.
∵DC⊥AC,M是边AD的中点,
∴ AB•CF= AC•PE﹣ AB•PD.
∵AB=AC,
∴CF=PD﹣PE;
结论运用:过点E作EQ⊥BC,垂足为Q,如图④,
∵四边形ABCD是长方形,
∴AD=BC,∠C=∠ADC=90°.
∵AD=16,CF=6,
∴BF=BC﹣CF=AD﹣CF=5,
由折叠可得:DF=BF,∠BEF=∠DEF.
∴DF=5.
∴PG+PH的值为8;
迁移拓展:如图,
由题意得:A(0,8),B(6,0),C(﹣4,0)

中考数学复习《四边形》经典题型及测试题(含答案)

中考数学复习《四边形》经典题型及测试题(含答案)

中考数学复习《四边形》经典题型及测试题(含答案)命题点分类集训命题点1 平行四边形的判定与计算【命题规律】1.考查内容:①平行四边形的性质及其相关计算;②平行四边形的判定.2.考查形式:①根据平行四边形的性质考查结论判断;②利用平行四边形的性质求角度、线段或面积;③添加条件使四边形为平行四边形.3.考查题型:性质在选择和填空题中考查居多,判定题近年来多在解答题中考查,有时会在二次函数压轴题中探究平行四边形的存在问题.【命题预测】平行四边形是四边形中主要的图形之一,性质与判定常常考查,是近年命题的重点. 1. 已知四边形ABCD 是平行四边形,对角线AC 、BD 交于点O ,E 是BC 的中点,以下说法错误的是( )A . OE =12DC B . OA =OC C . ∠BOE =∠OBA D . ∠OBE =∠OCE1. D第1题图 第2题图2. 如图,在▱ABCD 中,BM 是∠ABC 的平分线交CD 于点M ,且MC =2,▱ABCD 的周长是14,则DM 等于( )A . 1B . 2C . 3D . 42. C 【解析】∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠ABM =∠CMB ,∵BM 平分∠ABC ,∴∠ABM =∠CBM ,∴∠CBM =∠CMB ,∴CB =MC =2,∴AD =BC =2,∵▱ABCD 的周长是14,∴AB =CD =5,∴DM =DC -MC =3.3. 如图所示,四边形ABCD 的对角线相交于点O ,若AB ∥CD ,请添加一个条件________(写一个即可),使四边形ABCD 是平行四边形. 3. AD ∥BC (答案不唯一)第3题图 第4题图 第5题图 4. 如图,▱ABCD 中,AC =8,BD =6,AD =a ,则a 的取值范围是________.4. 1<a <7 【解析】如解图,对角线AC ,BD 相交于点O ,则OA =12AC =4,OD =12BD =3,在△OAD中,OA -OD <AD <OA +OD ,即1<a <7.5. 如图所示,在▱ABCD 中,∠C =40°,过点D 作AD 的垂线,交AB 于点E ,交CB 的延长线于点F ,则∠BEF 的度数为__________. 5. 50°6. 如图,将▱ABCD 的AD 边延长至点E ,使DE =12AD ,连接CE ,F 是BC 边的中点,连接FD.(1)求证:四边形CEDF 是平行四边形; (2)若AB =3,AD =4,∠A =60°,求CE 的长.6. (1)证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AD =BC , ∴DE ∥FC.∵F 是BC 的中点, ∴FC =12BC =12AD ,∵DE =12AD ,∴FC =DE ,∴四边形CEDF 是平行四边形. (2)解:如解图,过点D 作DH ⊥BC 于点H. 由(1)知四边形DECF 是平行四边形,∴DF =CE.∵四边形ABCD 是平行四边形,∠A =60°,AB =3,AD =4, ∴BC =4,CD =3,∠BCD =60°, 在Rt △DHC 中,HC =DC·cos ∠HCD =32,DH =DC ·sin ∠HCD =332,∵F 是BC 的中点, ∴FC =2,∴FH =FC -HC =2-32=12,在Rt △DFH 中,由勾股定理得DF =DH 2+FH 2=(332)2+(12)2=7,∴CE =7.命题点2 矩形的判定与计算【命题规律】考查形式:①利用矩形性质,结合勾股定理求线段长或面积;②矩形的判定,一般在解答题中考查,也常在二次函数综合题中考查矩形的存在性问题;③矩形折叠的相关计算与证明(见命题点6:图形折叠的相关计算).【命题预测】矩形性质将勾股定理、全等、相似等重要知识综合考查,是全国命题趋势之一. 7. 如图,在矩形ABCD 中(AD >AB),点E 是BC 上一点,且DE =DA ,AF ⊥DE ,垂足为点F.在下列结论中,不一定正确的是( )A . △AFD ≌△DCEB . AF =12AD C . AB =AF D . BE =AD -DF7. B 【解析】逐项分析如下表:选项逐项分析正误A∵四边形ABCD 是矩形,AF ⊥DE ,∴∠C =90°=∠AFD ,AD ∥BC ,∴∠ADF =∠CED ,∵AD =DE ,∴△AFD ≌△DCE (AAS)√B只有当∠ADF =30°时,才有AF =12AD 成立×C由△AFD ≌△DCE 可知,AF =DC ,∵矩形ABCD 中,AB =DC ,∴AB =AF√D∵△AFD ≌△DCE ,∴DF =CE ,∴BE =BC -CE =AD -DF √8. 已知矩形的对角线AC 与BD 相交于点O ,若AO =1,那么BD =________. 8. 2第7题图 第8题图 第9题图 9. 如图,矩形ABCD 的面积是15,边AB 的长比AD 的长大2,则AD 的长是________.9. 3 【解析】本题主要考查了一元二次方程的实际应用问题. 设AD =x ,由题知,AB =x +2,又∵矩形ABCD 的面积为15,则x(x +2)=15,得到x 2+2x -15=0,解得,x 1=-5(舍) , x 2=3,∴AD =3. 10. 如图所示,△ABC 中,D 是BC 边上一点,E 是AD 的中点,过点A 作BC 的平行线AF 交CE 的延长线于F ,且AF =BD ,连接BF. (1)求证:D 是BC 的中点;(2)若AB =AC ,试判断四边形AFBD 的形状,并证明你的结论.10. (1)证明:∵点E 是AD 的中点, ∴AE =DE. ∵AF ∥BC ,∴∠AFE =∠DCE ,∠FAE =∠CDE , ∴△EAF ≌△EDC(AAS ), ∴AF =DC. ∵AF =BD , ∴BD =DC ,即D 是BC 的中点.(2)解:四边形AFBD 是矩形.证明如下: ∵AF ∥BD ,AF =BD ,∴四边形AFBD 是平行四边形.∵AB =AC ,又由(1)可知D 是BC 的中点, ∴AD ⊥BC ,∴四边形AFBD 是矩形.11. 如图,点P 在矩形ABCD 的对角线AC 上,且不与点A ,C 重合,过点P 分别作边AB ,AD 的平行线,交两组对边于点E ,F 和点G ,H. (1)求证:△PHC≌△CFP;(2)证明四边形PEDH 和四边形PFBG 都是矩形,并直接写出它们面积之间的关系.11. (1)证明:∵四边形ABCD 是矩形,∴DC ∥AB ,AD ∥BC ,∠DCB =90°.∵EF ∥AB ,GH ∥AD ,∴EF ∥CD ,GH ∥BC , ∴四边形PFCH 是矩形, ∴∠PHC =∠PFC =90°,PH =CF ,HC =PF , ∴△PHC ≌△CFP(SAS ).(2)证明:由(1)知AB ∥EF ∥CD , AD ∥GH ∥BC ,∴四边形PEDH 和四边形PGBF 都是平行四边形, ∵四边形ABCD 是矩形, ∴∠D =∠B =90°,∴四边形PEDH 和四边形PGBF 都是矩形, ∴S 矩形PEDH =S 矩形PGBF .命题点3 菱形的判定与计算【命题规律】1.考查内容和形式:①根据菱形性质判断结论正误;②菱形的判定;③根据菱形的性质求角度、周长和面积;④与二次函数压轴题结合考查菱形的存在性问题.2.三大题型均会出现.【命题预测】菱形是特殊平行四边形中的重要内容,是中考常考知识,对菱形的性质与判定应做到牢固掌握.12. 如图,在▱ABCD 中,对角线AC 与BD 交于点O.若增加一个条件,使▱ABCD 成为菱形,下列给出的条件不正确...的是( ) A . AB =AD B . AC ⊥BD C . AC =BD D . ∠BAC =∠DAC12. C 【解析】邻边相等的平行四边形是菱形,所以A 正确;对角线互相垂直的平行四边形是菱形,所以B 正确;对角线相等的平行四边形是矩形,所以C 错误;由∠BAC =∠DAC 可得对角线是角平分线,所以D 正确.第12题图 第13题图13. 已知菱形OABC 在平面直角坐标系的位置如图所示,顶点A(5,0),OB =45,点P 是对角线OB 上的一个动点,D(0,1),当CP +DP 最短时,点P 的坐标为( )A . (0,0)B . (1,12) C . (65,35) D . (107,57)13. D 【解析】如解图,连接CA 、AD ,CA 与OB 相交于点E ,过点E 作EF ⊥OA ,交OA 于点F .由题知点C 关于OB 的对称点是点A ,AD 与BO 的交点即为点P .根据菱形的性质,菱形的对角线互相垂直且平分两组对角,可知△COE ∽△EOF ,∴CO EO =EO OF ,∵OC =OA =5,OE =OB 2=25,∴OF =OE 2CO =(25)25=4,根据勾股定理可得EF =OE 2-OF 2=(25)2-42=2,点E 的坐标为(4,2),易得直线OE 的函数解析式为y =12x ,直线AD 的函数解析式是y =-15x +1,联立得:⎩⎨⎧y =12x y =-15x +1,解得⎩⎨⎧x =107y =57,∴点P 的坐标为(107,57).14. 如图,在菱形ABCD 中,E 、F 分别是AD 、BD 的中点,若EF =2,则菱形ABCD 的周长为________. 14. 16 【解析】∵E ,F 分别是AD ,BD 的中点,∴AB =2EF =4,∴菱形ABCD 周长是4AB =16.第14题图 第15题图15. 如图,在菱形ABCD 中,AB =5,AC =8,则菱形的面积是________.15. 24 【解析】如解图,连接BD 交AC 于点O ,∵四边形ABCD 是菱形,AB =5,AC =8,且菱形的对角线互相垂直平分,∴OA =4,在Rt △AOB 中,由勾股定理得OB =3,∴BD =6,∴S 菱形ABCD =12AC ·BD=12×8×6=24. 16. 在菱形ABCD 中,∠A =30°,在同一平面内,以对角线BD 为底边作顶角为120°的等腰三角形BDE ,则∠EBC 的度数为________.16. 105°或45° 【解析】如解图,∵四边形ABCD 是菱形,∠A =30°,∴∠ABC =150°,∠ABD =∠DBC =75°,且顶角为120°的等腰三角形的底角是30°.分为以下两种情况:(1)当点E 在△ABD 内时,∠E 1BC =∠E 1BD +∠DBC =30°+75°=105°;(2)当点E 在△DBC 内时,∠E 2BC =∠DBC -∠E 2BD =75°-30°=45°.综上所述,∠EBC 的度数为105°或45°.17. 如图,在Rt △ABC 中,∠B =90°,点E 是AC 的中点,AC =2AB ,∠BAC 的平分线AD 交BC 于点D ,作AF∥BC,连接DE 并延长交AF 于点F ,连接FC. 求证:四边形ADCF 是菱形.17. 证明:∵∠B =90°,AC =2AB , ∴sin ∠ACB =12,∴∠ACB =30°, ∴∠CAB =60°, ∵AD 平分∠CAB ,∴∠CAD =12∠CAB =30°,∠CAD =∠ACD ,∴AD =CD , ∵AF ∥CD ,∴∠DCE =∠FAE ,∠AFE =∠CDE , 又∵AE =CE ,∴△AFE ≌△CDE(AAS ), ∴AF =CD , 又AF ∥CD ,∴四边形ADCF 是平行四边形, 又AD =CD ,∴四边形ADCF 是菱形.命题点4 正方形的判定与计算【命题规律】正方形的考查相对比较综合,难度较大,常在选择或填空的压轴题位置出现,考查知识点综合性强,涉及到正方形面积、边长和周长的计算.【命题预测】正方形综合了所有特殊四边形的性质,因此以正方形为背景出题更具有对知识的检验性,倍受命题人青睐,考生应加以关注.18. 如图,正方形ABCD 的面积为1,则以相邻两边中点连线EF 为边的正方形EFGH 的周长为( )A . 2B . 2 2C . 2+1D . 22+118. B 【解析】∵正方形ABCD 的面积为1,∴BC =CD =1,∵E 、F 是边的中点,∴CE =CF =12,∴EF=(12)2+(12)2=22,则正方形EFGH 的周长为4×22=2 2. 19. ▱ABCD 的对角线AC 与BD 相交于点O ,且AC⊥BD,请添加一个条件:________,使得▱ABCD 为正方形. 19. ∠BAD =90°(答案不唯一)20. 如图,在正方形ABCD 中,点E ,N ,P ,G 分别在边AB ,BC ,CD ,DA 上,点M ,F ,Q 都在对角线BD 上,且四边形MNPQ 和AEFG 均为正方形,则S 正方形MNPQS 正方形AEFG的值等于________.20. 89【解析】设BD =3a ,∠CDB =∠CBD =45°,且四边形PQMN 为正方形,∴DQ =PQ =QM =NM=MB ,∴正方形MNPQ 的边长为a ,正方形AEFG 的对角线AF =12BD =32a ,∵正方形对角线互相垂直,∴S 正方形AEFG =12×32a ×32a =98a 2,∴S 正方形MNPQ S 正方形AEFG =a 298a 2=89.第20题图 第21题图21. 如图,正方形ABCD 的边长为22,对角线AC ,BD 相交于点O ,E 是OC 的中点,连接BE ,过点A 作AM⊥BE 于点M ,交BD 于点F ,则FM 的长为________. 21.55【解析】∵四边形ABCD 为正方形,∴AO =BO ,∠AOF =∠BOE =90°,∵AM ⊥BE ,∠AFO =∠BFM ,∴∠FAO =∠EBO ,在△AFO 和△BEO 中,⎩⎪⎨⎪⎧∠AOF =∠BOE AO =BO ∠FAO =∠EBO ,∴△AFO ≌△BEO(ASA ),∴FO =EO ,∵正方形ABCD 的边长为22,E 是OC 的中点,∴FO =EO =1=BF ,BO =2,∴在Rt △BOE 中,BE =12+22=5,由∠FBM =∠EBO ,∠FMB =∠EOB ,可得△BFM ∽△BEO ,∴FM EO =BF BE ,即FM1=15,∴FM =55.22. 如图,已知四边形ABCD 和四边形DEFG 为正方形,点E 在线段DC 上,点A ,D ,G 在同一条直线上,且AD =3,DE =1,连接AC ,CG ,AE ,并延长AE 交CG 于点H. (1)求sin ∠EAC 的值; (2)求线段AH 的长.22.解:(1)由题意知EC =2,AE =10,如解图,过点E 作EM ⊥AC 于点M , ∴∠EMC =90°,易知∠ACD =45°, ∴△EMC 是等腰直角三角形, ∴EM =2,∴sin ∠EAC =EM AE =55.(2)在△GDC 与△EDA 中,⎩⎪⎨⎪⎧DG =DE ∠GDC =∠EDA DC =DA, ∴△GDC ≌△EDA(SAS ),∴∠GCD =∠EAD , 又∵∠HEC =∠DEA ,∴∠EHC =∠EDA =90°, ∴AH ⊥GC ,∵S △AGC =12×AG ×DC =12×GC ×AH ,∴12×4×3=12×10×AH , ∴AH =6510.命题点5 多边形及其性质【命题规律】1.考查内容:①多边形的内外角和公式;②正多边形的有关计算.2.考查形式:①已知正多边形一个内角或外角的度数或内角之间的关系求边数;②已知正多边形的边数求内角度数;③求多边形的内外角和.【命题预测】多边形是三角形和四边形的延伸拓展,也是中考命题不容忽视的知识点. 23. 六边形的内角和是( )A . 540°B . 720°C . 900°D . 1080°23. B24. 一个多边形切去一个角后,形成的另一个多边形的内角和为1080°,那么原多边形的边数为( )A . 7B . 7或8C . 8或9D . 7或8或924. D 【解析】分类讨论:(1)切去一个角,减少一条边,设减少一条边后的边数是n ,则180°(n -2)=1080°,得出n =8,所以原多边形的边数是9;(2)切去一个角,增加一条边,设增加一条边后的边数是n ,则180°(n -2)=1080°,得出n =8,所以原多边形的边数是7;(3)切去一个角,边数无改变,设边数没有改变时的边数是n ,则180°(n -2)=1080°,得出n =8,所以原多边形的边数是8,综上所述,原多边形的边数是9,7,8都符合题意,答案选择D.25. 若一个多边形的内角和是它的外角和的2倍,则这个多边形的边数是________.25. 6 【解析】设这个多边形的边数为n ,则内角和为(n -2)·180°,外角和为360°,则根据题意有:(n -2)·180°=2×360°,解得n =6. 26. 一个正多边形的一个外角为45°,则这个正多边形的边数是________.26. 8 【解析】由正多边形的每一个外角都是45°,其外角和为360°,可得这个正多边形的边数是360°45°=8.方法指导设正多边形的边数为n ,正多边形的外角和为360°,内角和为(n -2)×180°,每个内角的度数为180°×(n -2)n.命题点6 图形折叠的相关证明与计算【命题规律】考查内容和形式:图形折叠计算以矩形折叠考查居多,常考查:①图形的折叠计算角度;②图形的折叠计算线段长或边长;③图形折叠的证明和计算结合;④图形折叠的操作探究.【命题预测】图形折叠将原有图形变得可操作化,且又很好地引入了对称知识,使问题升华,有效地考查学生的知识迁移能力和掌握程度,是全国命题的主流趋势之一,值得每位考生关注.27. 如图,把一张矩形纸片ABCD 沿对角线AC 折叠,点B 的对应点为B′,AB ′与DC 相交于点E ,则下列结论一定正确的是( )A .∠DAB ′=∠CAB′ B .∠ACD =∠B′CDC .AD =AE D .AE =CE27. D28. 如图,把正方形纸片ABCD 沿对边中点所在的直线对折后展开,折痕为MN ,再过点B 折叠纸片,使点A 落在MN 上的点F 处,折痕为BE.若AB 的长为2,则FM 的长为( )A . 2B . 3C . 2D . 128. B第28题图 第29题图29. 如图,把一张矩形纸片ABCD 沿EF 折叠后,点A 落在CD 边上的点A′处,点B 落在点B′处.若∠2=40°,则图中∠1的度数为( )A . 115°B . 120°C . 130°D . 140°29. A 【解析】由折叠的性质知∠EA ′B ′=∠A =90°,∵∠2=40°,∴∠B ′A ′C =50°,∴∠EA ′D =40°,∠DEA ′=50°,∴∠AEA ′=130°,∴∠AEF =∠FEA ′=12∠AEA ′=65°,∵AD ∥BC ,∴∠1=180°-65°=115°.30. 如图,将▱ABCD 沿对角线AC 折叠,使点B 落在点B′处.若∠1=∠2=44°,则∠B 为( )A . 66°B . 104°C . 114°D . 124°30. C 【解析】设∠ACD =x ,∠B =y ,则根据题意可列方程组⎩⎪⎨⎪⎧x +y +44°=180°180°-y -(44°-x )=44°,解得y =114°.第30题图 第31题图 第32题图31. 如图,将△ABC 沿直线DE 折叠,使点C 与点A 重合,已知AB =7,BC =6,则△BCD 的周长为________. 31. 13 【解析】由折叠的性质可得:CD =AD ,∴△BCD 的周长=BC +CD +BD =BC +AD +BD =BC +BA =6+7=13.32. 如图,在▱ABCD 中,E 为边CD 上一点,将△ADE 沿AE 折叠至△AD′E 处,A D′与CE 交于点F ,若∠B =52°,∠DAE =20°,则∠FED′的大小为________.32. 36° 【解析】∵在▱ABCD 中,∠D =∠B =52°,∴∠AEF =∠DAE +∠D =20°+52°=72°,∴∠AED=180°-∠AEF =108°,由折叠的性质得,∠AED ′=∠AED =108°,∴∠FED ′=∠AED′-∠AEF =108°-72°=36°.33.如图,将矩形纸片ABCD(AD >AB)折叠,使点C 刚好落在线段AD 上,且折痕分别与边BC ,AD 相交.设折叠后点C,D的对应点分别为点G,H,折痕分别与边BC,AD相交于点E,F.(1)判断四边形CEGF的形状,并证明你的结论;(2)若AB=3,BC=9,求线段CE的取值范围.33. 解:(1)四边形CEGF是菱形,理由如下:∵四边形ABCD是矩形,∴AD∥BC,∴∠GFE=∠FEC,∵图形翻折后点G与点C重合,EF为折痕,∴∠GEF=∠FEC,∴∠GFE=∠GEF,∴GF=GE,∵图形翻折后EC与GE完全重合,FC与FG重合,∴GE=EC=GF=FC,∴四边形CEGF为菱形.(2)如解图①,当点F与点D重合时,四边形CEGF是正方形,此时CE最小,且CE=CD=3;如解图②,当点G与点A重合时,CE最大.设EC=x,则BE=9-x,由折叠性质知,AE=CE=x,在Rt△ABE中,AB2+BE2=AE2,即9+(9-x)2=x2,解得x=5,∴CE=5,所以,线段CE的取值范围为3≤CE≤5.34.如图,▱ABCD中,AB=2,AD=1,∠ADC=60°,将▱ABCD沿过点A的直线l折叠,使点D落到AB边上的点D′处,折痕交CD边于点E.(1)求证:四边形BCED′是菱形;(2)若点P是直线l上的一个动点,请计算PD′+PB的最小值.34. (1)证明:∵四边形ABCD是平行四边形,∴∠B=∠D=60°,由折叠性质可知,∠D=∠AD′E=60°,∴∠AD′E=∠B=60°,∴ED′∥BC,又∵EC∥D′B,∴四边形BCED′是平行四边形,∴ED′=BC=AD=1,∴DE=ED′=1,又DC=AB=2,∴EC =1, ∴EC =ED′,∴四边形BCED′是菱形. (2)解:如解图所示,由折叠性质PD′=PD ,BD 之长即为所求, 作DG ⊥BA 的延长线于点G , ∵∠DAB =120°, ∴∠DAG =60°, ∵∠G =90°, ∴∠ADG =30°,在Rt △ADG 中,AD =1, ∴AG =12,DG =32,∵AB =2, ∴BG =52,在Rt △BDG 中,由勾股定理得:BD 2=BG 2+DG 2=7, ∴BD =7,即PD′+PB 的最小值为7.方法指导“将军饮马”模型:直线同侧两定点,在直线上确定一点使该点到两定点的距离和最小.作法:作其中一点关于直线的对称点,连接另一点和对称点的线段即是最短距离和;最短距离计算方法:构造以最短距离线段为斜边的直角三角形,利用勾股定理求解.中考冲刺集训一、选择题1.关于▱ABCD 的叙述,正确的是( )A . 若A B⊥BC,则▱ABCD 是菱形B . 若AC⊥BD,则▱ABCD 是正方形C . 若AC =BD ,则▱ABCD 是矩形 D . 若AB =AD ,则▱ABCD 是正方形2.设四边形的内角和等于a ,五边形的外角和等于b ,则a 与b 的关系是( )A . a >bB . a =bC . a <bD . b =a +180°3.如图,正五边形ABCDE 放入某平面直角坐标系后,若顶点A ,B ,C ,D 的坐标分别是(0,a),(-3,2),(b ,m),(c ,m).则点E 的坐标是( )A . (2,-3)B . (2,3)C . (3,2)D . (3,-2)第3题图 第4题图4.如图,▱ABCD 的对角线AC 、BD 相交于点O ,且AC +BD =16,CD =6,则△ABO 的周长是( )A . 10B . 14C . 20D . 225.菱形ABCD 的对角线AC ,BD 相交于点O ,E ,F 分别是AD ,CD 边上的中点,连接EF.若EF =2,BD =2,则菱形ABCD 的面积为( )A . 2 2B . 4 2C . 6 2D . 8 2第5题图 第6题图 第7题图6.如图,平行四边形ABCD 的周长是26 cm ,对角线AC 与BD 交于点O ,AC ⊥AB ,E 是BC 中点,△AOD 的周长比△AOB 的周长多3 cm ,则AE 的长度为( )A . 3 cmB . 4 cmC . 5 cmD . 8 cm7.如图,正方形ABCD 的边长为9,将正方形折叠,使顶点D 落在BC 边上的点E 处,折痕为GH ,若BE∶EC =2∶1,则线段CH 的长是( )A . 3B . 4C . 5D . 68.如图,在正方形ABCD 中,AC 为对角线,E 为AB 上一点,过点E 作EF∥AD,与AC 、DC 分别交于点G 、F2H 为CG 的中点,连接DE 、EH 、DH 、FH.下列结论:①EG =DF ;②∠AEH+∠ADH=180°;③△EHF≌△DHC;④若AE AB =23,则3S △EDH =13S △DHC ,其中结论正确的有( )A . 1个B . 2个C . 3个D . 4个二、填空题9.如图,在▱ABCD 中,BE ⊥AB 交对角线AC 于点E ,若∠1=20°,则∠2的度数为________.10.如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,且AC =8,BD =6,则菱形ABCD 的高DH =________.第9题图 第10题图 第11题图11.如图,延长矩形ABCD 的边BC 至点E ,使CE =BD ,连接AE.如果∠ADB=30°,则∠E=________度. 12.如图,正方形ABCO 的顶点C ,A 分别在x 轴,y 轴上,BC 是菱形BDCE 的对角线,若∠D=60°,BC =2,则点D 的坐标是________.第12题图 第13题图 第14题图 13.如图,正十二边形A 1A 2…A 12,连接A 3A 7,A 7A 10,则∠A 3A 7A 10=________°.14.如图,菱形ABCD 的面积为120 cm 2,正方形AECF 的面积为50 cm 2,则菱形的边长为________cm . 15.如图,在矩形纸片ABCD 中,AB =6,BC =10.点E 在CD 上,将△BCE 沿BE 折叠,点C 恰落在边AD 上的点F 处;点G 在AF 上,将△ABG 沿BG 折叠,点A 恰落在线段BF 上的点H 处.有下列结论: ①∠EBG =45°;②△DEF∽△ABG;③S △ABG =32S △FGH ;④AG +DF =FG.其中正确的是______________.(把所有正确结论的序号都选上)第15题图 第16题图16.如图,正方形ABCD 的面积为3 cm 2,E 为BC 边上一点,∠BAE =30°,F 为AE 的中点,过点F 作直线分别与AB ,DC 相交于点M ,N.若MN =AE ,则AM 的长等于________cm . 三、解答题17.如图,在▱ABCD 中,连接BD ,在BD 的延长线上取一点E ,在DB 的延长线上取一点F ,使BF =DE ,连接AF 、CE. 求证:AF∥CE.18.如图,菱形ABCD的对角线AC与BD交于点O,∠ABC∶∠BAD=1∶2,BE∥AC,CE∥BD.(1)求tan∠DBC的值;(2)求证:四边形OBEC是矩形.19.如图,▱ABCD中,BD是它的一条对角线,过A、C两点作AE⊥BD,CF⊥BD,垂足分别为E、F,延长AE、CF分别交CD、AB于点M、N.(1)求证:四边形CMAN是平行四边形;(2)已知DE=4,FN=3,求BN的长.20.如图,△ABC≌△ABD,点E在边AB上,CE∥BD,连接DE.求证:(1)∠CEB=∠CBE;(2)四边形BCED是菱形.21.已知:如图,在正方形ABCD中,点E在边CD上,AQ⊥BE于点Q,DP⊥AQ于点P.(1)求证:AP=BQ;(2)在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ长.22.已知正方形ABCD中,BC=3,点E、F分别是CB、CD延长线上的点,DF=BE,连接AE、AF,过点A作AH⊥ED于H点.(1)求证:△ADF≌△ABE;(2)若BE=1,求tan∠AED的值.23.如图,已知△ABC 中,AB =AC ,把△ABC 绕A 点沿顺时针方向旋转得到△ADE,连接BD 、CE 交于点F. (1)求证:△AEC≌△ADB;(2)若AB =2,∠BAC =45°,当四边形ADFC 是菱形时,求BF 的长.24.如图,将矩形ABCD 沿AF 折叠,使点D 落在BC 边的点E 处,过点E 作EG∥CD 交AF 于点G ,连接DG. (1)求证:四边形EFDG 是菱形;(2)探究线段EG 、GF 、AF 之间的数量关系,并说明理由; (3)若AG =6,EG =25,求BE 的长.答案与解析:1. C2. B3. C4. B5. A 【解析】∵E ,F 分别是 AD ,CD 边上的中点,即EF 是△ACD 的中位线,∴AC =2EF =22,则菱形ABCD 的面积=12AC ·BD =12×22×2=2 2.6. B 【解析】在▱ABCD 中,AD =BC ,AB =CD ,BO =DO ,∵平行四边形ABCD 的周长为26 cm ,∴AB +BC =13 cm ,又∵△AOD 的周长比△AOB 的周长多3 cm ,∴AD -AB =BC -AB =3 cm ,解得AB =5 cm ,BC =8 cm ,又AB ⊥AC ,E 是BC 的中点,∴AE =BE =CE =12BC =4 cm.7. B 【解析】设CH =x ,∵BE ∶EC =2∶1,BC =9,∴EC =3,由折叠可知,EH =DH =9-x ,在Rt △ECH 中,由勾股定理得:(9-x )2=32+x 2,解得:x =4.8. D 【解析】逐项分析如下表:序号逐项分析正误难点突破对于多选项判断正误性的题目,几乎每个选项之间都是紧密联系的,单独判断其中每个的正误或跳跃式判断往往使题目变得复杂而无法求解,本题目难点在于④中,需将S △FDH 与已知条件AE AB =23联系起来,并用含相同未知数的代数式分别表示出S △EDH 和S △DHC ,继而求解.9. 110° 【解析】 ∵四边形ABCD 是平行四边形,∴CD ∥AB ,∴∠CAB =∠1=20°,∵BE ⊥AB 交对角线AC 于点E ,∴∠ABE =90°,∴∠2=∠CAB +∠ABE =20°+90°=110°.10. 4.8 【解析】∵S =1AC·BD =2AB·DH ,∴AC ·BD =2AB·DH.∵四边形ABCD 是菱形,∴∠AOB =90°,AO =12AC =4,BO =12BD =3,∴在Rt △AOB 中,AB =42+32=5,∴DH =8×62×5=4.8.第11题解图11. 15 【解析】如解图,连接AC.∵四边形ABCD 是矩形,∴AD =BC ,AC =BD ,又∵AB =BA ,∴△DAB ≌△CBA(SSS ),∴∠ACB =∠ADB =30°,∵CE =BD ,∴AC =CE ,∴∠E =∠CAE =12∠ACB=15°.第12题解图12. (3+2,1) 【解析】如解图,过点D 作DG ⊥BC 于G ,DF ⊥x 轴于F ,∵在菱形BDCE 中,BD =CD ,∠BDC =60°,∴△BCD 是等边三角形,∴DF =CG =12BC =1,CF =DG =3,∴OF =3+2,∴D(3+2,1).13. 75 【解析】∵多边形A 1A 2…A 12是正十二边形,作它的外接圆⊙O ,∴劣弧A 10A 3的度数=5×360°12=150°,∴∠A 3A 7A 10=12×150°=75°.第14题解图14. 13 【解析】如解图,连接AC 、BD 交于O ,则有12AC·BD =120,∴AC ·BD =240,又∵菱形对角线互相垂直平分,∴2OA ·2OB =240,∴ OA ·OB =60,∵AE 2=50, OA 2+OE 2= AE 2,OA =OE ,∴OA =5,∴OB =12,∴AB =OA 2+OB 2=122+52=13.15. ①③④ 【解析】由折叠的性质得,∠CBE =∠FBE ,∠ABG =∠FBG ,∴∠EBG =∠FBE +∠FBG =12×90°=45°,故①正确;由折叠的性质得,BF =BC =10,BA =BH =6,∴HF =BF -BH =4,AF =BF 2-BA 2=102-62=8,设GH =x ,则GF =8-x ,在Rt △GHF 中,x 2+42=(8-x)2,∴x =3,∴GF =5,∴AG =3,同理在Rt △FDE 中,由FD 2=EF 2-ED 2,得ED =83,EF =103,∴ED FD =43≠ABAG =2,∴△DEF 与△ABG 不相似,故②不正确;S △ABG =12×3×6=9,S △FGH =12×3×4=6,∴S △ABG S =96=32,故③正确;∵AG =3,DF =AD -AF =2,∴FG =5,∴AG +DF =FG =5,故④正确.综上,答案是①③④.第16题解图16.233或33【解析】如解图,过N 作NG ⊥AB ,交AB 于点G ,∵四边形ABCD 为正方形,∴AB =AD =NG = 3 cm ,在Rt △ABE 中,∠BAE =30°,AB = 3 cm ,∴BE =1 cm ,AE =2 cm ,∵F 为AE 的中点,∴AF =12AE =1 cm ,在Rt △ABE 和Rt △NGM 中,⎩⎪⎨⎪⎧AB =NG AE =NM ,∴Rt △ABE ≌Rt △NGM(HL ),∴BE =GM ,∠BAE =∠MNG =30°,∠AEB =∠NMG =60°,∴∠AFM =90°,即MN ⊥AE ,在Rt △AMF 中,∠FAM =30°,AF =1 cm ,∴AM =AF cos 30°=132=233 cm ,由对称性得到AM′=BM =AB -AM =3-233=33 cm ,综上,AM 的长等于233或33 cm . 17. 证明:∵四边形ABCD 是平行四边形,第17题解图∴AD ∥BC ,AD =BC , ∴∠1=∠2, 又∵BF =DE ,∴BF +BD =DE +BD , 即DF =BE.∴△ADF ≌△CBE(SAS ). ∴∠AFD =∠CEB ,∴AF ∥CE.18. (1)【思路分析】根据四边形ABCD 是菱形,∠ABC ∶∠BAD =1∶2,可求出∠DBC 的度数,其正切值可求出.解:∵四边形ABCD 是菱形,∴AD ∥BC ,∠DBC =12∠ABC ,∴∠ABC +∠BAD =180°, 又∵∠ABC ∶∠BAD =1∶2, ∴∠ABC =60°, ∴∠DBC =12∠ABC =30°,∴tan ∠DBC =tan 30°=33. (2)【思路分析】由BE ∥AC ,CE ∥BD 可知四边形BOCE 是平行四边形,再结合菱形对角线垂直的性质即可证明四边形BOCE 是矩形.证明:∵四边形ABCD 是菱形, ∴AC ⊥BD ,即∠BOC =90°, ∵BE ∥AC ,CE ∥BD , ∴BE ∥OC ,CE ∥OB ,∴四边形OBEC 是平行四边形,且∠BOC =90°,∴四边形OBEC 是矩形.19. (1)证明:∵AE ⊥BD ,CF ⊥BD , ∴AM ∥CN ,又∵四边形ABCD 是平行四边形, ∴MC ∥AN ,∴四边形CMAN 是平行四边形.(2)解:∵四边形ABCD 是平行四边形, ∴∠ADE =∠CBF ,AD =CB , 又∵∠AED =∠CFB =90°, ∴△AED ≌△CFB(AAS ), ∴DE =BF =4,∴在Rt △BFN 中,BN =32+42=5.20. (1)【思路分析】要证∠CEB =∠CBE ,结合CE ∥DB ,可得到∠CEB =∠DBE ,从而只需证明∠CBE =∠DBE ,结合△ABC ≌△ABD 即可得证.证明:∵△ABC ≌△ABD , ∴∠ABC =∠ABD , ∵CE ∥BD ,∴∠CEB =∠DBE ,∴∠CEB =∠CBE.(2)证明:∵△ABC ≌△ABD ,∴BC =BD , 由(1)得∠CEB =∠CBE , ∴CE =CB , ∴CE =BD , ∵CE ∥BD ,∴四边形BCED 是平行四边形, ∵BC =BD ,∴四边形BCED 是菱形.21. (1)证明:∵四边形ABCD 是正方形, ∴AB =AD, ∠BAQ +∠DAP =90°=∠DAB , ∵DP ⊥AQ ,∴∠DAP +∠ADP =90°, ∴∠BAQ =∠ADP.在△DAP 和△ABQ 中, ⎨⎪⎧∠APD =∠AQB =90°∠ADP =∠BAQ ,∴△DAP ≌△ABQ(AAS ),∴AP =BQ.(2)解:①AQ 和AP ;②DP 和AP ;③AQ 和BQ ;④DP 和BQ.【解法提示】①由题图直接得:AQ -AP =PQ ;②∵△ABQ ≌△DAP ,∴AQ =DP ,∴DP -AP = AQ -AP =PQ ;③∵△ABQ ≌△DAP ,∴BQ =AP ,∴AQ -BQ =AQ -AP =PQ ;④∵△ABQ ≌△DAP ,∴DP =AQ ,BQ =AP ,∴DP -BQ =AQ -AP =PQ.22. (1)证明:在△ADF 和△ABE 中,⎩⎪⎨⎪⎧AB =AD ∠ABE =∠ADF =90°EB =FD, ∴△ADF ≌△ABE(SAS ).(2)解:∵AB =3,BE =1,∴AE =10,EC =4,∴ED =CD 2+EC 2=5,设AH =x ,EH =y ,在Rt △AHE 和Rt △AHD 中,⎩⎪⎨⎪⎧x 2+y 2=10x 2+(5-y )2=9, 解得,x =1.8,y =2.6,∴tan ∠AED =AH EH =x y =1.82.6=913. 23. (1)证明:∵△ADE 是由△ABC 绕点A 沿顺时针方向旋转而得,∴AD =AB ,AE =AC ,∠BAC =∠DAE ,∵AB =AC ,∴AD =AB =AE =AC ,∠EAC =∠DAB ,在△AEC 和△ADB 中∵⎩⎪⎨⎪⎧AD = AE ∠EAC =∠DAB AB =AC, ∴△AEC ≌△ADB(SAS ).(2)解:当四边形ADFC 是菱形时,AC =DF ,AC ∥DF ,∴∠BAC =∠ABD ,又∵∠BAC =45°,∴∠ABD =45°,又∵△ADE 是由△ABC 绕点A 沿顺时针方向旋转而得,∴AD =AB ,∴∠DAB =90°,又∵AB =2,由勾股定理可得:BD =AD 2+AB 2=2AB =22,在菱形ADFC 中,DF =AD =AB =2,∴BF =BD -DF =22-2.24. (1)【思路分析】根据折叠的性质,易得DF =EF ,DG =EG ,∠AFD =∠AFE ,再由EG ∥DC ,可得∠EGF =∠AFD ,从而得出EG =EF.根据四条边都相等的四边形是菱形得证;证明:由折叠的性质可得,EF =FD ,∠AEF =∠ADF =90°,第24题解图∠EFA =∠DFA ,EG =GD.∵EG ∥DC ,∴∠DFA =∠EGF ,∴∠EFA =∠EGF ,∴EF =EG =FD =GD ,∴四边形EFDG 是菱形.(2)【思路分析】由(1)可知EG =EF ,连接DE ,则DE 与GF 相互垂直平分,证得Rt △FHE ∽Rt △FEA ,列比例式,结合FH =12GF 得到EG 、GF 、AF 的关系; 解:如解图,连接ED ,交AF 于点H ,∵四边形EFDG 是菱形,∴DE ⊥AF ,FH =GH =12GF ,EH =DH =12DE. ∵∠FEH =∠FAE =90°-∠EFA ,∴Rt △FEH ∽Rt △FAE ,∴EF FH =AF EF,即EF 2=FH·AF , ∴EG 2=12GF·AF. (3)【思路分析】把AG ,EG 代入(2)中的关系式,求得GF ,AF 的值,根据勾股定理求得AD ,DE ,再证Rt △ADF ∽Rt △DCE ,可求出EC ,从而可求出BE 的值.解:∵AG =6,EG =25,EG 2=12GF·AF , ∴(25)2=12(6+GF)·GF ,∴GF =4, ∴AF =10.∵DF =EG =25,∴AD =BC =AF 2-DF 2=45,DE =2EH =2EG 2-(12GF )2=8. ∵∠CDE +∠DFA =90°,∠DAF +∠DFA =90°,∴∠CDE =∠DAF ,∴Rt △ADF ∽Rt △DCE ,∴EC DF =DE AF ,即EC 25=810, ∴EC =855, ∴BE =BC -EC =AD -EC =45-855=1255.。

中考数学压轴题分析:平行四边形折叠与面积问题

中考数学压轴题分析:平行四边形折叠与面积问题

中考数学压轴题分析:平行四边形折叠与面积问题本文内容选自2021年临沂中考数学压轴题。

本题以正方形为背景,将正方形进行折叠,得到一个十字模型。

再结合半角模型与四点共圆。

图形比较典型,值得探究。

【中考真题】(2021·山西)综合与实践问题情境:数学活动课上,老师出示了一个问题:如图①,在▱ABCD中,BE⊥AD,垂足为E,F为CD的中点,连接EF,BF,试猜想EF与BF的数量关系,并加以证明.独立思考:(1)请解答老师提出的问题;实践探究:(2)希望小组受此问题的启发,将▱ABCD沿着BF (F为CD的中点)所在直线折叠,如图②,点C的对应点为C′,连接DC′并延长交AB于点G,请判断AG与BG的数量关系,并加以证明.问题解决:(3)智慧小组突发奇想,将▱ABCD沿过点B的直线折叠,如图③,点A的对应点为A′,使A′B⊥CD于点H,折痕交AD 于点M,连接A′M,交CD于点N.该小组提出一个问题:若此▱ABCD的面积为20,边长AB=5,BC=2,求图中阴影部分(四边形BHNM)的面积.请你思考此问题,直接写出结果.【分析】(1)由垂直想到直角三角形,由中点想到倍长。

因此可以分别延长ED与BF并交于一点,利用全等与直角三角形斜边中线的性质进行解决。

当然,也可以取BE的中点,构造梯形的中位线进行求解。

(2)有了(1)中的结论,可以考虑连接CC′,那么根据斜边中线的性质的逆定理可以得到CC′与DG垂直,再根据轴对称的性质,可以得到BF垂直平分CC′,那么就可以得到四边形BFDG为平行四边形,进而得到G为AB的中点。

(3)由平行四边形的面积与边长,可以得到对应边上的高。

那么就可以得到BH为4,进而得到A′H=1,也可以根据勾股定理得到CH=√5。

那么再根据△BCH与△NA′H相似,可以得到AH与NH的长。

先求出△AMB或△A′MB的面积,再减去△A′HN的面积即可。

【答案】解:(1)结论:EF=BF.理由:如图①中,作FH∥AD交BE于H.∵四边形ABCD是平行四边形,∴AD∥BC,∵FH∥AD,∴DE∥FH∥CB,∵DF=CF,∴1,∴EH=HB,∴BE⊥AD,FH∥AD,∴FH⊥EB,∴EF=BF.(2)结论:AG=BG.理由:如图②中,连接CC′.∵△BFC′是由△BFC翻折得到,∴BF⊥CC′,FC=FC′,∵DF=FC,∴DF=FC=FC′,∴∠CC′D=90°,∴CC′⊥GD,∴DG∥BF,∵DF∥BG,∴四边形DFBG是平行四边形,∴DF=BG,∵AB=CD,DFCD,∴BGAB,∴AG=GB.(3)如图③中,过点D作DJ⊥AB于J,过点M作MT⊥AB于T.∵S平行四边形ABCD=AB·DJ,∴DJ4,∵四边形ABCD是平行四边形,∴AD=BC=2,AB∥CD,∴AJ2,∵A′B⊥AB,DJ⊥AB,∴∠DJB=∠JBH=∠DHB=90°,∴四边形DJBH是矩形,∴BH=DJ=4,∴A′H=A′B﹣BH=5﹣4=1,∵tanA2,设AT=x,则MT=2x,∵∠ABM=∠MBA′=45°,∴MT=TB=2x,∴3x=5,∴x,∴MT,∵tanA=tanA′2,∴NH=2,∴5,∴1×2.。

中考数学平行四边形综合经典题含答案解析

中考数学平行四边形综合经典题含答案解析

一、平行四边形真题与模拟题分类汇编(难题易错题)1.已知,在矩形ABCD中,AB=a,BC=b,动点M从点A出发沿边AD向点D运动.(1)如图1,当b=2a,点M运动到边AD的中点时,请证明∠BMC=90°;(2)如图2,当b>2a时,点M在运动的过程中,是否存在∠BMC=90°,若存在,请给与证明;若不存在,请说明理由;(3)如图3,当b<2a时,(2)中的结论是否仍然成立?请说明理由.【答案】(1)见解析;(2)存在,理由见解析;(3)不成立.理由如下见解析.【解析】试题分析:(1)由b=2a,点M是AD的中点,可得AB=AM=MD=DC=a,又由四边形ABCD 是矩形,即可求得∠AMB=∠DMC=45°,则可求得∠BMC=90°;(2)由∠BMC=90°,易证得△ABM∽△DMC,设AM=x,根据相似三角形的对应边成比例,即可得方程:x2﹣bx+a2=0,由b>2a,a>0,b>0,即可判定△>0,即可确定方程有两个不相等的实数根,且两根均大于零,符合题意;(3)由(2),当b<2a,a>0,b>0,判定方程x2﹣bx+a2=0的根的情况,即可求得答案.试题解析:(1)∵b=2a,点M是AD的中点,∴AB=AM=MD=DC=a,又∵在矩形ABCD中,∠A=∠D=90°,∴∠AMB=∠DMC=45°,∴∠BMC=90°.(2)存在,理由:若∠BMC=90°,则∠AMB+∠DMC=90°,又∵∠AMB+∠ABM=90°,∴∠ABM=∠DMC,又∵∠A=∠D=90°,∴△ABM∽△DMC,∴AM ABCD DM=,设AM=x,则x aa b x =-,整理得:x2﹣bx+a2=0,∵b>2a,a>0,b>0,∴△=b2﹣4a2>0,∴方程有两个不相等的实数根,且两根均大于零,符合题意,∴当b>2a时,存在∠BMC=90°,(3)不成立.理由:若∠BMC=90°,由(2)可知x2﹣bx+a2=0,∵b<2a,a>0,b>0,∴△=b2﹣4a2<0,∴方程没有实数根,∴当b<2a时,不存在∠BMC=90°,即(2)中的结论不成立.考点:1、相似三角形的判定与性质;2、根的判别式;3、矩形的性质2.如果两个三角形的两条边对应相等,夹角互补,那么这两个三角形叫做互补三角形,如图2,分别以△ABC的边AB、AC为边向外作正方形ABDE和ACGF,则图中的两个三角形就是互补三角形.(1)用尺规将图1中的△ABC分割成两个互补三角形;(2)证明图2中的△ABC分割成两个互补三角形;(3)如图3,在图2的基础上再以BC为边向外作正方形BCHI.①已知三个正方形面积分别是17、13、10,在如图4的网格中(网格中每个小正方形的边长为1)画出边长为、、的三角形,并计算图3中六边形DEFGHI的面积.②若△ABC的面积为2,求以EF、DI、HG的长为边的三角形面积.【答案】(1)作图见解析(2)证明见解析(3)①62;②6【解析】试题分析:(1)作BC边上的中线AD即可.(2)根据互补三角形的定义证明即可.(3)①画出图形后,利用割补法求面积即可.②平移△CHG到AMF,连接EM,IM,则AM=CH=BI,只要证明S△EFM=3S△ABC即可.试题解析:(1)如图1中,作BC边上的中线AD,△ABD和△ADC是互补三角形.(2)如图2中,延长FA到点H,使得AH=AF,连接EH.∵四边形ABDE,四边形ACGF是正方形,∴AB=AE,AF=AC,∠BAE=∠CAF=90°,∴∠EAF+∠BAC=180°,∴△AEF和△ABC是两个互补三角形.∵∠EAH+∠HAB=∠BAC+∠HAB=90°,∴∠EAH=∠BAC,∵AF=AC,∴AH=AB,在△AEH和△ABC中,∴△AEH≌△ABC,∴S△AEF=S△AEH=S△ABC.(3)①边长为、、的三角形如图4所示.∵S△ABC=3×4﹣2﹣1.5﹣3=5.5,∴S六边形=17+13+10+4×5.5=62.②如图3中,平移△CHG到AMF,连接EM,IM,则AM=CH=BI,设∠ABC=x,∵AM∥CH,CH⊥BC,∴AM⊥BC,∴∠EAM=90°+90°﹣x=180°﹣x,∵∠DBI=360°﹣90°﹣90°﹣x=180°﹣x,∴∠EAM=∠DBI,∵AE=BD,∴△AEM≌△DBI,∵在△DBI和△ABC中,DB=AB,BI=BC,∠DBI+∠ABC=180°,∴△DBI和△ABC是互补三角形,∴S△AEM=S△AEF=S△AFM=2,∴S△EFM=3S△ABC=6.考点:1、作图﹣应用与设计,2、三角形面积3.如图,△ABC是等边三角形,AB=6cm,D为边AB中点.动点P、Q在边AB上同时从点D出发,点P沿D→A以1cm/s的速度向终点A运动.点Q沿D→B→D以2cm/s的速度运动,回到点D停止.以PQ为边在AB上方作等边三角形PQN.将△PQN绕QN的中点旋转180°得到△MNQ.设四边形PQMN与△ABC重叠部分图形的面积为S(cm2),点P运动的时间为t(s)(0<t<3).(1)当点N落在边BC上时,求t的值.(2)当点N到点A、B的距离相等时,求t的值.(3)当点Q沿D→B运动时,求S与t之间的函数表达式.(4)设四边形PQMN的边MN、MQ与边BC的交点分别是E、F,直接写出四边形PEMF 与四边形PQMN的面积比为2:3时t的值.【答案】(1)(2)2(3)S=S菱形PQMN=2S△PNQ=t2;(4)t=1或【解析】试题分析:(1)由题意知:当点N落在边BC上时,点Q与点B重合,此时DQ=3;(2)当点N到点A、B的距离相等时,点N在边AB的中线上,此时PD=DQ;(3)当0≤t≤时,四边形PQMN与△ABC重叠部分图形为四边形PQMN;当≤t≤时,四边形PQMN与△ABC重叠部分图形为五边形PQFEN.(4)MN、MQ与边BC的有交点时,此时<t<,列出四边形PEMF与四边形PQMN的面积表达式后,即可求出t的值.试题解析:(1)∵△PQN与△ABC都是等边三角形,∴当点N落在边BC上时,点Q与点B重合.∴DQ=3∴2t=3.∴t=;(2)∵当点N到点A、B的距离相等时,点N在边AB的中线上,∴PD=DQ,当0<t<时,此时,PD=t,DQ=2t∴t=2t∴t=0(不合题意,舍去),当≤t<3时,此时,PD=t,DQ=6﹣2t∴t=6﹣2t,解得t=2;综上所述,当点N到点A、B的距离相等时,t=2;(3)由题意知:此时,PD=t,DQ=2t当点M在BC边上时,∴MN=BQ∵PQ=MN=3t,BQ=3﹣2t∴3t=3﹣2t∴解得t=如图①,当0≤t≤时,S△PNQ=PQ2=t2;∴S=S菱形PQMN=2S△PNQ=t2,如图②,当≤t≤时,设MN、MQ与边BC的交点分别是E、F,∵MN=PQ=3t,NE=BQ=3﹣2t,∴ME=MN﹣NE=PQ﹣BQ=5t﹣3,∵△EMF是等边三角形,∴S△EMF=ME2=(5t﹣3)2.;(4)MN、MQ与边BC的交点分别是E、F,此时<t<,t=1或.考点:几何变换综合题4.如图,四边形ABCD中,对角线AC、BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.(1)求证:四边形ABCD是矩形.(2)若∠ADF:∠FDC=3:2,DF⊥AC,求∠BDF的度数.【答案】(1)见解析;(2)18°.【解析】【分析】(1)根据平行四边形的判定得出四边形ABCD是平行四边形,求出∠ABC=90°,根据矩形的判定得出即可;(2)求出∠FDC的度数,根据三角形内角和定理求出∠DCO,根据矩形的性质得出OD=OC,求出∠CDO,即可求出答案.【详解】(1)证明:∵AO=CO,BO=DO∴四边形ABCD是平行四边形,∴∠ABC=∠ADC,∵∠ABC+∠ADC=180°,∴∠ABC=∠ADC=90°,∴四边形ABCD是矩形;(2)解:∵∠ADC=90°,∠ADF:∠FDC=3:2,∴∠FDC=36°,∵DF⊥AC,∴∠DCO=90°﹣36°=54°,∵四边形ABCD是矩形,∴OC=OD,∴∠ODC=54°∴∠BDF=∠ODC﹣∠FDC=18°.【点睛】本题考查了平行四边形的性质和判定,矩形的性质和判定的应用,能灵活运用定理进行推理是解此题的关键,注意:矩形的对角线相等,有一个角是直角的平行四边形是矩形.5.已知矩形纸片OBCD的边OB在x轴上,OD在y轴上,点C在第一象限,且,.现将纸片折叠,折痕为EF(点E,F是折痕与矩形的边的交点),点P ==OB OD86为点D的对应点,再将纸片还原。

第十八章全国通用版中考数学:《平行四边形》与坐标系结合压轴题(二)—解析版

第十八章全国通用版中考数学:《平行四边形》与坐标系结合压轴题(二)—解析版

第十八章专题:《平行四边形》与坐标系结合压轴题(二)1.如图,在平面直角坐标系中,AB //OC, A (0, 12), B (a, c) , C (b, 0),并且a, b满足b= 府市 /口' + 16. 一动点P从点A出发,在线段AB上以每秒2个单位长度的速度向点 B 运动;动点Q 从点。

出发在线段OC上以每秒1个单位长度的速度向点C运动,点P、Q分别从点A、O同时出发,当点P 运动到点B时,点Q随之停止运动.设运动时间为t (秒)(1)求B、C两点的坐标;(2)当t为何值时,四边形PQCB是平行四边形?并求出此时P、Q两点的坐标;(3)当t为何值时,APQC是以PQ为腰的等腰三角形?并求出P、Q两点的坐标.(1) •, b= ^a-21 J^T^+16,••.a=21, b=16,故B (21, 12) C (16, 0); (2)由题意得:AP=2t, QO=t,贝U: PB=21-2t , QC=16-t,•••当PB=QC时,四边形PQCB是平行四边形,.•.21-2t=16-t,解得:t=5,,P (10, 12) Q (5, 0);(3)当PQ=CQ 时,过Q 作QN^AB,由题意得:122+t2=(16-t) 2, 解得:t=3.5,故P (7, 12), Q (3.5, 0),当PQ=PC时,过P作PM ±x轴,由题意得:QM=t , CM=16-2t ,则t=16-2t,解得:t=16, 2t=32, 3 3故P( 32,12), Q(16,3 30).2.如图1,在平面直角坐标系中, AB ,y 轴于点A, BC ,x 轴于点B,点D 为线段BC 的中点,若AB=a , CD=b ,且J 2 a 8 v 5 +/4我 a +2屈=b .连接AD ,在线段OC 上取一点E,使/ EAD= / DAB .(1)贝U a=, b=(2)求证:AE=OE+CD ;【解答】(1) a =4 v15 , b =2 后,(2)由(1)可知 AB=4 75, CD=BD=2 V 5 , • . AB=CB ,,.AB ±y 轴于点 A, BC±x 轴于点 B,,乙 BAO= / B= / AOC=90° ,••・四边形ABCO 是矩形,••・AB=CB , ••・四边形ABCO 是正方形,延长 CO 至u M ,使得 OM=BD ,贝u ^ABD AOM , ,/4=/M, Z1 = Z2=Z3,. OA//BC, . ・/4=/2+/5=/5+/3=/EAM , . . / M= / EAM , • . AE=EM=OE+OM=OE+BD ••• BD=CD , .1. AE=OE+CD .(3)如图 2 中,设 AE=EM=x .在 RtAAOE 中,AO 2+OE 2=AE 2, - x 2= (4<5 ) 2+ (x-2 J 5 ) 2, . . x=5石, OE=3 而,•.D (4V 5, 2 45), E (3V5 , 0), •. F (0, -6V5 )风0)3.如图,在平面直角坐标系中,有一矩形ABCD,其中A(0, 0), B (m, 0) , D (0, n), m是最接近质的整数,n是16的算术平方根,若将4ABC沿矩形又•角线AC所在直线翻折,点B落在点E处,AE与边CD相交于点M .(1)求AC的长;(2)求4AMC的面积;(3)求点E的坐标.【解答】(1)•' m是最接近#5的整数,• ' m=8,.「n 是16 的算术平方根,,n=4,,B (8, 0), D (0, 4),.••点C 矩形ABCD 的一个顶点,..C (8, 4),,AB=8, BC=4 ,AC=4 J5 ,(2)由折叠有,CE=AD=BC=4 , AE=AB=8 ,设DM=x 则CM=8-x ,・. /ADM= / CEM , /AMD=/CME, /.A ADM ^ACEM , • .AM=CM=8-x , ME=MD , 在RtAADM 中,AD=4 , DM=x , AM=8-x ,根据勾股定理有:AD2+DM 2=AM 2,即:16+x2= (8-x) 2, •1- x=3 , DM=3 , CM=5 , S AAMC = —Ch/|X AD=)>^M=10,2 2(3)过点E作EFXCD,如图,由(2)有,CM=5 , CE=4, ME=DM=3在Rt^CEM 中,由射影定理得,CE2=CFXCM , 16=CFX5,,CF=3.2,••・Ma CE=CMK EF (直角三角形的面积的两种计算) ,,EF=2.4,• . DF=CD -CF=4.8 , BC+EF=6.4 , . . E (4.8, 6.4)4 .已知正方形OABC 在平面直角坐标系中,点 A, C 分别在x 轴,y 轴的正半轴上,等腰直角三角形OEF 的直角顶点O 在原点,E, F 分别在OA, OC 上,且OA=4 , OE=2 .将AOEF 绕点O 逆 时针旋转,得△OE I F I ,点E, F 旋转后的对应点为Ei, Fi.(I )①如图①,求EiFi 的长;②如图②,连接CFi, AEi,求证△OAEi^^OCFi;「(II)将AOEF 绕点O 逆时针旋转一周,当 OEi//CFi 时,求点Ei 的坐标(直接写出结果即可)姝 姝CB C 石【解答】(I )①解:二.等腰直角三角形 OEF 的直角顶点O 在原点,OE=2, / EOF=90 , OF=OE=2 ,「. EF=2 血,・ ••将AOEF 绕点 O 逆时针旋转,得△OE i F i, ••.E i F i =EF=2 J 2 ; ②证明:四边形OABC 为正方形,OC=OA .・ •・将AOEF 绕点 O 逆时针旋转,得 △OE i F i,AOE i =/COF i, • △OEF 是等腰直角三角形,・•.△OEiFi 是等腰直角三角形, ••OE i =OF i.在 AOAE i 和 ^OCF i 中,OA=OC, /AOEi=/COF i, OEi=OFi% E・•.△OAE 卢^OCF i (SAS);(n)解:••• OEXOF,卜过点F与OE平行的直线有且只有一条,并与OF垂直,当三角板OEF绕。

2020中考数学复习《平行四边形》专题练习(含答案)

2020中考数学复习《平行四边形》专题练习(含答案)

2020中考数学复习《平⾏四边形》专题练习(含答案)中考复习数学分类汇编:平⾏四边形专题练习含答案⼀、选择题1. (2018·宜宾)在ABCD Y 中,若BAD ∠与CDA ∠的平分线交于点E ,则AED ∠的形状是( )A.锐⾓三⾓形B.直⾓三⾓形C.钝⾓三⾓形D.不能确定2. (2018·黔西南州)如图,在ABCD Y 中,4AC =cm.若ACD ?的周长为13 cm ,则ABCD Y 的周长为( )A. 26 cmB. 24 cmC. 20 cmD. 18 cm3. (2018·海南)如图ABCD Y 的周长为36,对⾓线,AC BD 相交于点O ,E 是CD 的中点,12BD =,则DOE ?的周长为( )A.15B. 18C. 21D. 244. ( 2018·台州)如图,在ABCD Y 中,2,3AB BC ==.以点C 为圆⼼,适当长为半径画弧,交BC 于点P ,交CD 于点Q ,再分别以点,P Q 为圆⼼,⼤于12PQ 的长为半径画弧,两弧相交于点N ,射线CN 交BA 的延长线于点E ,则AE 的长是( ) A. 12 B. 1 C. 65 D. 325. (2018·东营)如图,在四边形ABCD 中,E 是BC 边的中点,连接DE 并延长,交AB 的延长线于点F ,AB BF =.添加⼀个条件使四边形ABCD 是平⾏四边形,你认为下列四个条件中可选择的是( )A. AD BC =B. CD BF =C. A C ∠=∠D. F CDF ∠=∠6. (2018·安徽)在ABCD Y 中,,E F 是对⾓线BD 上不同的两点.下列条件中,不能得出四边形AECF ⼀定为平⾏四边形的是( )A. BE DF =B. AE CF =C. //AF CED. BAE DCF ∠=∠7. (2018·⽟林)在四边形ABCD 中:①//AB CD ;②//AD BC ;③AB CD =;④AD BC =,从以上选择两个条件使四边形ABCD 为平⾏四边形的选法共有( )A. 3种B. 4种C. 5种D. 6种8. (2018·呼和浩特)顺次连接平⾯上,,,A B C D 四点得到⼀个四边形,从①//AB CD ;②BC AD =;③A C ∠=∠;④B D ∠=∠四个条件中任取其中两个,可以得出‘“四边形ABCD 是平⾏四边形”这⼀结论的情况共有( )A. 5种B. 4种C. 3种D. 1种9. (2018·眉⼭)如图,在ABCD Y 中,2CD AD =,BE AD ⊥于点E ,F 为DC 的中点,连接,EF BF ,下列结论:①2ABC ABF ∠=∠;②EF BF =;③2EFB DEBC S S ?=四边形;④3CFE DEF ∠=∠.其中正确的结论共有( )A.1个B. 2个C. 3个D. 4个10. (2018·通辽)如图,ABCD Y 的对⾓线,AC BD 交于点O ,DE 平分ADC ∠交AB 于点E ,60BCD ∠=?,12AD AB =,连接OE .下列结论:①ABCD S AD BD =Y g ; ②DB 平分CDE ∠; ③AO DE =;④5ADE OFE S S ??=.其中正确的有( )A. 1个B. 2个C. 3个D. 4个⼆、填空题11. (2018·常州)如图,在ABCD Y 中,70A ∠=?,DC DB =,则C D B ∠= .12. (2018·⼗堰)如图,ABCD Y 的对⾓线,AC BD 相交于点O ,且8AC =,10BD =,5AB =,则OCD ?的周长为 .13. (2018·泰州)如图,在A B C D Y 中,,A C B D 相交于点O .若6,16AD AC BD =+=,则BOC ?的周长为 .14. (2018·衡阳)如图,ABCD Y 的对⾓线相交于点O ,且AD CD ≠,过点O 作OM AC ⊥,交AD 于点M .如果CDM ?的周长为8,那么ABCD Y 的周长是 .15.(2018·临沂)如图,在ABCD Y 中,10,6AB AD ==,AC BC ⊥,则BD 的长为 .16. (2018·东营)如图,(3,3)B -,(5,0)C ,以,O C C B 为边作OABC Y ,则经过点A 的反⽐例函数的解析式为 .17. (2018·株洲)如图,在ABCD Y 中,连接BD ,且B D C D =,过点A 作AM BD⊥于点M ,过点D 作DN AB ⊥于点N ,且DN =在DB 的延长线上取⼀点P ,满⾜ABD MAP PAB ∠=∠+∠,则AP 的长为 .18.(导学号78816053)(2018·⽆锡)如图,60XOY ∠=?,点A 在边OX 上,2OA =.过点A 作AC OY ⊥于点C ,以AC 为⼀边在XOY ∠内作等边三⾓形ABC ,P 是ABC ?围成的区域(包括各边)内的⼀点,过点P 作//PD OY 交OX 于点D ,作//PE OX 交OY 于点E .设,OD a OE b ==,则2a b +的取值范围是 .三、解答题19. (2018·⽆锡)如图,在ABCD Y 中,,E F 分别是边,BC AD 的中点.求证:ABF CDE ∠=∠.20. (2018·衢州)如图,在ABCD⊥,DF AC⊥,垂Y中,AC是对⾓线,BE AC⾜分别为E,F.求证:AE CF=.21. (2018·⼤连)如图,ABCDY的对⾓线,AC BD相交于点O,点,E F在AC上,且AF CE =.=.求证:BE DF22. (2018·福建)如图,ABCDY的对⾓线,AC BD相交于点O,EF过点O且与AD BC分别相交于点,E F.求证:OE OF,=.23. (2018·宿迁)如图,在ABCD Y 中,点,E F 分别在边,CB AD 的延长线上,且BE DF =,EF 分别与,AB CD 交于点,G H .求证:AG CH =.24. (2018·曲靖)如图,在ABCD Y 的边,AB CD 上截取,AF CE ,使得AF CE =,连接,,EF M N 是线段EF 上两点,且EM FN =,连接,AN CM .(1)求证: AFN CEM ;(2)若107CMF ∠=?,72CEM ∠=?,求NAF ∠的度数.25. (2018·岳阳)如图,在ABCD Y 中,AE CF =.求证:四边形BFDE 是平⾏四边形.26. (2018·孝感)如图,,,,B E C F 在⼀条直线上,已知//,//,A B D E A C D F B E C F =,连接AD .求证:四边形ABED 是平⾏四边形.27. (2018·陕西)如图,//AB CD ,,E F 分别为,AB CD 上的点,且//EC BF ,连接AD ,分别与,EC BF 相交于点,G H ,若AB CD =,求证:AG DH =.28. (2018·巴中)如图,在ABCD Y 中,过点B 作BM AC ⊥于点E ,交CD 于点M ,过点D 作DN AC ⊥于点F ,交AB 于点N .(1)求证:四边形BMDN 是平⾏四边形;(2)已知12,5AF EM ==,求AN 的长.29. (2018·江西)如图,在四边形ABCD 中,//AB CD ,2AB CD =,E 为AB 的中点,请仅⽤⽆刻度的直尺分别按下⾯的要求画图.(保留画图痕迹)(1)在图①中,画出ABD ?的BD 边上的中线;(2)在图②中,若BA BD =,画出ABD ?的AD 边上的⾼.30. (2018·黄冈)如图,在ABCD Y 中,分别以边,BC CD 作等腰三⾓形BCF 、等腰三⾓形CDE ,使,BC BF CD DE ==,CBF CDE ∠=∠,连接,AF AE .(1)求证: ABF EDA ;(2)延长AB 与CF ,相交于点G ,若AF AE ⊥,求证: BF BC ⊥.31. (2018·永州)如图,在ABC∠=?,以线段AB为∠=?,30CAB中,90ACB边向外作等边三⾓形ABD,E是线段AB的中点,连接CE并延长交线段AD 于点F.(1)求证:四边形BCFD为平⾏四边形;(2)若6Y的⾯积.AB=,求BCFD32. (2018·重庆)如图,在ABCDY中,O是对⾓线AC的中点,E是BC上⼀点,且AB AE=,连接EO并延长交AD于点F.过点B作AE的垂线,垂⾜为H,交AC于点G.(1)若3,1的⾯积;AH HE==,求ABE(2)若45∠=?,求证:DF=.ACB参考答案⼀、1. B 2. D 3. A 4. B 5. D 6. B 7. B 8. C 9. D 10. B⼆、填空题11. 40?12. 1413. 1414. 1615. 16. 6y=x17. 618. 225≤+≤a b三、19. 点拨:证明()∠=∠.,即可得ABF CDEABF CDE SAS20. 点拨:证明()=.,即可得AE CFABE CDF AAS21. 点拨:证明()=.BEO DFO SAS,即可得BE DF22. 点拨:证明()AOE COF ASA ,即可得OE OF =.23. 点拨:证明()AGF CHE ASA ,即可得AG CH =.24. (1)点拨:由FN EM AFN CEM AF CE =??∠=∠??=?,得到AFN CEM(2) 35NAF ∠=?25. 点拨:由//BF DE BF DF ??=?,得到四边形BFDE 是平⾏四边形 26. 点拨:证明()ABC DEF ASA ,得到AB DE =,⼜∵//AB DE ,∴四边形ABED 是平⾏四边形.27. 点拨:证明()AEG DFH ASA ,得到AG DH =.28. (1) 点拨:由////CD AB DN BM,得到四边形BMDN 是平⾏四边形; (2)13AN =29. (1)如图①,连接CE ,交BD 于点F ,连接AF ,线段AF 即为所求(2)如图②,连接CE ,交BD 于点F ,连接AF ,DE 交于点G ,连接BG ,并延长BG ,交AD 于点H ,线段BH 即为所求30. (1) 点拨:由BF DA ABF EDA AB DE =??∠=∠??=?,得到ABF EDA(2) 点拨:由90CBF EAF ∠=∠=?,得到BF BC ⊥31. (1) 点拨:由////BC DF CF BD,得到四边形BCFD 为平⾏四边形; (2)BCFD S =Y 32. (1)ABE S ?= (2) 点拨:AOF COE ,得到AF CE =,∵AD BC =,∴DF BE =. AME BNG ,得到ME NG =,∴22BE ME NG ==在Rt GNC ?中,45GCN ∠=?,∴CG =,2NG =,∴DF =。

中考平行四边形压轴题+答案

中考平行四边形压轴题+答案

平行四边形1-20一.解答题(共19小题)1.(1)如图1,已知矩形ABCD中,点E是BC上的一动点,过点E作EF⊥BD于点F,EG⊥AC于点G,CH⊥BD于点H,试证明CH=EF+EG;(2)若点E在BC的延长线上,如图2,过点E作EF⊥BD于点F,EG⊥AC的延长线于点G,CH⊥BD于点H,则EF、EG、CH三者之间具有怎样的数量关系,直接写出你的猜想;(3)如图3,BD是正方形ABCD的对角线,L在BD上,且BL=BC,连接CL,点E是CL上任一点,EF⊥BD于点F,EG⊥BC于点G,猜想EF、EG、BD之间具有怎样的数量关系,直接写出你的猜想;(4)观察图1、图2、图3的特性,请你根据这一特性构造一个图形,使它仍然具有EF、EG、CH这样的线段的关系,并满足(1)或(2)的结论,写出相关题设的条件和结论.2.(1)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.求证:CE=CF;(2)如图2,在正方形ABCD中,E是AB上一点,G是AD上一点,如果∠GCE=45°,请你利用(1)的结论证明:GE=BE+GD.(3)运用(1)(2)解答中所积累的经验和知识,完成下题:如图3,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,E 是AB上一点,且∠DCE=45°,BE=4,DE=10,求直角梯形ABCD的面积.第1页(共33页)3.如图,在正方形ABCD中,点E、点F分别在边BC、DC上,BE=DF,∠EAF=60°.(1)若AE=2,求EC的长;(2)若点G在DC上,且∠AGC=120°,求证:AG=EG+FG.4.如图,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD (不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM.(1)求证:△AMB≌△ENB;(2)①当M点在何处时,AM+CM的值最小;②当M点在何处时,AM+BM+CM的值最小,并说明理由;(3)当AM+BM+CM的最小值为时,求正方形的边长.第2页(共33页)5.(1)人教版八年级数学下册92页第14题是这样叙述的:如图1,▱ABCD 中,过对角线BD上一点P作EF∥BC,HG∥AB,图中哪两个平行四边形的面积相等?为什么?根据习题背景,写出面积相等的一对平行四边形的名称为和;(2)如图2,点P为▱ABCD内一点,过点P分别作AD、AB的平行线分别交▱ABCD的四边于点E、F、G、H.已知S▱BHPE=3,S▱PFDG=5,则S△PAC=;(3)如图3,若①②③④⑤五个平行四边形拼成一个含30°内角的菱形EFGH(不重复、无缝隙).已知①②③④四个平行四边形面积的和为14,四边形ABCD的面积为11,则菱形EFGH的周长为.6.如图,E是正方形ABCD的边AD上的动点,F是边BC延长线上的一点,且BF=EF,AB=12,设AE=x,BF=y.(1)当△BEF是等边三角形时,求BF的长;(2)求y与x的函数解析式,并写出它的定义域;(3)把△ABE沿着直线BE翻折,点A落在点A′处,试探索:△A′BF能否为等腰三角形?如果能,请求出AE的长;如果不能,请说明理由.7.已知矩形ABCD和点P,当点P在BC上任一位置(如图(1)所示)第3页(共33页)时,易证得结论:PA2+PC2=PB2+PD2,请你探究:当点P分别在图(2)、图(3)中的位置时,PA2、PB2、PC2和PD2又有怎样的数量关系请你写出对上述两种情况的探究结论,并利用图(2)证明你的结论.答:对图(2)的探究结论为;对图(3)的探究结论为;证明:如图(2)8.已知:如图所示,O为等腰直角△BCD斜边BD的中点,BE平分∠DBC,交DC于点E,延长BC到点F,使CF=CE,连接DF,交BE的延长线于点G,连接OG.(1)求证:△BCE≌△DCF;(2)OG与BF有什么数量关系?证明你的结论;(3)若GE•GB=4﹣2,求△DBG的面积.9.数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,点第4页(共33页)E是边BC的中点.∠AEF=90°,且EF交正方形外角∠DCG的平分线CF 于点F,求证:AE=EF.经过思考,小明展示了一种正确的解题思路:取AB的中点M,连接ME,则AM=EC,易证△AME≌△ECF,所以AE=EF.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E是边BC的中点”改为“点E是边BC 上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;(2)小华提出:如图3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.10.如图1,P是线段AB上的一点,在AB的同侧作△APC和△BPD,使PC=PA,PD=PB,∠APC=∠BPD,连接CD,点E、F、G、H分别是AC、AB、BD、CD的中点,顺次连接E、F、G、H.(1)猜想四边形EFGH的形状,直接回答,不必说明理由;(2)当点P在线段AB的上方时,如图2,在△APB的外部作△APC和△BPD,其他条件不变,(1)中的结论还成立吗?说明理由;(3)如果(2)中,∠APC=∠BPD=90°,其他条件不变,先补全图3,再判断四边形EFGH的形状,并说明理由.第5页(共33页)11.如图,操作:把正方形CGEF的对角线CE放在正方形ABCD的边BC的延长线上(CG>BC),取线段AE的中点M.探究:线段MD、MF的关系,并加以证明.说明:(1)如果你经历反复探索,没有找到解决问题的方法,请你把探索过程中的某种思路写出来(要求至少写3步);(2)在你经历说明(1)的过程后,可以从下列①、②、③中选取一个补充或更换已知条件,完成你的证明.注意:选取①完成证明得10分;选取②完成证明得7分;选取③完成证明得5分.①DM的延长线交CE于点N,且AD=NE;②将正方形CGEF6绕点C逆时针旋转45°(如图),其他条件不变;③在②的条件下,且CF=2AD.附加题:将正方形CGEF绕点C旋转任意角度后(如图),其他条件不变.探究:线段MD、MF的关系,并加以证明.第6页(共33页)12.正方形ABCD中,点O是对角线AC的中点,P是对角线AC上一动点,过点P作PF⊥CD于点F.如图1,当点P与点O重合时,显然有DF=CF.(1)如图2,若点P在线段AO上(不与点A、O重合),PE⊥PB且PE 交CD于点E.①求证:DF=EF;②写出线段PC、PA、CE之间的一个等量关系,并证明你的结论;(2)若点P在线段OC上(不与点O、C重合),PE⊥PB且PE交直线CD 于点E.请完成图3并判断(1)中的结论①、②是否分别成立?若不成立,写出相应的结论.(所写结论均不必证明)13.如图,正方形ABCD,BE⊥ED,连接BD,CE.(1)求证:∠EBD=∠ECD;(2)设EB,EC交AD于F,G两点,若AF=2FG,探究线段CG与DG之间的数量关系并证明.第7页(共33页)14.如图1,在正方形ABCD中,对角线AC与BD相交于点E,AF平分∠BAC,交BD于点F.(1)求证:EF+AC=AB;(2)点C1从点C出发,沿着线段CB向点B运动(不与点B重合),同时点A1从点A出发,沿着BA的延长线运动,点C1与A1的运动速度相同,当动点C1停止运动时,另一动点A1也随之停止运动.如图2,A1F1平分∠BA1C1,交BD于点F1,过点F1作F1E1⊥A1C1,垂足为E1,请猜想E1F1,A1C1与AB三者之间的数量关系,并证明你的猜想;(3)在(2)的条件下,当A1E1=3,C1E1=2时,求BD的长.15.如图,正方形ABCD中,E为AB边上一点,过点D作DF⊥DE,与BC延长线交于点F.连接EF,与CD边交于点G,与对角线BD交于点H.(1)若BF=BD=,求BE的长;(2)若∠ADE=2∠BFE,求证:FH=HE+HD.第8页(共33页)16.如图,小明将一张直角梯形纸片沿虚线剪开,得到矩形ABCD和三角形EGF两张纸片,测得AB=5,AD=4,EF=.在进行如下操作时遇到了下面的几个问题,请你帮助解决.(1)请你求出FG的长度.(2)在(1)的条件下,小明先将三角形的边EG和矩形边AB重合,然后将△EFG沿直线BC向右平移,至F点与B重合时停止.在平移过程中,设G点平移的距离为x,两纸片重叠部分面积为.y,求在平移的整个过程中,y与x的函数关系式,并求当重叠部分面积为10时,平移距离x 的值.(3)在(2)的操作中,小明发现在平移过程中,虽然有时平移的距离不等,但两纸片重叠的面积却是相等的;而有时候平移的距离不等,两纸片重叠部分的面积也不可能相等.请探索这两种情况下重叠部分面积y的范围(直接写出结果).17.如图,将一三角板放在边长为1的正方形ABCD上,并使它的直角顶点P在对角线AC上滑动,直角的一边始终经过点B,另一边与射线DC相交于Q.探究:设A、P两点间的距离为x.(1)当点Q在边CD上时,线段PQ与PB之间有怎样的数量关系?试证明你的猜想;(2)当点Q在边CD上时,设四边形PBCQ的面积为y,求y与x之间的函数关系,并写出函数自变量x的取值范围;(3)当点P在线段AC上滑动时,△PCQ是否可能成为等腰三角形?如果可能,指出所有能使△PCQ成为等腰三角形的点Q的位置.并求出相应的x值,如果不可能,试说明理由.第9页(共33页)18.如图,△ABC中,点P是边AC上的一个动点,过P作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F.(1)求证:PE=PF;(2)当点P在边AC上运动时,四边形AECF可能是矩形吗?说明理由;(3)若在AC边上存在点P,使四边形AECF是正方形,且.求此时∠BAC的大小.19.如图(1),已知正方形ABCD在直线MN的上方,BC在直线MN上,E是BC上一点,以AE为边在直线MN的上方作正方形AEFG.(1)连接GD,求证:△ADG≌△ABE;(2)连接FC,观察并猜测∠FCN的度数,并说明理由;(3)如图(2),将图(1)中正方形ABCD改为矩形ABCD,AB=a,BC=b (a、b为常数),E是线段BC上一动点(不含端点B、C),以AE为边在直线MN的上方作矩形AEFG,使顶点G恰好落在射线CD上.判断当点E由B向C运动时,∠FCN的大小是否总保持不变?若∠FCN的大小不变,请用含a、b的代数式表示tan∠FCN的值;若∠FCN的大小发生改变,请举例说明.第10页(共33页)平行四边形1-20参考答案与试题解析一.解答题(共19小题)1.(1)如图1,已知矩形ABCD中,点E是BC上的一动点,过点E作EF⊥BD于点F,EG⊥AC于点G,CH⊥BD于点H,试证明CH=EF+EG;(2)若点E在BC的延长线上,如图2,过点E作EF⊥BD于点F,EG⊥AC的延长线于点G,CH⊥BD于点H,则EF、EG、CH三者之间具有怎样的数量关系,直接写出你的猜想;(3)如图3,BD是正方形ABCD的对角线,L在BD上,且BL=BC,连接CL,点E是CL上任一点,EF⊥BD于点F,EG⊥BC于点G,猜想EF、EG、BD之间具有怎样的数量关系,直接写出你的猜想;(4)观察图1、图2、图3的特性,请你根据这一特性构造一个图形,使它仍然具有EF、EG、CH这样的线段的关系,并满足(1)或(2)的结论,写出相关题设的条件和结论.【解答】(1)证明:过E点作EN⊥CH于N.∵EF⊥BD,CH⊥BD,∴四边形EFHN是矩形.∴EF=NH,FH∥EN.∴∠DBC=∠NEC.∵四边形ABCD是矩形,∴AC=BD,且互相平分∴∠DBC=∠ACB∴∠NEC=∠ACB∵EG⊥AC,EN⊥CH,∴∠EGC=∠CNE=90°,又∵EC=CE,∴△EGC≌△CNE.∴EG=CN∴CH=CN+NH=EG+EF;(2)解:猜想CH=EF﹣EG;(3)解:EF+EG=BD;(4)解:点P是等腰三角形底边所在直线上的任意一点,点P到两腰的距离的和(或差)等于这个等腰三角形腰上的高.如图①,有CG=PF﹣PN.第11页(共33页)2.(1)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.求证:CE=CF;(2)如图2,在正方形ABCD中,E是AB上一点,G是AD上一点,如果∠GCE=45°,请你利用(1)的结论证明:GE=BE+GD.(3)运用(1)(2)解答中所积累的经验和知识,完成下题:如图3,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,E 是AB上一点,且∠DCE=45°,BE=4,DE=10,求直角梯形ABCD的面积.【解答】(1)证明:∵四边形ABCD是正方形,∴BC=CD,∠B=∠CDF=90°,∵∠ADC=90°,∴∠FDC=90°.∴∠B=∠FDC,∵BE=DF,∴△CBE≌△CDF(SAS).∴CE=CF.(2)证明:如图2,延长AD至F,使DF=BE,连接CF.由(1)知△CBE≌△CDF,∴∠BCE=∠DCF.∴∠BCE+∠ECD=∠DCF+∠ECD,即∠ECF=∠BCD=90°,又∠GCE=45°,∴∠GCF=∠GCE=45°.∵CE=CF,GC=GC,∴△ECG≌△FCG.∴GE=GF,∴GE=GF=DF+GD=BE+GD.(3)解:如图3,过C作CG⊥AD,交AD延长线于G.在直角梯形ABCD中,∵AD∥BC,∴∠A=∠B=90°,又∵∠CGA=90°,AB=BC,∴四边形ABCG为正方形.∴AG=BC.…(7分)∵∠DCE=45°,根据(1)(2)可知,ED=BE+DG.…(8分)∴10=4+DG,即DG=6.设AB=x,则AE=x﹣4,AD=x﹣6,在Rt△AED中,∵DE2=AD2+AE2,即102=(x﹣6)2+(x﹣4)2.解这个方程,得:x=12或x=﹣2(舍去).…(9分)第12页(共33页)∴AB=12.∴S梯形ABCD=(AD+BC)•AB=×(6+12)×12=108.即梯形ABCD的面积为108.…(10分)3.如图,在正方形ABCD中,点E、点F分别在边BC、DC上,BE=DF,∠EAF=60°.(1)若AE=2,求EC的长;(2)若点G在DC上,且∠AGC=120°,求证:AG=EG+FG.【解答】(1)解:如图,连接EF,在正方形ABCD中,AB=AD,∠B=∠D,在△ABE和△ADF中,,∴△ABE≌△ADF(SAS),∴AE=AF,∵∠EAF=60°,∴△AEF是等边三角形,∴EF=AE=2,∵BE=DF,BC=CD,∴BC﹣BE=CD﹣DF,即CE=CF,∴△CEF是等腰直角三角形,∴EC=EF=×2=;(2)方法一:证明:∵∠AGC=120°,∴∠AGF=180°﹣∠AGC=180°﹣120°=60°,又∵△AEF是等边三角形,(已证)∴∠AEF=60°,∴点A、E、G、F四点共圆,∴∠AGE=∠AFE=60°,∴∠CGE=∠AGC﹣∠AGE=120°﹣60°=60°,如图(2)①延长GE交AB的延长线于H,∵AB∥CD,∴∠H=∠CGE=60°,∴∠H=∠AGF,又∵∠GAF+∠EAG=∠EAF=60°,∠HAE+∠EAG=∠GAB=60°,∴∠GAF=∠HAE,第13页(共33页)在△AFG和△AEH中,,∴△AFG≌△AEH(AAS),∴AG=AH,FG=EH,∵∠AGE=60°,∴△AGH是等边三角形,∵AH=GH=EG+EH=EG+FG,即AG=EG+FG.方法二:如图(2)②在AG上截取GH=FG,∵∠AGC=120°,∴∠AGF=60°,∴△FGH是等边三角形,∴FH=FG,∠FHG=60°,∵△AEF是等边三角形,∴∠AFE=60°,∴∠AFE=∠GFH=60°,∴∠AFE﹣∠EFH=∠GFH﹣∠EFH,即∠AFH=∠EFG,在△AFH和△BFG中,,∴△AFH≌△EFG(SAS),∴AH=GE,∴AG=AH+GH=EG+FG,即AG=EG+FG.4.如图,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM.(1)求证:△AMB≌△ENB;(2)①当M点在何处时,AM+CM的值最小;②当M点在何处时,AM+BM+CM的值最小,并说明理由;(3)当AM+BM+CM的最小值为时,求正方形的边长.第14页(共33页)【解答】(1)证明:∵△ABE是等边三角形,∴BA=BE,∠ABE=60°.∵∠MBN=60°,∴∠MBN﹣∠ABN=∠ABE﹣∠ABN.即∠MBA=∠NBE.又∵MB=NB,∴△AMB≌△ENB(SAS).(2)解:①当M点落在BD的中点时,A、M、C三点共线,AM+CM的值最小.②如图,连接CE,当M点位于BD与CE的交点处时,AM+BM+CM的值最小.理由如下:连接MN,由(1)知,△AMB≌△ENB,∴AM=EN,∵∠MBN=60°,MB=NB,∴△BMN是等边三角形.∴BM=MN.∴AM+BM+CM=EN+MN+CM.根据“两点之间线段最短”可知,若E、N、M、C在同一条直线上时,EN+MN+CM取得最小值,最小值为EC.在△ABM和△CBM中,,∴△ABM≌△CBM,∴∠BAM=∠BCM,∴∠BCM=∠BEN,∵EB=CB,∴若连接EC,则∠BEC=∠BCE,∵∠BCM=∠BCE,∠BEN=∠BEC,∴M、N可以同时在直线EC上.∴当M点位于BD与CE的交点处时,AM+BM+CM的值最小,即等于EC 的长.(3)解:过E点作EF⊥BC交CB的延长线于F,∴∠EBF=∠ABF﹣∠ABE=90°﹣60°=30°.设正方形的边长为x,则BF=x,EF=.在Rt△EFC中,∵EF2+FC2=EC2,∴()2+(x+x)2=.解得x1=,x2=﹣(舍去负值).∴正方形的边长为.第15页(共33页)第16页(共33页)5.(1)人教版八年级数学下册92页第14题是这样叙述的:如图1,▱ABCD 中,过对角线BD 上一点P 作EF ∥BC ,HG ∥AB ,图中哪两个平行四边形的面积相等?为什么?根据习题背景,写出面积相等的一对平行四边形的名称为 ▱AEPH 和 ▱PGCF ;(2)如图2,点P 为▱ABCD 内一点,过点P 分别作AD 、AB 的平行线分别交▱ABCD 的四边于点E 、F 、G 、H .已知S ▱BHPE =3,S ▱PFDG =5,则S △PAC = 1 ;(3)如图3,若①②③④⑤五个平行四边形拼成一个含30°内角的菱形EFGH (不重复、无缝隙).已知①②③④四个平行四边形面积的和为14,四边形ABCD 的面积为11,则菱形EFGH 的周长为 24 .【解答】解:(1)∵▱ABCD 中,EF ∥BC ,HG ∥AB , ∴S △ABD =S △BCD ,S △PBE =S △PBG ,S △PDH =S △PDF , ∴S ▱AEPH =S ▱PGCF ,S ▱ABGH =S ▱EBCF ,S ▱AEFD =S ▱HGCD ,故答案为:▱AEPH 和▱PGCF 或▱ABGH 和▱EBCF 或▱AEFD 和▱HGCD ;(2)根据(1)可得:S △ABC =S △ADC ,S △PAE =S △PAG ,S △PCH =S △PCF , ∵S ▱BHPE =3,S ▱PFDG =5,∴S △PAC =S △PAG +S △PCF +S ▱PFDG ﹣S △ACD =S △PAG +S △PCF +S ▱PFDG ﹣S ▱ABCD =S △PAG +S △PCF +S ▱PFDG ﹣(2S △PAG +2S △PCF +S ▱BHPE +S ▱PFDG )=S ▱PFDG ﹣(S ▱BHPE +S ▱PFDG )=1;故答案为:1;(3)∵①②③④四个平行四边形面积的和为14, ∴S 1+S 2+S 3+S 4=14,∵四边形ABCD 的面积为11, ∴S 5=11﹣14×=4,∴S 菱形EFGH =S 1+S 2+S 3+S 4+S 5=18, ∵菱形EFGH 的一个内角为30°, ∴设边长为x , 则x•xsin30°=18, 解得:x=6,∴菱形EFGH 的周长为24. 故答案为:24.6.如图,E 是正方形ABCD 的边AD 上的动点,F 是边BC 延长线上的一点,且BF=EF ,AB=12,设AE=x ,BF=y .(1)当△BEF 是等边三角形时,求BF 的长; (2)求y 与x 的函数解析式,并写出它的定义域;(3)把△ABE 沿着直线BE 翻折,点A 落在点A′处,试探索:△A′BF 能否为等腰三角形?如果能,请求出AE 的长;如果不能,请说明理由.【解答】解:(1)当△BEF是等边三角形时,∠ABE=30°.∵AB=12,∴AE=,∴BF=BE=.(2)作EG⊥BF,垂足为点G,根据题意,得EG=AB=12,FG=y﹣x,EF=y,∴y2=(y﹣x)2+122,∴所求的函数解析式为(0<x<12).(3)∵∠AEB=∠FBE=∠FEB,∴点A'落在EF上,∴A'E=AE,∠BA'F=∠BA'E=∠A=90,∴要使△A'BF成为等腰三角形,必须使A'B=A'F.而A'B=AB=12,A'F=EF﹣A'E=BF﹣A'E,∴y﹣x=12.∴﹣x=12.整理得x2+24x﹣144=0,解得,经检验:都原方程的根,但不符合题意,舍去,当AE=时,△A'BF为等腰三角形.7.已知矩形ABCD和点P,当点P在BC上任一位置(如图(1)所示)时,易证得结论:PA2+PC2=PB2+PD2,请你探究:当点P分别在图(2)、图(3)中的位置时,PA2、PB2、PC2和PD2又有怎样的数量关系请你写出对上述两种情况的探究结论,并利用图(2)证明你的结论.答:对图(2)的探究结论为PA2+PC2=PB2+PD2;对图(3)的探究结论为PA2+PC2=PB2+PD2;第17页(共33页)证明:如图(2)【解答】解:结论均是PA2+PC2=PB2+PD2.(1)如图2,过点P作MN∥AB,交AD于点M,交BC于点N,∴四边形ABNM和四边形NCDM均为矩形,根据(1)中的结论可得,在矩形ABNM中有PA2+PN2=PB2+PM2,在矩形NCDM中有PC2+PM2=PD2+PN2,两式相加得PA2+PN2+PC2+PM2=PB2+PM2+PD2+PN2,∴PA2+PC2=PB2+PD2.(2)如图3,过点P作MN∥AB,交AB的延长线于点M,交CD的延长线于点N,∴四边形BCNM和四边形ADNM均为矩形,同样根据(1)中的结论可得,在矩形BCNM中有PC2+PM2=PB2+PN2,在矩形ADNM中有PA2+PN2=PD2+PM2,两式相加得PA2+PN2+PC2+PM2=PD2+PM2+PB2+PN2,∴PA2+PC2=PB2+PD2.8.已知:如图所示,O为等腰直角△BCD斜边BD的中点,BE平分∠DBC,交DC于点E,延长BC到点F,使CF=CE,连接DF,交BE的延长线于点G,连接OG.(1)求证:△BCE≌△DCF;(2)OG与BF有什么数量关系?证明你的结论;(3)若GE•GB=4﹣2,求△DBG的面积.【解答】(1)证明:在△BCE与△DCF中,,∴△BCE≌△DCF.(2)解:OG=BF.理由如下:∵△BCE≌△DCF,∴∠CEB=∠F,∵∠CEB=∠DEG,∴∠F=∠DEG,∵∠F+∠GDE=90°,第18页(共33页)第19页(共33页)∴∠DEG +∠GDE=90°, ∴BG ⊥DF ,∴∠BGD=∠BGF ,又∵BG=BG ,∠DBG=∠FBG , ∴△BGD ≌△BGF , ∴DG=GF ,∵O 为正方形ABCD 的中心, ∴DO=OB ,∴OG 是△DBF 的中位线, ∴OG=BF .(3)解:设BC=x ,则DC=x ,BD=,由(2)知,△BGF ≌△BGD , ∴BF=BD ,∴CF=(﹣1)x ,∵∠DGB=∠EGD ,∠DBG=∠EDG , ∴△GDB ∽△GED , ∴=,∴GD 2=GE•GB=4﹣2, ∵DC 2+CF 2=(2GD )2,∴x 2+(﹣1)2x 2=4(4﹣2), (4﹣2)x 2=4(4﹣2),x 2=4,正方形ABCD 的面积是4个平方单位. ∴S △DBG =S △BDF =××x 2=个平方单位.9.数学课上,张老师出示了问题:如图1,四边形ABCD 是正方形,点E 是边BC 的中点.∠AEF=90°,且EF 交正方形外角∠DCG 的平分线CF 于点F ,求证:AE=EF .经过思考,小明展示了一种正确的解题思路:取AB 的中点M ,连接ME ,则AM=EC ,易证△AME ≌△ECF ,所以AE=EF . 在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E 是边BC 的中点”改为“点E 是边BC 上(除B ,C 外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;(2)小华提出:如图3,点E 是BC 的延长线上(除C 点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由. 【解答】解:(1)正确.证明:在AB 上取一点M ,使AM=EC ,连接ME . ∴BM=BE ,∴∠BME=45°,∴∠AME=135°,∵CF是外角平分线,∴∠DCF=45°,∴∠ECF=135°,∴∠AME=∠ECF,∵∠AEB+∠BAE=90°,∠AEB+∠CEF=90°,∴∠BAE=∠CEF,∴△AME≌△ECF(ASA),∴AE=EF.(2)正确.证明:在BA的延长线上取一点N.使AN=CE,连接NE.∴BN=BE,∴∠N=∠NEC=45°,∵CF平分∠DCG,∴∠FCE=45°,∴∠N=∠ECF,∵四边形ABCD是正方形,∴AD∥BE,∴∠DAE=∠BEA,即∠DAE+90°=∠BEA+90°,∴∠NAE=∠CEF,∴△ANE≌△ECF(ASA),∴AE=EF.10.如图1,P是线段AB上的一点,在AB的同侧作△APC和△BPD,使PC=PA,PD=PB,∠APC=∠BPD,连接CD,点E、F、G、H分别是AC、AB、BD、CD的中点,顺次连接E、F、G、H.(1)猜想四边形EFGH的形状,直接回答,不必说明理由;(2)当点P在线段AB的上方时,如图2,在△APB的外部作△APC和△BPD,其他条件不变,(1)中的结论还成立吗?说明理由;(3)如果(2)中,∠APC=∠BPD=90°,其他条件不变,先补全图3,再判断四边形EFGH的形状,并说明理由.【解答】解:(1)四边形EFGH是菱形.(2分)(2)成立.(3分)第20页(共33页)理由:连接AD,BC.(4分)∵∠APC=∠BPD,∴∠APC+∠CPD=∠BPD+∠CPD.即∠APD=∠CPB.又∵PA=PC,PD=PB,∴△APD≌△CPB(SAS)∴AD=CB.(6分)∵E、F、G、H分别是AC、AB、BD、CD的中点,∴EF、FG、GH、EH分别是△ABC、△ABD、△BCD、△ACD的中位线.∴EF=BC,FG=AD,GH=BC,EH=AD.∴EF=FG=GH=EH.∴四边形EFGH是菱形.(7分)(3)补全图形,如答图.(8分)判断四边形EFGH是正方形.(9分)理由:连接AD,BC.∵(2)中已证△APD≌△CPB.∴∠PAD=∠PCB.∵∠APC=90°,∴∠PAD+∠1=90°.又∵∠1=∠2.∴∠PCB+∠2=90°.∴∠3=90°.(11分)∵(2)中已证GH,EH分别是△BCD,△ACD的中位线,∴GH∥BC,EH∥AD.∴∠EHG=90°.又∵(2)中已证四边形EFGH是菱形,∴菱形EFGH是正方形.(12分)11.如图,操作:把正方形CGEF的对角线CE放在正方形ABCD的边BC的延长线上(CG>BC),取线段AE的中点M.探究:线段MD、MF的关系,并加以证明.说明:(1)如果你经历反复探索,没有找到解决问题的方法,请你把探索过程中的某种思路写出来(要求至少写3步);(2)在你经历说明(1)的过程后,可以从下列①、②、③中选取一个补充或更换已知条件,完成你的证明.注意:选取①完成证明得10分;选取②完成证明得7分;选取③完成证明得5分.①DM的延长线交CE于点N,且AD=NE;②将正方形CGEF6绕点C逆时针旋转45°(如图),其他条件不变;③在②的条件下,且CF=2AD.附加题:将正方形CGEF绕点C旋转任意角度后(如图),其他条件不变.探究:线段MD、MF的关系,并加以证明.第21页(共33页)【解答】证明:关系是:MD=MF,MD⊥MF如图,延长DM交CE于点N,连接FD、FN∵正方形ABCD,∴AD∥BE,AD=DC,∴∠1=∠2又∵AM=EM,∠3=∠4∴△ADM≌△ENM∴AD=EN,MD=MN∵AD=DC,∴DC=NE又∵正方形CGEF,∴∠FCE=∠NEF=45°,FC=FE,∠CFE=90°又∵正方形ABCD,∴∠BCD=90°.∴∠DCF=∠NEF=45°∴△FDC≌△FNE∴FD=FN,∠5=∠6∵∠CFE=90°,∴∠DFN=90°又∵DM=MN=DN,∴M为DN的中点,∴FM=DN,∴MD=MF,DM⊥MF思路一:∵四边形ABCD、CGEF是正方形,∴AB=BC=CD=AD,∠B=∠BCD=∠CDA=∠BAD=90°CF=EF=EG=CG,∠G=∠GEF=∠EFC=∠FCG=90°,∠FCE=∠FEC=45°∴∠DCF=∠FEC思路二:延长DM交CE于N,∵四边形ABCD、CGEF是正方形∴AD∥CE,∴∠DAM=∠NEM又∵∠DMA=∠NME,AM=EM,∴△ADM≌△ENM思路三:∵正方形CGEF,∴∠FCE=∠FEC=45°又∵正方形ABCD,∴∠DCB=90°.∴∠DCF=180°﹣∠DCB﹣∠FCE=45°,∠DCF=∠FEC=45°选取条件①证明:如图∵正方形ABCD,∴AD∥BE,AD=DC,∴∠1=∠2∵AD=NE,∠3=∠4,∴△ADM≌△ENM∴MD=MN又∵AD=DC,∴DC=NE又∵正方形CGEF,∴FC=FE,∠FCE=∠FEN=45°.第22页(共33页)∴∠FCD=∠FEN=45°∴△FDC≌△FNE∴FD=FN,∠5=∠6,∴∠DFN=∠CFE=90°∴MD=MF,MD⊥MF选取条件②证明:如图,延长DM交FE于N∵正方形ABCD、CGEF∴CF=EF,AD=DC,∠CFE=90°,AD∥FE.∴∠1=∠2又∵MA=ME,∠3=∠4,∴△AMD≌△EMN∴MD=MN,AD=EN.∵AD=DC,∴DC=NE又∵FC=FE,∴FD=FN又∵∠DFN=90°,∴FM⊥MD,MF=MD.选取条件③证明:如图,延长DM交FE于N.∵正方形ABCD、CGEF∴CF=EF,AD=DC,∠CFE=90°,AD∥FE∴∠1=∠2又∵MA=ME,∠3=∠4,∴△AMD≌△EMN∴AD=EN,MD=MN.∵CF=2AD,EF=2EN∴FD=FN.又∵∠DFN=90°,∴MD=MF,MD⊥MF附加题:证明:如图过点E作AD的平行线分别交DM、DC的延长线于N、H,连接DF、FN 则∠ADC=∠H,∠3=∠4.∵AM=ME,∠1=∠2,∴△ADM≌△ENM∴DM=NM,AD=EN.∵正方形ABCD、CGEF∴AD=DC,FC=FE,∠ADC=∠FCG=∠CFE=90°,CG∥FE∴∠H=90°,∠5=∠NEF,DC=NE∴∠DCF+∠7=∠5+∠7=90°∴∠DCF=∠5=∠NEF∵FC=FE,∴△DCF≌△NEF∴FD=FN,∠DFC=∠NFE.∵∠CFE=90°∴∠DFN=90°.∴DM=FM,DM⊥FM.第23页(共33页)12.正方形ABCD中,点O是对角线AC的中点,P是对角线AC上一动点,过点P作PF⊥CD于点F.如图1,当点P与点O重合时,显然有DF=CF.(1)如图2,若点P在线段AO上(不与点A、O重合),PE⊥PB且PE 交CD于点E.①求证:DF=EF;②写出线段PC、PA、CE之间的一个等量关系,并证明你的结论;(2)若点P在线段OC上(不与点O、C重合),PE⊥PB且PE交直线CD 于点E.请完成图3并判断(1)中的结论①、②是否分别成立?若不成立,写出相应的结论.(所写结论均不必证明)【解答】解:(1)如图2,延长FP交AB于点Q,①∵AC是正方形ABCD对角线,∴∠QAP=∠APQ=45°,∴AQ=PQ,∵AB=QF,∴BQ=PF,∵PE⊥PB,∴∠QPB+∠FPE=90°,∵∠QBP+∠QPB=90°,∴∠QBP=∠FPE,∵∠BQP=∠PFE=90°,∴△BQP≌△PFE,∴QP=EF,∵AQ=DF,∴DF=EF;②如图2,过点P作PG⊥AD.∵PF⊥CD,∠PCF=∠PAG=45°,∴△PCF和△PAG均为等腰直角三角形,∵四边形DFPG为矩形,∴PA=PG,PC=CF,∵PG=DF,DF=EF,∴PA=EF,∴PC=CF=(CE+EF)=CE+EF=CE+PA,即PC、PA、CE满足关系为:PC=CE+PA;(2)结论①仍成立;结论②不成立,此时②中三条线段的数量关系是PA﹣PC=CE.如图3:①∵PB⊥PE,BC⊥CE,∴B、P、C、E四点共圆,∴∠PEC=∠PBC,在△PBC和△PDC中有:BC=DC(已知),∠PCB=∠PCD=45°(已证),PC 边公共边,∴△PBC≌△PDC(SAS),第24页(共33页)∴∠PBC=∠PDC,∴∠PEC=∠PDC,∵PF⊥DE,∴DF=EF;②同理:PA=PG=DF=EF,PC=CF,∴PA=EF=(CE+CF)=CE+CF=CE+PC即PC、PA、CE满足关系为:PA﹣PC=CE.13.如图,正方形ABCD,BE⊥ED,连接BD,CE.(1)求证:∠EBD=∠ECD;(2)设EB,EC交AD于F,G两点,若AF=2FG,探究线段CG与DG之间的数量关系并证明.【解答】(1)证明:如图,过点C作CM⊥BE于M,作CN⊥DE交ED的延长线于N,∵BE⊥ED,∴四边形CNEM是矩形,∴∠DCN+∠DCM=∠MCN=90°,又∵∠BCM+∠DCM=∠BCD=90°,∴∠BCM=∠DCN,正方形ABCD中,BC=CD,在△BCM和△DCN中,,∴△BCM≌△DCN(AAS),∴CM=CN,∴矩形CNEM是正方形,∴∠CEM=45°,又∵四边形ABCD是正方形,∴∠BDC=45°,设BD、CE交于点O,在△BEO中,∠EBO+∠EOB+∠BEO=180°,在△CDO中,∠COD+∠ODC+∠OCD=180°,∵∠BOE=∠COD,∴∠EBO=∠OCD,即:∠EBD=∠ECD;第25页(共33页)(2)解:CG=DG.理由如下:如图,过点B作BP⊥CE于P,BP的延长线交CD于点Q,连接FQ,∵∠BEP=45°,∴∠EBP=90°﹣45°=45°,延长DC到点Q,使CR=AF,在正方形ABCD中,AB=BC,在△ABF和△CBR中,,∴△ABF≌△CBR(SAS),∴BF=BR,∠ABF=∠CBR,∴∠QBR=∠QBC+∠CBR=∠QBC+∠ABF=90°﹣∠EBP=45°,∴∠QBR=∠QBF=45°,在△FBQ和△RBQ中,,∴△FBQ≌△RBQ(SAS),∴FQ=QR,∵BP⊥CE,∴∠CBQ+∠BCP=90°,又∵∠BCP+∠DCG=∠BCD=90°,∴∠CBQ=∠DCG,在△BCQ和△CDG中,,∴△BCQ≌△CDG(ASA),∴DG=CQ,设FG=x,DG=CQ=a,则AF=CR=2FG=2x,AD=AF+FG+DG=2x+x+a=3x+a,FQ=QR=CQ+CR=DG+AF=a+2x,FD=FG+DG=x+a,DQ=CD﹣CQ=AD﹣DG=3x+a﹣a=3x,在Rt△DQF中,FQ2=FD2+DQ2,即(a+2x)2=(x+a)2+(3x)2,解得a=3x,∴CD=AD=3x+a=2a,在Rt△CDG中,CG===a,∴CG=DG.第26页(共33页)14.如图1,在正方形ABCD中,对角线AC与BD相交于点E,AF平分∠BAC,交BD于点F.(1)求证:EF+AC=AB;(2)点C1从点C出发,沿着线段CB向点B运动(不与点B重合),同时点A1从点A出发,沿着BA的延长线运动,点C1与A1的运动速度相同,当动点C1停止运动时,另一动点A1也随之停止运动.如图2,A1F1平分∠BA1C1,交BD于点F1,过点F1作F1E1⊥A1C1,垂足为E1,请猜想E1F1,A1C1与AB三者之间的数量关系,并证明你的猜想;(3)在(2)的条件下,当A1E1=3,C1E1=2时,求BD的长.【解答】(1)证明:如图1,过点F作FM⊥AB于点M,在正方形ABCD 中,AC⊥BD于点E.∴AE=AC,∠ABD=∠CBD=45°,∵AF平分∠BAC,∴EF=MF,又∵AF=AF,∴Rt△AMF≌Rt△AEF,∴AE=AM,∵∠MFB=∠ABF=45°,∴MF=MB,MB=EF,∴EF+AC=MB+AE=MB+AM=AB.(2)E1F1,A1C1与AB三者之间的数量关系:E1F1+A1C1=AB证明:如图2,连接F1C1,过点F1作F1P⊥A1B于点P,F1Q⊥BC于点Q,∵A1F1平分∠BA1C1,∴E1F1=PF1;同理QF1=PF1,∴E1F1=PF1=QF1,又∵A1F1=A1F1,∴Rt△A1E1F1≌Rt△A1PF1,∴A1E1=A1P,同理Rt△QF1C1≌Rt△E1F1C1,∴C1Q=C1E1,由题意:A1A=C1C,∴A1B+BC1=AB+A1A+BC﹣C1C=AB+BC=2AB,∵PB=PF1=QF1=QB,∴A1B+BC1=A1P+PB+QB+C1Q=A1P+C1Q+2E1F1,即2AB=A1E1+C1E1+2E1F1=A1C1+2E1F1,∴E1F1+A1C1=AB.(3)解:设PB=x,则QB=x,∵A1E1=3,QC1=C1E1=2,Rt△A1BC1中,A1B2+BC12=A1C12,即(3+x)2+(2+x)2=52,∴x1=1,x2=﹣6(舍去),∴PB=1,∴E1F1=1,又∵A1C1=5,由(2)的结论:E1F1+A1C1=AB,第27页(共33页)∴AB=,∴BD=.15.如图,正方形ABCD中,E为AB边上一点,过点D作DF⊥DE,与BC延长线交于点F.连接EF,与CD边交于点G,与对角线BD交于点H.(1)若BF=BD=,求BE的长;(2)若∠ADE=2∠BFE,求证:FH=HE+HD.【解答】(1)解:∵四边形ABCD正方形,∴∠BCD=90°,BC=CD,∴Rt△BCD中,BC2+CD2=BD2,即BC2=()2﹣(BC)2,∴BC=AB=1,∵DF⊥DE,∴∠ADE+∠EDC=90°=∠EDC+∠CDF,∴∠ADE=∠CDF,在△ADE和△CDF中,∵,∴△ADE≌△CDF(ASA),∴AE=CF=BF﹣BC=﹣1,∴BE=AB﹣AE=1﹣(﹣1)=2﹣;(2)证明:在FE上截取一段FI,使得FI=EH,∵△ADE≌△CDF,∴DE=DF,∴△DEF为等腰直角三角形,∴∠DEF=∠DFE=45°=∠DBC,∵∠DHE=∠BHF,∴∠EDH=∠BFH(三角形的内角和定理),在△DEH和△DFI中,∵,∴△DEH≌△DFI(SAS),∴DH=DI,又∵∠HDE=∠BFE,∠ADE=2∠BFE,∴∠HDE=∠BFE=∠ADE,∵∠HDE+∠ADE=45°,∴∠HDE=15°,∴∠DHI=∠DEH+∠HDE=60°,即△DHI为等边三角形,∴DH=HI,第28页(共33页)∴FH=FI+HI=HE+HD.16.如图,小明将一张直角梯形纸片沿虚线剪开,得到矩形ABCD和三角形EGF两张纸片,测得AB=5,AD=4,EF=.在进行如下操作时遇到了下面的几个问题,请你帮助解决.(1)请你求出FG的长度.(2)在(1)的条件下,小明先将三角形的边EG和矩形边AB重合,然后将△EFG沿直线BC向右平移,至F点与B重合时停止.在平移过程中,设G点平移的距离为x,两纸片重叠部分面积为.y,求在平移的整个过程中,y与x的函数关系式,并求当重叠部分面积为10时,平移距离x 的值.(3)在(2)的操作中,小明发现在平移过程中,虽然有时平移的距离不等,但两纸片重叠的面积却是相等的;而有时候平移的距离不等,两纸片重叠部分的面积也不可能相等.请探索这两种情况下重叠部分面积y的范围(直接写出结果).【解答】(1)解:∵EG=AB=5,EF=5,∠EGF=90°,在△EFG中,由勾股定理得:FG===10,答:FG的长度是10.(2)解:有两种情况:①如图1:∵矩形ABCD,∠EGF=90°,EG=AB,∴AB∥CD∥EG,∴=,即=,∴BM=5﹣x,∴y=(BM+EG)×BG=•(5﹣x+5)•x,∴y=﹣x2+5x(0≤x≤4);第29页(共33页)②如图2:与求BM的方法类似,得出=,∴CN=7﹣x,∴y=×(BM+CN)×BC=•(5﹣x+7﹣x)•4,y=﹣2x+24(4<x≤10);综合上述:y与x的关系式是y=,把y=10代入y=﹣x2+5x得:﹣x2+5x=10,解得:x1=10+2>4(舍去),x2=10﹣2;把y=10代入y=﹣2x+24得:﹣2x+24=10,解得:x=7.(3)解:当4≤y<16时,平移的距离不等,两纸片重叠的面积可能相等,0≤y<4或y=16时,平移的距离不等,两纸片重叠部分的面积也不可能相等.17.如图,将一三角板放在边长为1的正方形ABCD上,并使它的直角顶点P在对角线AC上滑动,直角的一边始终经过点B,另一边与射线DC相交于Q.探究:设A、P两点间的距离为x.(1)当点Q在边CD上时,线段PQ与PB之间有怎样的数量关系?试证明你的猜想;(2)当点Q在边CD上时,设四边形PBCQ的面积为y,求y与x之间的函数关系,并写出函数自变量x的取值范围;(3)当点P在线段AC上滑动时,△PCQ是否可能成为等腰三角形?如果可能,指出所有能使△PCQ成为等腰三角形的点Q的位置.并求出相应的x值,如果不可能,试说明理由.【解答】解:(1)PQ=PB,(1分)过P点作MN∥BC分别交AB、DC于点M、N,在正方形ABCD中,AC为对角线,∴AM=PM,又∵AB=MN,∴MB=PN,∵∠BPQ=90°,∴∠BPM+∠NPQ=90°;又∵∠MBP+∠BPM=90°,∴∠MBP=∠NPQ,在Rt△MBP≌Rt△NPQ中,第30页(共33页)。

中考数学与平行四边形有关的压轴题附答案解析

中考数学与平行四边形有关的压轴题附答案解析

一、平行四边形真题与模拟题分类汇编(难题易错题)1.如图1,四边形ABCD是正方形,G是CD边上的一个动点(点G与C、D不重合),以CG为一边在正方形ABCD外作正方形CEFG,连接BG,DE.(1)①猜想图1中线段BG、线段DE的长度关系及所在直线的位置关系,不必证明;②将图1中的正方形CEFG绕着点C按顺时针方向旋转任意角度α,得到如图2情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,并证明你的判断.(2)将原题中正方形改为矩形(如图3、4),且AB=a,BC=b,CE=ka,CG=kb (a≠b,k>0),第(1)题①中得到的结论哪些成立,哪些不成立?若成立,以图4为例简要说明理由.(3)在第(2)题图4中,连接DG、BE,且a=3,b=2,k=12,求BE2+DG2的值.【答案】(1)①BG⊥DE,BG=DE;②BG⊥DE,证明见解析;(2)BG⊥DE,证明见解析;(3)16.25.【解析】分析:(1)①根据正方形的性质,显然三角形BCG顺时针旋转90°即可得到三角形DCE,从而判断两条直线之间的关系;②结合正方形的性质,根据SAS仍然能够判定△BCG≌△DCE,从而证明结论;(2)根据两条对应边的比相等,且夹角相等可以判定上述两个三角形相似,从而可以得到(1)中的位置关系仍然成立;(3)连接BE、DG.根据勾股定理即可把BE2+DG2转换为两个矩形的长、宽平方和.详解:(1)①BG⊥DE,BG=DE;②∵四边形ABCD和四边形CEFG是正方形,∴BC=DC,CG=CE,∠BCD=∠ECG=90°,∴∠BCG=∠DCE,∴△BCG≌△DCE,∴BG=DE,∠CBG=∠CDE,又∵∠CBG+∠BHC=90°,∴∠CDE+∠DHG=90°,∴BG⊥DE.(2)∵AB=a,BC=b,CE=ka,CG=kb,∴BC CG b==,DC CE a又∵∠BCG=∠DCE,∴△BCG∽△DCE,∴∠CBG=∠CDE,又∵∠CBG+∠BHC=90°,∴∠CDE+∠DHG=90°,∴BG⊥DE.(3)连接BE、DG.根据题意,得AB=3,BC=2,CE=1.5,CG=1,∵BG⊥DE,∠BCD=∠ECG=90°∴BE2+DG2=BO2+OE2+DO2+OG2=BC2+CD2+CE2+CG2=9+4+2.25+1=16.25.点睛:此题综合运用了全等三角形的判定和性质、相似三角形的判定和性质以及勾股定理.2.如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O的直线分别交AB,CD边于点E,F.(1)求证:四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时,求EF的长.413【答案】(1)证明见解析;(2【解析】分析:(1)根据平行四边形ABCD 的性质,判定△BOE ≌△DOF (ASA ),得出四边形BEDF 的对角线互相平分,进而得出结论;(2)在Rt △ADE 中,由勾股定理得出方程,解方程求出BE ,由勾股定理求出BD ,得出OB ,再由勾股定理求出EO ,即可得出EF 的长.详解:(1)证明:∵四边形ABCD 是矩形,O 是BD 的中点,∴∠A=90°,AD=BC=4,AB ∥DC ,OB=OD ,∴∠OBE=∠ODF ,在△BOE 和△DOF 中,OBE ODF OB ODBOE DOF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△BOE ≌△DOF (ASA ),∴EO=FO ,∴四边形BEDF 是平行四边形;(2)当四边形BEDF 是菱形时,BD ⊥EF ,设BE=x ,则 DE=x ,AE=6-x ,在Rt △ADE 中,DE 2=AD 2+AE 2,∴x 2=42+(6-x )2,解得:x=133, ∵∴OB=12∵BD ⊥EF ,∴∴EF=2EO=3. 点睛:本题主要考查了矩形的性质,菱形的性质、勾股定理、全等三角形的判定与性质,熟练掌握矩形的性质和勾股定理,证明三角形全等是解决问的关键3.在正方形ABCD 中,点E ,F 分别在边BC ,CD 上,且∠EAF=∠CEF=45°.(1)将△ADF 绕着点A 顺时针旋转90°,得到△ABG(如图①),求证:△AEG ≌△AEF ;(2)若直线EF 与AB ,AD 的延长线分别交于点M ,N(如图②),求证:EF 2=ME 2+NF 2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图③),请你直接写出线段EF ,BE ,DF 之间的数量关系.【答案】(1)证明见解析;(2)证明见解析;(3)EF2=2BE2+2DF2.【解析】试题分析:(1)根据旋转的性质可知AF=AG,∠EAF=∠GAE=45°,故可证△AEG≌△AEF;(2)将△ADF绕着点A顺时针旋转90°,得到△ABG,连结GM.由(1)知△AEG≌△AEF,则EG=EF.再由△BME、△DNF、△CEF均为等腰直角三角形,得出CE=CF,BE=BM,NF=DF,然后证明∠GME=90°,MG=NF,利用勾股定理得出EG2=ME2+MG2,等量代换即可证明EF2=ME2+NF2;(3)将△ADF绕着点A顺时针旋转90°,得到△ABG,根据旋转的性质可以得到△ADF≌△ABG,则DF=BG,再证明△AEG≌△AEF,得出EG=EF,由EG=BG+BE,等量代换得到EF=BE+DF.试题解析:(1)∵△ADF绕着点A顺时针旋转90°,得到△ABG,∴AF=AG,∠FAG=90°,∵∠EAF=45°,∴∠GAE=45°,在△AGE与△AFE中,,∴△AGE≌△AFE(SAS);(2)设正方形ABCD的边长为a.将△ADF绕着点A顺时针旋转90°,得到△ABG,连结GM.则△ADF≌△ABG,DF=BG.由(1)知△AEG≌△AEF,∴EG=EF.∵∠CEF=45°,∴△BME、△DNF、△CEF均为等腰直角三角形,∴CE=CF,BE=BM,NF=DF,∴a﹣BE=a﹣DF,∴BE=DF,∴BE=BM=DF=BG,∴∠BMG=45°,∴∠GME=45°+45°=90°,∴EG2=ME2+MG2,∵EG=EF ,MG=BM=DF=NF,∴EF2=ME2+NF2;(3)EF2=2BE2+2DF2.如图所示,延长EF交AB延长线于M点,交AD延长线于N点,将△ADF绕着点A顺时针旋转90°,得到△AGH,连结HM,HE.由(1)知△AEH≌△AEF,则由勾股定理有(GH+BE)2+BG2=EH2,即(GH+BE)2+(BM﹣GM)2=EH2又∴EF=HE,DF=GH=GM,BE=BM,所以有(GH+BE)2+(BE﹣GH)2=EF2,即2(DF2+BE2)=EF2考点:四边形综合题4.如图,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,E、F在菱形的边BC,CD上.(1)证明:BE=CF.(2)当点E,F分别在边BC,CD上移动时(△AEF保持为正三角形),请探究四边形AECF的面积是否发生变化?若不变,求出这个定值;如果变化,求出其最大值.(3)在(2)的情况下,请探究△CEF的面积是否发生变化?若不变,求出这个定值;如果变化,求出其最大值.【答案】(1)见解析;(2)43;(3)见解析【解析】试题分析:(1)先求证AB=AC,进而求证△ABC、△ACD为等边三角形,得∠4=60°,AC=AB进而求证△ABE≌△ACF,即可求得BE=CF;(2)根据△ABE≌△ACF可得S△ABE=S△ACF,故根据S四边形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC即可解题;(3)当正三角形AEF的边AE与BC垂直时,边AE最短.△AEF的面积会随着AE的变化而变化,且当AE最短时,正三角形AEF的面积会最小,又根据S△CEF=S四边形AECF-S△AEF,则△CEF的面积就会最大.试题解析:(1)证明:连接AC,∵∠1+∠2=60°,∠3+∠2=60°,∴∠1=∠3,∵∠BAD=120°,∴∠ABC=∠ADC=60°∵四边形ABCD是菱形,∴AB=BC=CD=AD,∴△ABC、△ACD为等边三角形∴∠4=60°,AC=AB,∴在△ABE和△ACF中,,∴△ABE≌△ACF.(ASA)∴BE=CF.(2)解:由(1)得△ABE≌△ACF,则S△ABE=S△ACF.故S四边形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC,是定值.作AH⊥BC于H点,则BH=2,S四边形AECF=S△ABC===; (3)解:由“垂线段最短”可知,当正三角形AEF 的边AE 与BC 垂直时,边AE 最短.故△AEF 的面积会随着AE 的变化而变化,且当AE 最短时,正三角形AEF 的面积会最小,又S △CEF =S 四边形AECF ﹣S △AEF ,则△CEF 的面积就会最大.由(2)得,S △CEF =S 四边形AECF ﹣S △AEF =﹣=.点睛:本题考查了菱形每一条对角线平分一组对角的性质,考查了全等三角形的证明和全等三角形对应边相等的性质,考查了三角形面积的计算,本题中求证△ABE ≌△ACF 是解题的关键.5.问题情境在四边形ABCD 中,BA =BC ,DC ⊥AC ,过点D 作DE ∥AB 交BC 的延长线于点E ,M 是边AD 的中点,连接MB ,ME.特例探究(1)如图1,当∠ABC =90°时,写出线段MB 与ME 的数量关系,位置关系;(2)如图2,当∠ABC =120°时,试探究线段MB 与ME 的数量关系,并证明你的结论; 拓展延伸(3)如图3,当∠ABC =α时,请直接用含α的式子表示线段MB 与ME 之间的数量关系.【答案】(1)MB =ME ,MB ⊥ME ;(2)ME 3.证明见解析;(3)ME =MB·tan 2 .【解析】【分析】(1)如图1中,连接CM .只要证明△MBE 是等腰直角三角形即可;(2)结论:EM=3MB .只要证明△EBM 是直角三角形,且∠MEB=30°即可; (3)结论:EM=BM•tan2 .证明方法类似;【详解】(1) 如图1中,连接CM .∵∠ACD=90°,AM=MD ,∴MC=MA=MD ,∵BA=BC ,∴BM 垂直平分AC ,∵∠ABC=90°,BA=BC ,∴∠MBE=12∠ABC=45°,∠ACB=∠DCE=45°, ∵AB ∥DE ,∴∠ABE+∠DEC=180°,∴∠DEC=90°,∴∠DCE=∠CDE=45°,∴EC=ED ,∵MC=MD ,∴EM 垂直平分线段CD ,EM 平分∠DEC ,∴∠MEC=45°,∴△BME 是等腰直角三角形,∴BM=ME ,BM ⊥EM .故答案为BM=ME ,BM ⊥EM . (2)ME =3MB .证明如下:连接CM ,如解图所示.∵DC ⊥AC ,M 是边AD 的中点,∴MC =MA =MD .∵BA =BC ,∴BM 垂直平分AC .∵∠ABC =120°,BA =BC ,∴∠MBE =12∠ABC =60°,∠BAC =∠BCA =30°,∠DCE =60°. ∵AB ∥DE ,∴∠ABE +∠DEC =180°,∴∠DEC =60°,∴∠DCE =∠DEC =60°,∴△CDE 是等边三角形,∴EC =ED .∵MC =MD ,∴EM 垂直平分CD ,EM 平分∠DEC , ∴∠MEC =12∠DEC =30°, ∴∠MBE +∠MEB =90°,即∠BME =90°.在Rt △BME 中,∵∠MEB =30°,∴ME =3MB .(3) 如图3中,结论:EM=BM•tan 2α.理由:同法可证:BM ⊥EM ,BM 平分∠ABC ,所以EM=BM•tan2α. 【点睛】本题考查四边形综合题、等腰直角三角形的判定和性质、等边三角形的判定和性质、等腰三角形的性质、锐角三角函数等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题.6.如图,抛物线y=mx 2+2mx+n 经过A (﹣3,0),C (0,﹣32)两点,与x 轴交于另一点B .(1)求经过A ,B ,C 三点的抛物线的解析式;(2)过点C 作CE ∥x 轴交抛物线于点E ,写出点E 的坐标,并求AC 、BE 的交点F 的坐标 (3)若抛物线的顶点为D ,连结DC 、DE ,四边形CDEF 是否为菱形?若是,请证明;若不是,请说明理由.【答案】(1)y=12x2+x﹣32;(2)F点坐标为(﹣1,﹣1);(3)四边形CDEF是菱形.证明见解析【解析】【分析】将A、C点的坐标代入抛物线的解析式中,通过联立方程组求得该抛物线的解析式;根据(1)题所得的抛物线的解析式,可确定抛物线的对称轴方程以及B、C点的坐标,由CE∥x轴,可知C、E关于对称轴对称。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
∵ 四边形 ABCD 是正方形,∴ ∠ DCF=90°.在 Rt△ FCD 中,∵ G 为 DF 的中点,∴ CG= 1 FD, 2
同理.在 Rt△ DEF 中,EG= 1 FD,∴ CG=EG. 2
(2)(1)中结论仍然成立,即 EG=CG. 证法一:连接 AG,过 G 点作 MN⊥AD 于 M,与 EF 的延长线交于 N 点. 在△ DAG 与△ DCG 中,∵ AD=CD,∠ ADG=∠ CDG,DG=DG,∴ △ DAG≌ △ DCG(SAS), ∴ AG=CG; 在△ DMG 与△ FNG 中,∵ ∠ DGM=∠ FGN,FG=DG,∠ MDG=∠ NFG,∴ △ DMG≌ △ FNG (ASA),∴ MG=NG. ∵ ∠ EAM=∠ AEN=∠ AMN=90°,∴ 四边形 AENM 是矩形,在矩形 AENM 中,AM=EN.在 △ AMG 与△ ENG 中,∵ AM=EN,∠ AMG=∠ ENG,MG=NG,∴ △ AMG≌ △ ENG(SAS), ∴ AG=EG,∴ EG=CG. 证法二:延长 CG 至 M,使 MG=CG,连接 MF,ME,EC.在△ DCG 与△ FMG 中, ∵ FG=DG,∠ MGF=∠ CGD,MG=CG,∴ △ DCG≌ △ FMG,∴ MF=CD,∠ FMG=∠ DCG, ∴ MF∥ CD∥ AB,∴ EF⊥MF. 在 Rt△ MFE 与 Rt△ CBE 中,∵ MF=CB,∠ MFE=∠ EBC=90°,EF=BE,∴ △ MFE≌ △ CBE ∴ ∠ MEF=∠ CEB,∴ ∠ MEC=∠ MEF+∠ FEC=∠ CEB+∠ CEF=90°,∴ △ MEC 为直角三角形.
∴ △ CQP∽ △ CBA, ∴

解得:QP= x,
∴ PM=3﹣ x, 由题意可知,C(0,3),M(x,0),N(4﹣x,3), P 点坐标为(x,3﹣ x). (2)设△ NPC 的面积为 S,在△ NPC 中,NC=4﹣x, NC 边上的高为 ,其中,0≤x≤4.
∴ S= (4﹣x)× x= (﹣x2+4x)
m 即可解决问题;
(3)如图③中,当点 D 在线段 BK 上时,△ DEK 的面积最小,当点 D 在 BA 的延长线上
时,△ D′E′K 的面积最大,求出面积的最小值以及最大值即可解决问题;
【详解】
(1)如图①中,
∵ A(5,0),B(0,3), ∴ OA=5,OB=3, ∵ 四边形 AOBC 是矩形, ∴ AC=OB=3,OA=BC=5,∠ OBC=∠ C=90°, ∵ 矩形 ADEF 是由矩形 AOBC 旋转得到, ∴ AD=AO=5,
4.(问题情境)在△ ABC 中,AB=AC,点 P 为 BC 所在直线上的任一点,过点 P 作 PD⊥AB,PE⊥AC,垂足分别为 D、E,过点 C 作 CF⊥AB,垂足为 F.当 P 在 BC 边上时(如 图 1),求证:PD+PE=CF. 证明思路是:如图 2,连接 AP,由△ ABP 与△ ACP 面积之和等于△ ABC 的面积可以证得: PD+PE=CF.(不要证明) (变式探究)(1)当点 P 在 CB 延长线上时,其余条件不变(如图 3),试探索 PD、PE、 CF 之间的数量关系并说明理由; 请运用上述解答中所积累的经验和方法完成下列两题: (结论运用)(2)如图 4,将长方形 ABCD 沿 EF 折叠,使点 D 落在点 B 上,点 C 落在点 C′处,点 P 为折痕 EF 上的任一点,过点 P 作 PG⊥BE、PH⊥BC,垂足分别为 G、H,若 AD =16,CF=6,求 PG+PH 的值.

17
m=

5
∴ BH= 17 , 5
∴ H( 17 ,3). 5
(3)如图③中,当点 D 在线段 BK 上时,△ DEK 的面积最小,最小值= 1 •DE•DK= 1 ×3×
2
2
(5- 34 )= 30 3 34 ,

2
4
当点 D 在 BA 的延长线上时,△ D′E′K 的面积最大,最大面积= 1 ×D′E′×KD′= 1 ×3×
2
2
(5+ 34 )= 30 3 34 .
2
4
综上所述, 30 3 34 ≤S≤ 30 3 34 .
4
4
【点睛】
本题考查四边形综合题、矩形的性质、勾股定理、全等三角形的判定和性质、旋转变换等
知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会利用参数构建方程解决
问题.
3.已知正方形 ABCD 中,E 为对角线 BD 上一点,过 E 点作 EF⊥BD 交 BC 于 F,连接 DF, G 为 DF 中点,连接 EG,CG. (1)请问 EG 与 CG 存在怎样的数量关系,并证明你的结论; (2)将图①中△ BEF 绕 B 点逆时针旋转 45°,如图②所示,取 DF 中点 G,连接 EG, CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由. (3)将图①中△ BEF 绕 B 点旋转任意角度,如图③所示,再连接相应的线段,问(1)中 的结论是否仍然成立?(请直接写出结果,不必写出理由)
(迁移拓展)(3)在直角坐标系中,直线 l1:y=- 4 x+8 与直线 l2:y=﹣2x+8 相交于点 3
A,直线 l1、l2 与 x 轴分别交于点 B、点 C.点 P 是直线 l2 上一个动点,若点 P 到直线 l1 的 距离为 2.求点 P 的坐标.
【答案】【变式探究】证明见解析【结论运用】8【迁移拓展】(﹣1,6),(1,10) 【解析】 【变式探究】 连接 AP,同理利用△ ABP 与△ ACP 面积之差等于△ ABC 的面积可以证得; 【结论运用】 过点 E 作 EQ⊥BC,垂足为 Q,根据勾股定理和矩形的性质解答即可; 【迁移拓展】 分两种情况,利用结论,求得点 P 到 x 轴的距离,再利用待定系数法可求出 P 的坐标. 【详解】 变式探究:连接 AP,如图 3:
一、平行四边形真题与模拟题分类汇编(难题易错题)
1.如图,平面直角坐标系中,四边形 OABC 为矩形,点 A,B 的坐标分别为(4,0), (4,3),动点 M,N 分别从 O,B 同时出发.以每秒 1 个单位的速度运动.其中,点 M 沿 OA 向终点 A 运动,点 N 沿 BC 向终点 C 运动.过点 M 作 MP⊥OA,交 AC 于 P,连接 NP,已知动点运动了 x 秒. (1)P 点的坐标为多少(用含 x 的代数式表示); (2)试求△ NPC 面积 S 的表达式,并求出面积 S 的最大值及相应的 x 值; (3)当 x 为何值时,△ NPC 是一个等腰三角形?简要说明理由.
在 Rt△ ADC 中,CD= AD2 AC2 =4,
∴ BD=BC-CD=1, ∴ D(1,3). (2)①如图②中,
由四边形 ADEF 是矩形,得到∠ ADE=90°,
∵ 点 D 在线段 BE 上,
∴ ∠ ADB=90°,
由(1)可知,AD=AO,又 AB=AB,∠ AOB=90°,
∴ Rt△ ADB≌ Rt△ AOB(HL).
【答案】(1)证明见解析(2)证明见解析(3)结论仍然成立 【解析】 【分析】 (1)利用直角三角形斜边上的中线等于斜边的一半,可证出 CG=EG. (2)结论仍然成立,连接 AG,过 G 点作 MN⊥AD 于 M,与 EF 的延长线交于 N 点;再证 明△ DAG≌ △ DCG,得出 AG=CG;再证出△ DMG≌ △ FNG,得到 MG=NG;再证明 △ AMG≌ △ ENG,得出 AG=EG;最后证出 CG=EG. (3)结论依然成立. 【详解】 (1)CG=EG.理由如下:
∴ x= .
综上所述,x= ,或 x= ,或 x= .
考点:二次函数综合题.
2.在平面直角坐标系中,四边形 AOBC 是矩形,点 O(0,0),点 A(5,0),点 B(0, 3).以点 A 为中心,顺时针旋转矩形 AOBC,得到矩形 ADEF,点 O,B,C 的对应点分别 为 D,E,F. (1)如图①,当点 D 落在 BC 边上时,求点 D 的坐标; (2)如图②,当点 D 落在线段 BE 上时,AD 与 BC 交于点 H. ①求证△ ADB≌ △ AOB; ②求点 H 的坐标. (3)记 K 为矩形 AOBC 对角线的交点,S 为△ KDE 的面积,求 S 的取值范围(直接写出结 果即可).
【答案】(1)D(1,3);(2)①详见解析;②H( 17 ,3);(3) 5
30 3 34 ≤S≤ 30 3 34 .
4
4
【解析】
【分析】
(1)如图①,在 Rt△ ACD 中求出 CD 即可解决问题;
(2)①根据 HL 证明即可;
②,设 AH=BH=m,则 HC=BC-BH=5-m,在 Rt△ AHC 中,根据 AH2=HC2+AC2,构建方程求出
∵ MG=CG,∴ EG= 1 MC,∴ EG=CG. 2
(3)(1)中的结论仍然成立.理由如下: 过 F 作 CD 的平行线并延长 CG 交于 M 点,连接 EM、EC,过 F 作 FN 垂直于 AB 于 N. 由于 G 为 FD 中点,易证△ CDG≌ △ MFG,得到 CD=FM,又因为 BE=EF,易证
②如图②中,由△ ADB≌ △ AOB,得到∠ BAD=∠ BAO,
又在矩形 AOBC 中,OA∥ BC,
∴ ∠ CBA=∠ OAB,
∴ ∠ BAD=∠ CBA,
∴ BH=AH,设 AH=BH=m,则 HC=BC-BH=5-m,
在 Rt△ AHC 中,∵ AH2=HC2+AC2,
∴ m2=32+(5-m)2,
=﹣ (x﹣2)2+ .
∴ S 的最大值为 ,此时 x=2. (3)延长 MP 交 CB 于 Q,则有 PQ⊥BC. ①若 NP=CP, ∵ PQ⊥BC, ∴ NQ=CQ=x. ∴ 3x=4, ∴ x= .
相关文档
最新文档