电机电磁计算说明书
三相异步电动机电磁计算

三相电机额定电压U=380V,f=50HZ,机座号Y132,输出P2=8KW,p=4极螈1.2.芄型号:Y132M3.4.蒂输出功率:P N=8KW5.6.袂相数:m1=37.8.薇接法:9.10.莃相电压:Uφ=380V11.12.功电流:13.14.极对数:p=215.16.定子槽数:Z1=3617.18.转子槽数:Z2=3219.20.定子每极每相槽数:21.22.肂定子外径:D1=21cmD i1=13.6cm荿定子内径:=0.4mm蒃气隙长度:δ转子外径:D2=13.52cm 13.6-0.04*2=13.52cm转子内径:D i2=4.8cm定子槽型:半闭口圆底槽定子槽尺寸:b o1=0.35cm b1=0.67cm h o1=0.08cm R1=0.44cm h12=1.45cm转子槽形:梯形槽转子槽尺寸:b o2=0.1cm b r1=0.55cm b r2=0.3cmh o2=0.05cm h r12=2.3cm23.极距:24.定子齿距:25.转子齿距:26.气隙长度:27.转子斜槽距:b sk=t1=1.187cm28.铁芯长度:l=16cm29.铁芯有效长度:无径向通风道:l ef=l+2δ=16.08cm30.净铁芯长:无径向通风道:l Fe=K Fe l=0.95*16=15.2cmK Fe=0.95(不涂漆)31.绕组型式:单层交叉式32.并联支路数:a1=133.节距:1-9,2-10,11-1834.每槽导线数:由后面计算的数据根据公式计算为:每极磁通φ1=0.00784wb波幅系数:K A=1.46绕组系数:K dp1=0.96每相串联有效导线数:K’z取1.21每相串联导线数:每槽导线数:取整数:N1=3535.线规:导线并饶根数与截面积之积(式中的值由其后的公式算得):由此可通过查表知线规为:2-1.06(N-φ)36.每根导线截面积:A cl=0.00882cm237.槽有效面积:A e=A s-A i=1.1444cm2C i-绝缘厚度 h-槽楔厚度 C i=0.08mm38.槽满率:d-绝缘导线外径 d=1.14mm39.每相串联导线数:40.绕组分布系数:30.绕组短距系数:31.绕组系数:二.磁路计算32.每极磁通:K E=0.923 K E范围0.85-0.9533.定子齿截面积:34.转子齿截面积:b t1,b t2-定,转子齿宽35.定子轭部截面积:36.转子轭部截面积:因无通风孔d k=037.空气隙面积:38.波幅系数:K A=1.46 K S=1.276K A由饱和系数K S查得,开始计算时先假定K S39.定子齿磁密:40.转子齿磁密:41.定子轭磁密:42.转子轭磁密:43.气隙磁密:44.定子齿磁场强度:H T1=20.58A/cm(查表硅钢片磁化曲线)45.转子齿磁场强度:H t2=20.79A/cm(查表硅钢片磁化曲线)46.定子轭磁场强度:H j1=11.44A/cm(查表硅钢片磁化曲线)47.转子轭磁场强度:H j2=8.43A/cm(查表硅钢片磁化曲线)48.定子齿磁路计算长度:49.转子齿磁路计算长度:50.定子轭磁路计算长度:51.转子轭部磁路计算长度:52.气隙磁路计算长度:t-齿距 b0-槽口宽53.定子齿磁位降:54.转子齿磁位降:55.定子轭部磁位降:C1=0.504 定子轭部磁路校正系数56.转子轭部磁位降:C2=0.41 转子轭部磁路校正系数57.气隙磁位降:58.饱和系数:与38项比对59.总磁位降:60.励磁电流:61.励磁电流标幺值:62.励磁电抗标幺值:三.参数计算63.线圈平均半匝长度:d=1.5cm(直线部分伸出长)k对2,4极取0.58 -平均节距64.线圈端部平均长度:65.线圈端部轴向投影长度:66.阻抗折算系数:式中:对笼型转子m2=Z2,,K dp2=167.定子相电阻:-导线电阻率标幺值:68.转子导条电阻:式中:K B=1.04(对铸铝转子) -导条电阻率 l B=16cm(转子导条长度)A B=0.965cm2(每根导条截面积)标幺值:69.转子端环电阻:-端环电阻系数 D R-端环平均直径(10.7cm)A R-端环截面积(2.6cm2)标幺值:70.转子电阻标幺值:71.漏抗系数:72.定子槽漏磁导:K U1=1 K c1=1 λU1=0.4097 λc1=0.8334 73.定子槽漏抗:(对无径向通风道)74.定子谐波漏磁导:λd1=0.0129对相带整数槽绕组,且式中:c-短距槽数,c=8q1(1-p)75.定子谐波漏抗:76.定子端部漏磁导:λE1=0.67(l E-0.64)=5.677877.定子端部漏抗:78.定子漏抗标幺值:79.转子槽漏磁导:(槽上部漏磁导)L2=1.6754(槽下部漏磁导)80.转子槽漏抗:81.转子谐波漏磁导:对笼型转子:K=1,2,382.转子谐波漏抗:83.转子端部漏磁导:(对笼型转子)84.转子端部漏抗:85.转子斜槽漏抗:86.转子漏抗标幺值:87.运行总漏抗:四.运行性能计算88.满载电流有功分量:设=0.88 效率89.满载电抗电流:式中:90.满载电流无功分量:91.满载电动势比值:与32项进行比对92.定子电流:93.转子导条电流:K1-电流折算系数94.转子端环电流:95.定子电密:96.线负荷:97.热负荷:AJ1=A1J1=1402.4498.转子导条电密:99.转子端环电密:100.空载电动势比值:101.空载定子齿磁密:102.空载定子轭磁密:103.定子齿单位铁损耗:p t1由B t10查表得104.定子轭单位铁损耗:p j1由B j10查表的105.定子齿体积:106.定子轭体积:107.铁损耗:对半闭口槽:k1=2.5,k2=2标幺值:108.基本铁耗:109.定子电阻损耗:110.转子电阻损耗:111.风摩损耗:P fv*参考试验值确定为0.01112.杂散损耗:P s*对铸铝转子可取0.02113.总损耗:114.输入功率:115.满载效率:与88项假定值比对116.功率因数:117.满载转差率:P em*-气隙电磁功率118.额定转速:r/min119.最大转矩倍数:五.起动性能计算120.起动时槽磁动势:121.虚拟磁密:122.起动漏磁饱和系数:K as=0.418123.定子槽口宽增大:124.转子槽口宽增大:125.定子槽上部漏磁导减少:126.转子槽上部漏磁导减少:127.起动定子槽漏磁导:128.起动定子槽漏抗标幺值:129.起动定子谐波漏抗标幺值:130.定子起动漏抗标幺值:131.挤流转子导条相对高度:h B-转子导条高度(cm)-转子导条宽与槽宽之比,对铸铝转子为1-转子导条电阻率 h B=2.35cm132.导条电阻等效高度:133.槽漏抗等效高度:134.挤流电阻增大系数:135.挤流漏抗减少系数:136.起动转子槽下部漏磁导:137.起动转子槽漏磁导:138.起动转子槽漏抗标幺值:139.起动转子谐波漏抗标幺值:140.起动转子斜槽漏抗标幺值:141.转子起动漏抗标幺值:142.起动总漏抗标幺值:143.144.转子起动电阻标幺值:145.起动总电阻标幺值:146.起动总阻抗:147.起动电流:148.起动电流倍数:149.起动转矩倍数:。
三相同步电机电磁计算公式教程

给定区额定功率PN=75额定电压UN=400额定转速nN=1500额定频率f=50额定功率因数cosφ=0.8额定相数m=3额定电流IN=135.3204388定子计算区极对数P=2通风道数nK=0通风道宽度bK=0定子叠压系数Kfet=0.96定子铁芯净长度Lfet=23.04磁极铁芯总长度lm=24磁极铁芯净长度lfem=22.8线负荷A=437.3640556发热参数Aj=3679.473134磁路计算(39)定子齿距ts= 1.7017 ts1= 1.734425 ts2= 1.930775 ts1/3= 1.778058333 (40)定子齿宽度bt1=0.834425 bt2=0.910775定子齿计算宽度bts=0.859875定子槽深hs= 2.26定子齿计算高度hts‘= 1.82定子轭高度hjs= 3.2定子轭计算高度hjs’= 3.37定子轭磁路长度ljs=13.175085极弧系数αp’=0.7(47)极靴宽度bp=13.42824128磁极偏心距H=0.33121825极靴圆弧半径Rp=12.56878175极靴边缘高度hp'=0.25 (51)极靴中心高度hp= 2.19358252初取漏磁系数σ‘= 1.048970637磁极宽度bm=7.668255488转子轭内径Dir=9转子轭外径Djr=14磁极中心高度hm= 3.70641748磁极侧高度hm‘= 3.768404852转子轭高度hjr= 2.5 (59)转子轭计算高度hjr‘=4转子轭磁路长度ljr= 3.927转子轭轴向长度lr=24.3磁极与轭间的残隙δ2=0.0088实际极弧系数=αp=0.693730948气隙比δm/δ= 1.5最小气隙比极距δ/τ=0.004897064 (66)基波磁场幅度系数α1= 1.1151三次谐波磁场幅度系数α3=0.00646758磁场分部系数fd=0.711265508磁场波形系数fb= 1.108747511直轴电枢反应磁场幅度系数Ad1=0.8532交轴电枢反应磁场幅度系数Aq1=0.33884电枢磁动势直轴折算系数Kad=0.765133172电枢磁动势交轴折算系数Kaq=0.303865124 (74)定子卡氏系数Kδ1= 1.113452078阻尼笼卡氏系数Kδ2= 1.030852295卡氏系数Kδ= 1.147804629(77)空载每极总磁通φ=0.025001113斜槽系数Ksk=0.997146644气隙磁密最大值Bδ=0.711292106定子视在磁密Bts‘= 1.478524606定子轭磁密Bjs= 1.609967011 (82)气隙磁压降Fδ=653.1394979定子齿磁压降Fts=10.738定子轭磁压降Fjs=82.2125304气隙,定子齿,轭磁压降之和Fδtj=746.0900283(86)计算漏磁几何尺寸Υ1=0.409973094Υ2=0.554905146 am= 3.100659528 ap= 3.206420626 hpm= 1.54572168(87)磁极压板厚d‘=0.6磁极压板宽b’=8.2磁极计算长度lm‘=25.2极靴漏磁导Λp= 6.89576E-07极身漏磁导Λm=8.91309E-07磁极漏磁导Λ= 1.58088E-06 (93)每极漏磁通φσ=0.001179482漏磁系数σ= 1.047177195磁极磁通φm=0.026180596磁极极身截面积Sm=184.6762251(97)极身磁密Bm= 1.417648411转子轭磁密Bjr= 1.346738462残隙处磁密Bσ2= 1.422563654极身磁压降Fm=58.56139619转子轭磁压降Fjr=67.5444残隙磁压降Fσ2=100.1484812空载每极磁压降Ffo=972.3443057稳态参数计算(104)定子线圈尺寸αc=0.685397076τy=20.5257745 lF=13.25667083 lE=8.391213665 lB30 (105)线圈半匝平均长度lca=56.51334166定子绕组相电阻(75。
(完整版)三相异步电动机电磁计算

三相电机额定电压U=380V,f=50HZ,机座号Y132,输出P2=8KW, p=4极1.型号:Y132M2.输出功率:P N=8KW3.相数:m1=34.接法:5.相电压:Uφ=380V6.功电流:I w=P2×103m1UΦ=8×1033×380=7.018A7.极对数:p=28.定子槽数:Z1=369.转子槽数:Z2=3210.定子每极每相槽数:Qp1=Z12pm1=362×2×3=311.定子外径:D1=21cm定子内径:D i1=13.6cm气隙长度:δ=0.4mm转子外径:D2=13.52cm 13.6-0.04*2=13.52cm转子内径:D i2=4.8cm定子槽型:半闭口圆底槽定子槽尺寸:b o1=0.35cm b1=0.67cm h o1=0.08cm R1=0.44cm h12=1.45cm转子槽形:梯形槽转子槽尺寸:b o2=0.1cm b r1=0.55cm b r2=0.3cm h o2=0.05cm h r12=2.3cm12.极距:τ=πD i12p =3.1415×13.64=10.681cm13.定子齿距:t1=πD i1Z1=3.1415×13.636=1.187cm14.转子齿距:t2=πD2Z2=3.1415×13.5232=1.327cm15.气隙长度:δ=0.04cm16.转子斜槽距:b sk=t1=1.187cm17.铁芯长度:l=16cm18.铁芯有效长度:无径向通风道:l ef=l+2δ=16.08cm19.净铁芯长:无径向通风道:l Fe=K Fe l=0.95*16=15.2cmK Fe=0.95(不涂漆)20.绕组型式:单层交叉式21.并联支路数:a1=122.节距:1-9,2-10,11-1823.每槽导线数:由后面计算的数据根据公式计算为:每极磁通φ1=0.00784wb波幅系数:K A=1.46绕组系数:K dp1=0.96每相串联有效导线数:Nφ1K dp1=K z′U1×10−2K Aφ1×50f1=1.21×380×10−2 1.46×0.00784×5050=401.70 K’z取1.21每相串联导线数:Nφ1=Nφ1K dp1K dp1=401.700.96=418每槽导线数:N1‘=41812=34.83取整数:N1=3524.线规:导线并饶根数与截面积之积(式中的值由其后的公式算得):N1’A1′=I1a1J1=9.16271×5.19=1.7655mm2由此可通过查表知线规为:2-1.06(N-φ)25.每根导线截面积:A cl=0.00882cm226.槽有效面积:A e=A s-A i=1.1444cm2A s=2R+b s12×(h s′−h)+πR22A i=C i(2h s12+πR)C i-绝缘厚度 h-槽楔厚度 C i=0.08mm27.槽满率:k s=N s1N cl d2A e ×100%=2×35×0.0131.1444=79.5%d-绝缘导线外径 d=1.14mm28. 每相串联导线数:N φ1=Z 1N s1ma 1=35×363=42029. 绕组分布系数:K d1=sin (α2q 1)q 1sin (α2)=0.96q 1=Z 12pm=364×3=3α=2pπZ 1=2×2×180°36=20°30. 绕组短距系数:K p1=sin (β×90°)=1 β=y mq 131. 绕组系数:K dp1=K d1K p1=0.96二.磁路计算32. 每极磁通:∅1=K E U ∅2.22fN ∅1K dp1=0.00784Wb =380×0.9232.22×50×420×0.96K E =0.923 K E 范围0.85-0.95 33. 定子齿截面积:A t1=b t1l Fe Z 12p =76.05cm 2 34. 转子齿截面积:A t2=b t2l Fe Z 22p=75.95cm 2b t1,b t2-定,转子齿宽35. 定子轭部截面积:A j1=h j ′l Fe =1.877×15.2=28.53cm 2 h j ′=D 1−D i12−h s +13R =3.7−(0.08+1.45+0.44)+0.443=1.87736. 转子轭部截面积:A j2=h j2′l Fe =30.65cm 2 h j2′=D 2−D i22−h R −23d k =2.016因无通风孔d k =037. 空气隙面积:A δ=τl ef =10.681×16.08=171.8cm 2 38. 波幅系数:K A =1.46 K S =1.276K A 由饱和系数K S 查得,开始计算时先假定K S39. 定子齿磁密:B t1=K A∅1A t1×104=1.46×0.0078476.05×104=1.505T40. 转子齿磁密:B t2=K A∅1A t2×104=1.46×0.0078475.95×104=1.507T41. 定子轭磁密:B j1=12×∅1A j1×104=12×0.0078428.53×104=1.37T 42. 转子轭磁密:B j2=12×∅1A j2×104=12×0.0078430.65×104=1.28T43. 气隙磁密:B δ=K A∅1A δ×104=1.46×0.00784171.8×104=0.666T44. 定子齿磁场强度:H T1=20.58A/cm (查表硅钢片磁化曲线) 45. 转子齿磁场强度:H t2=20.79A/cm (查表硅钢片磁化曲线) 46. 定子轭磁场强度:H j1=11.44A/cm (查表硅钢片磁化曲线) 47. 转子轭磁场强度:H j2=8.43A/cm (查表硅钢片磁化曲线) 48. 定子齿磁路计算长度:h T1′=h s1+h s2+R3=1.597cm49. 转子齿磁路计算长度:h T2′=h R1+h R2=2.3cm 50. 定子轭磁路计算长度:l j1′=π(D i1−h j1′)4p=7.51cm 51.转子轭部磁路计算长度:l j2′=π(D i2+h j2′)4p=2.67cm52. 气隙磁路计算长度:δe =δK c1K c2=0.4×1.308×1.031÷10=0.05393cmK c1=t1t1−r1δK c2=t2t2−r2δt-齿距 b0-槽口宽53.定子齿磁位降:F t1=H t1×h t1′=32.86A54.转子齿磁位降:F t2=H t2×h t2′=47.81A55.定子轭部磁位降:F j1=C1H j1l j1′=43.31AC1=0.504 定子轭部磁路校正系数56.转子轭部磁位降:F j2=C2H j2l j2′=9.23AC2=0.41 转子轭部磁路校正系数57.气隙磁位降:Fδ=0.8Bδδe×104=0.8×0.666×0.05393×104=287.34A58.饱和系数:K s=F t1+F t2+FδFδ=32.86+47.81+287.34287.34=1.28与38项比对59.总磁位降:F=F t1+F t2+F j1+F j2+Fδ=32.86+47.81+43.31+9.23+287.34=420.55A60.励磁电流:I m=4.44pFmN∅1K dp1=4.44×2×420.553×420×0.96=3.087A61.励磁电流标幺值:I m∗=I mI w =3.0877.018=0.439962.励磁电抗标幺值:X m∗=1I m∗=10.4399=2.2732三.参数计算63.线圈平均半匝长度:l c1=l e+2(d+l E′)=31.22cmd=1.5cm(直线部分伸出长) l E′=kτck对2,4极取0.58 τc-平均节距τc=10.54cm64. 线圈端部平均长度:l E =2(l E ′+d )=15.22cm 65. 线圈端部轴向投影长度:f d =l E ′sin α=3.77cm 66. 阻抗折算系数:K z =m 1(N ∅1K dp1)2m 2(N ∅2K dp2)2=15241式中:对笼型转子m 2=Z 2,N ∅2=1,K dp2=1 67. 定子相电阻:R 1=ρ1N ∅1lc1a 1N c1A c1=1.61Ω ρ1-导线电阻率标幺值:R 1∗=R 1I w U ∅=0.029768. 转子导条电阻:R B =K zK B ρB l B A B=1.1407Ω式中:K B =1.04(对铸铝转子) ρB -导条电阻率 l B =16cm(转子导条长度) A B =0.965cm 2(每根导条截面积) 标幺值:R B ∗=R B ×I 2U ∅=1.1407×7.018380=0.021169. 转子端环电阻:R R =K zρR Z z D R2πp 2A R =0.3467ΩρR-端环电阻系数 D R-端环平均直径(10.7cm) A R-端环截面积(2.6cm2)标幺值:R R∗=R R I wU∅=0.3467×7.018380=0.00670.转子电阻标幺值:R2∗=R B∗+R R∗=0.0211+0.006=0.027171.漏抗系数:C x=0.4π2fl ef(N∅12pq1)(I wU∅)×10−5=0.4×3.14152×50×16.08×(42022×3)(7.018380)×10−8=0.0172372.定子槽漏磁导:λs1=K U1λU1+K c1λc1=1.2431K U1=1 K c1=1 λU1=0.4097 λc1=0.833473.定子槽漏抗:X s1∗=(lσ1l ef )λc1C x=(1616.08)×0.8334×0.01723=0.01429lσ1=l1(对无径向通风道)74.定子谐波漏磁导:λd1=0.0129对60°相带整数槽绕组,且23≤β≤1λd1=π218×[(5q12+1)−(14cq1+23c2−14c3q1)3q12]−K dp12式中:c-短距槽数,c=8q1(1-p)75.定子谐波漏抗:x d1∗=m1q1τπ2δef K sλd1C x=1.8243×0.01723=0.0314376.定子端部漏磁导:λE1=0.67(l E-0.64τc)=5.677877.定子端部漏抗:X E1∗=(q1l ef )λE1C x=(316.08)×5.6778×0.01723=0.0182578. 定子漏抗标幺值:X 1∗=X s1∗+X d1∗+X E1∗=0.01429+0.03142+0.01825=0.0639779. 转子槽漏磁导:λs2=λU2+λc2=2.1754 λU2=h R0b 02=0.5(槽上部漏磁导)λL2=1.6754(槽下部漏磁导)80. 转子槽漏抗:X s2∗=(lσ2l ef)K dp12(Z1Z 2)λs2C x =0.03862=2.2413×0.01723 l σ2=l 281. 转子谐波漏磁导:对笼型转子:λd2=∑1(k Z 2p ±1)2=0.013K=1,2,3 82.转子谐波漏抗:X d2∗=m 1q 1τK dp12π2δef K sλd2C x =1.6757×0.01723=0.0288783. 转子端部漏磁导:λE2=0.757(l B−l 21.13+D R 2p)=2.025(对笼型转子)84. 转子端部漏抗:X E2∗=q 1l efK dp12λE2C x =0.3478×0.01723=0.00599 85.转子斜槽漏抗:X sk∗=0.5(b sk t 2)2X d2∗=0.5×(1.1871.327)2×0.02887=0.0115586. 转子漏抗标幺值:X 2∗=X s2∗+X d2∗+X E2∗+X sk ∗=0.08503 87. 运行总漏抗:X ∗=X 1∗+X 2∗=0.06397+0.08503=0.149四.运行性能计算88.满载电流有功分量:I p∗=1η=10.88=1.136设η=0.88 η−效率89.满载电抗电流:I x∗=σ1X∗I p∗2[1+(σ1X∗I p∗)2]=1.0281×0.149×1.1362×[1+(1.0281×0.149×1.136)2]=0.2037式中:σ1=1+I m∗X1∗=1+0.4399×0.06397=1.0281 90.满载电流无功分量:I Q∗=I m∗+I x∗=0.4399+0.2037=0.643691.满载电动势比值:K E=1−(I p∗R1∗+I Q∗X1∗)=1−(1.136×0.0297+0.6436×0.06397)=0.925与32项进行比对92.定子电流:I1∗=√I p∗2+I Q∗2=√1.1362+0.64362=1.3056I1=I1∗I w=1.3056×7.018=9.1627A93.转子导条电流:I2∗=√I p∗2+I x∗2=√1.1362+0.20372=1.154I2=I2∗I w K1=1.154×7.018×37.8=306.13AK1-电流折算系数K1=m1N∅1K dp1Z2=3×420×0.9632=37.894.转子端环电流:I R=Z22πp I2=322×3.1415×2×306.13=779.58A95.定子电密:J1=I1a1N c1A c1×102=9.16271×1.76423=5.19A/mm296.线负荷:A1=m1Z∅1I1πD i1=3×420×9.16273.1415×13.6=270.22Acm97.热负荷:AJ1=A1J1=1402.4498.转子导条电密:J B=I2A B×102=306.130.965×102=3.17A/mm299.转子端环电密:J R=I RA R×102=779.582.6×100=2.998A/mm2100.空载电动势比值:K E0=1−I m∗X1∗=1−0.4399×0.06397=0.9719101.空载定子齿磁密:B t10=K E0K E B t1=0.97190.925×1.505=1.5813T102.空载定子轭磁密:B j10=K E0K E B j1=0.97190.925×1.37=1.4395T103.定子齿单位铁损耗:p t1由B t10查表得44.02×10−3W/cm3 104.定子轭单位铁损耗:p j1由B j10查表的36.7×10−3W/cm3 105.定子齿体积:V t1=2pA t1h t1′=485.68cm3106.定子轭体积:V j1=4pA j1l j1′=1713.73cm3107.铁损耗:P Fe=k1pt1V t1+k2pj1V j1对半闭口槽:k1=2.5,k2=2P Fe=(2.5×44.02×485.68+2×36.7×1713.73)×10−3= 179.24W标幺值:P Fe∗=P FeP N×103=0.0224108.基本铁耗:P Fe1∗=pt1V t1+pj1V j1 P N×103=44.02×10−3×485.68+36.7×10−3×1713.738000=0.01053109.定子电阻损耗:P cu1∗=I1∗2R1∗=1.30562×0.0297=0.0506P cu1=P cu1∗P N ×103=0.0506×8000=404.8W110. 转子电阻损耗:P cu2∗=I 2∗2R 2∗=1.1542×0.0271=0.0361 P cu2=P cu2∗P N ×103=288.8W 111. 风摩损耗:P fv *参考试验值确定为0.01 P fv =P fv ∗P N ×103=0.01×8000=80W 112. 杂散损耗:P s *对铸铝转子可取0.02P s =P s ∗P N ×103=0.02×8000=160W113. 总损耗:∑P ∗=P cu1∗+P cu2∗+P Fe ∗+P fv ∗+P s ∗=0.0506+0.0361+0.0224+0.01+0.02=0.1391 114. 输入功率:P 1∗=1+∑P ∗=1.1391 115. 满载效率:η=1−∑P ∗P 1∗=1−0.13911.1391=0.878η−η′η=0.878−0.880.878=−0.0023>−0.005与88项假定值比对116. 功率因数:cos φ=1I 1∗η=11.3056×0.878=0.872117. 满载转差率:S N =P cu2∗P em∗=0.03611.07797=0.0335P em *-气隙电磁功率P em ∗=P 1∗−P cu1∗−P Fe1∗=1.07797118. 额定转速:n N =60f (1−S N )p=60×50×(1−0.0335)2=1449.75r/min119. 最大转矩倍数: T max ∗=N2×(R 1+√R 1+X ∗2)=2×(0.0297+√0.02972+0.1492)=2.66五.起动性能计算I st =(2.5~3.5)T max ∗×I w =61.8A120. 起动时槽磁动势: F st =0.707I stN ∅1a 1×(K V1+K dp1K d1Z1Z2)√K E0=3071.09A121. 虚拟磁密:B L =F st ×10−41.6δβc=5.0241TβL =0.64+2.5√δt 1+t 2=0.955122. 起动漏磁饱和系数:K as =0.418123. 定子槽口宽增大:∆b 01=(t 1−b 01)(1−k as )=0.4874 124. 转子槽口宽增大:∆b 02=(t 2−b 02)(1−k as )=0.7141 125. 定子槽上部漏磁导减少:∆λU1=h r0−0.58h r1b 01(∆b 01∆b 01+1.5b 01)=0.1836126. 转子槽上部漏磁导减少:∆λU2=h R0b 02(∆b 02∆b 02+b 02)=0.4397127. 起动定子槽漏磁导:λs1st =K U1(λU1−∆λU1)+K c1λc1=1.0596 128. 起动定子槽漏抗标幺值:X s1st ∗=λs1st λs1X s1∗=1.05961.2431×0.01429=0.01218129. 起动定子谐波漏抗标幺值:X d1st ∗=k as X d1∗=0.01218 130. 定子起动漏抗标幺值:X 1st ∗=X s1st ∗+X d1st ∗+X E1∗=0.01218+0.01313+0.01825=0.04356131. 挤流转子导条相对高度:ε=2πh B √b Bb s fρB ×109=1.551h B -转子导条高度(cm ) b Rb S-转子导条宽与槽宽之比,对铸铝转子为1ρB -转子导条电阻率 h B =2.35cm 132. 导条电阻等效高度:h ρR =h B φ(ε)k a=2.351.45×1=1.621133. 槽漏抗等效高度:h ρx =h B ψ(ε)k a =2.35×0.78×1=1.833 134. 挤流电阻增大系数:K R =(1+a )φ2(ε)1+a [2φ(ε)−1]=1.308a =b 1b 2135. 挤流漏抗减少系数:K x =b 2(1+a )2ψ(ε)b px(1+a ′)2(K r1′K r1)=0.888a ′=b 1b pxb px =b 1+(b 2⋯⋯b 1)ψ(ε)136. 起动转子槽下部漏磁导:λL2st =K x λL2=K X ×2h 1b 0+b 1+λL =1.4875 λL =4β(1+α)2k τ1137. 起动转子槽漏磁导:λs2(st )=(λU2−∆λU2)+λL2st =1.5478 138. 起动转子槽漏抗标幺值:X s2st ∗=λs2st λs2×X s2∗=0.0275139. 起动转子谐波漏抗标幺值:X d2st ∗=k as X d2∗=0.01207 140. 起动转子斜槽漏抗标幺值:X skst ∗=k as X sk ∗=0.0048 141. 转子起动漏抗标幺值:X 2st ∗=X s2st ∗+X d2st ∗+X E2∗+X skst ∗=0.05036 142. 起动总漏抗标幺值:X st ∗=X 1st ∗+X 2st ∗=0.04356+0.05036=0.09392143. R Bst ∗=[k R(l ef−N V2b 02l B)+l B −(l f −N V2b 02)l B]×R B ∗=0.0276144. 转子起动电阻标幺值:R 2st ∗=R Bst ∗+R R ∗=0.0276+0.006=0.0336 145. 起动总电阻标幺值:R st ∗=R 1∗+R 2st ∗=0.0297+0.0336=0.0633 146. 起动总阻抗:Z st ∗=√R st ∗2+X st ∗2=0.1133147. 起动电流:I st =I KwZ st∗=7.0180.1133=61.94A61.94−61.861.94=0.0023<0.005148. 起动电流倍数:I st ∗=61.949.1627=6.76 149. 起动转矩倍数:T st ∗=R 2(st )∗Z st ∗2(1−S N )=0.03360.11332×(1−0.0335)=2.53。
三相异步电机电磁转矩计算公式

三相异步电机电磁转矩计算公式三相异步电机电磁转矩计算公式1. 电磁转矩的定义电磁转矩是指三相异步电机在旋转时所产生的力矩,用于驱动机械设备的转动。
2. 电磁转矩的计算公式电磁转矩的计算公式可以分为两种情况:启动情况和正常运行情况。
启动情况下的电磁转矩计算公式启动情况下的电磁转矩计算公式如下:T = (3 * Ks * Is^2) / (ωe^2 * Rr)其中,T为电磁转矩,Ks为转矩系数,Is为电机的起动电流,ωe为电网频率,Rr为转子电阻。
正常运行情况下的电磁转矩计算公式正常运行情况下的电磁转矩计算公式如下:T = Kt * Is * Ir / (ωe * p)其中,T为电磁转矩,Kt为转矩系数,Is为电机的定子电流,Ir 为电机的转子电流,ωe为电网频率,p为极对数。
3. 举例说明以一台三相异步电机为例,其定子电流为10A,转子电流为8A,电网频率为50Hz,极对数为2。
启动情况下的电磁转矩计算假设转矩系数Ks为,转子电阻Rr为欧姆,代入启动情况下的电磁转矩计算公式得到:T = (3 * * 10^2) / (50^2 * ) = ·m正常运行情况下的电磁转矩计算假设转矩系数Kt为,代入正常运行情况下的电磁转矩计算公式得到:T = * 10 * 8 / (50 * 2) = ·m根据以上计算,可以看出在启动情况下,电机的电磁转矩为·m;在正常运行情况下,电机的电磁转矩为·m。
结论电磁转矩的计算与电机的起动电流、定子电流、转子电流、电网频率、转矩系数、极对数、转子电阻等因素密切相关。
根据不同的情况使用对应的计算公式可以准确地计算电机的电磁转矩。
4. 三相异步电机的转矩系数转矩系数是用于计算电磁转矩的一个重要参数,它与电机的机械设计和性能有关。
常见的转矩系数有几种,如起动转矩系数、最大转矩系数、额定转矩系数等。
起动转矩系数起动转矩系数是指电机在启动时产生的转矩与额定转矩之比。
三相同步电机电磁计算公式

150 31.91495584
空载励磁电流Ifo= (130)励磁绕组线规a*b= 励磁绕组导线截面积qf= (132)第n层线圈平均匝长度lfn= Qm
Wm
rm 第n层线圈n= lcf=
(134)Rf(75。)=
0.6479688 0.004138
3.19748665 0.36780445 0.04597556 0.40488548
(172)直流分量时间常数Ta= 控制励磁持续短路电流倍数fko= 额定励磁持续短路电流倍数fkN= 冲击短路电流倍数fy= (176)整步功率Pr=
9有效材料
定子绕组铜重Gcu1= 励磁绕组铜重Gcu2= 定子硅钢片Gfe=
6.482295371 5.325
9.11855881 91.5988 9.16 28 0.5 2 71.98
1.016634338 3.5
43.44247714 6.946167169
5 1061.609472 42.46437888 0.736361089 0.809997198 3.039066562 0.155765707
磁极铁芯净长度lfem=
75 400 1500 50 0.8
3 135.3204388
2 36.92
26 20.4204 20.4204
24 0 0 0.96 23.04 24 22.8
铁芯计算长度li
24.2
最小气隙δ=
0.1
最大气隙δm=
0.15
定子绕组
(20)每极每相槽数q=
4
定子槽数Z1=
0.03280029 0.33303111 1.63964654 7.47053142 147.946378
异步双馈电机电磁计算

轭部磁路长因数
15
八、参数计算
漏抗系数:
Cx
1.6f N ef ( w1kdp1 ) 2 3 pU 10 6
2
定子相电阻:
R1
1w1 w1
a1sa1
103
定子线圈平均匝长:
定子相电阻标幺值:
w1
I KW r1 R1 U
16
定子漏抗标幺值:
Z1 2p
定子绕组短距一般取
Z1 5 y 2p 6
转子绕组节距一般取整(波绕): y Z 2 2p
Z2 转子绕组短距一般为: y 1 2p
定子绕组系数:
kdp1 kd1 k p1
转子绕组系数: kdp 2
kd 2 k p 2
6
绕组短距分布系数: 绕组节距比:
k p1 sin(1 90 )
——铁心叠压系数
k Fe
4
每槽有效导体数: 每相并联支路数:
Ns1 2 每线圈匝数(双层绕)
a1
Z1N S1 Z1 N S1 W1 6a1 3a1 2
每相每支路串联匝数:
绕阻线规:
a b / a ' b'
每支路导线截面积:
sa1 N1S1
N1
——并绕根数
5
定子绕组节距(整距): y
k 1
k 2为定转子卡氏系数
t1 (5 bo1 ) 1 2 t1 (5 bo1 ) bo 1
开口或半开口时: k
半闭口时:
k 2
t2 (4.4 0.75bo 2 ) 2 t2 (4.4 0.75bo 2 ) bo 2
三相同步电机电磁计算公式(精)

定子轭高度hjs=3.2定子轭计算高度hjs’=3.37定子轭磁路长度ljs=13.175085极弧系数αp’=0.7 (47极靴宽度bp=13.42824128磁极偏心距H=0.33121825极靴圆弧半径Rp=12.56878175极靴边缘高度hp'=0.25 (51极靴中心高度hp=2.19358252初取漏磁系数ζ‘=1.048970637磁极宽度bm=7.668255488转子轭内径Dir=9转子轭外径Djr=14磁极中心高度hm=3.70641748磁极侧高度hm‘=3.768404852转子轭高度hjr=2.5 (59转子轭计算高度hjr‘=4转子轭磁路长度ljr=3.927转子轭轴向长度lr=24.3磁极与轭间的残隙δ2=0.0088实际极弧系数=αp=0.693730948
中小型三相感应电动机电磁计算程序.

1、已知数据:输出功率P N=4kW电压U N=380V(Y接)相数m1=3频率f=50Hz极对数p =1B级绝缘,连续运行,封闭型自扇冷式,中小型三相感应电动机电磁计算程序2、已知数据:输出功率P N=4kW电压U N=380V(Y接)相数m1=3频率f=50Hz极对数p =2B级绝缘,连续运行,封闭型自扇冷式,3、已知数据:输出功率P N=5.5kW电压U N=380V(Y接)相数m1=3频率f=50Hz极对数p =1B级绝缘,连续运行,封闭型自扇冷式,中小型三相感应电动机电磁计算程序4、已知数据:输出功率P N=7.5kW电压U N=380V(Y接)相数m1=3频率f=50Hz极对数p =1B级绝缘,连续运行,封闭型自扇冷式,5、已知数据:输出功率P N=5.5kW电压U N=380V(Y接)相数m1=3频率f=50Hz极对数p =2B级绝缘,连续运行,封闭型自扇冷式,中小型三相感应电动机电磁计算程序6、已知数据:输出功率P N=7.5kW电压U N=380V(Y接)相数m1=3频率f=50Hz极对数p =2B级绝缘,连续运行,封闭型自扇冷式,7、已知数据:输出功率P N=5.5kW电压U N=380V(Y接)相数m1=3频率f=50Hz极对数p =3B级绝缘,连续运行,封闭型自扇冷式,中小型三相感应电动机电磁计算程序8、已知数据:输出功率P N=4kW电压U N=380V(Y接)相数m1=3频率f=50Hz极对数p =3B级绝缘,连续运行,封闭型自扇冷式,9、已知数据:输出功率P N=11kW电压U N=380V(Y接)相数m1=3频率f=50Hz极对数p =1B级绝缘,连续运行,封闭型自扇冷式,中小型三相感应电动机电磁计算程序10、已知数据:输出功率P N=15kW电压U N=380V(Y接)相数m1=3频率f=50Hz极对数p =1B级绝缘,连续运行,封闭型自扇冷式,11、已知数据:输出功率P N=7.5kW电压U N=380V(Y接)相数m1=3频率f=50Hz极对数p =3B级绝缘,连续运行,封闭型自扇冷式,中小型三相感应电动机电磁计算程序12、已知数据:输出功率P N=4kW电压U N=380V(Y接)相数m1=3频率f=50Hz极对数p =4B级绝缘,连续运行,封闭型自扇冷式,13、已知数据:输出功率P N=5.5kW电压U N=380V(Y接)相数m1=3频率f=50Hz极对数p =4B级绝缘,连续运行,封闭型自扇冷式,中小型三相感应电动机电磁计算程序14、已知数据:输出功率P N=18.5kW电压U N=380V(Y接)相数m1=3频率f=50Hz极对数p =1B级绝缘,连续运行,封闭型自扇冷式,15、已知数据:输出功率P N=15kW电压U N=380V(Y接)相数m1=3频率f=50Hz极对数p =2B级绝缘,连续运行,封闭型自扇冷式,中小型三相感应电动机电磁计算程序16、已知数据:输出功率P N=11kW电压U N=380V(Y接)相数m1=3频率f=50Hz极对数p =3B级绝缘,连续运行,封闭型自扇冷式,17、已知数据:输出功率P N=7.5kW电压U N=380V(Y接)相数m1=3频率f=50Hz极对数p =4B级绝缘,连续运行,封闭型自扇冷式,中小型三相感应电动机电磁计算程序18、已知数据:输出功率P N=22kW电压U N=380V(Y接)相数m1=3频率f=50Hz极对数p =1B级绝缘,连续运行,封闭型自扇冷式,19、已知数据:输出功率P N=18.5kW电压U N=380V(Y接)相数m1=3频率f=50Hz极对数p =2B级绝缘,连续运行,封闭型自扇冷式,中小型三相感应电动机电磁计算程序20、已知数据:输出功率P N=22kW电压U N=380V(Y接)相数m1=3频率f=50Hz极对数p =2B级绝缘,连续运行,封闭型自扇冷式,21、已知数据:输出功率P N=15kW电压U N=380V(Y接)相数m1=3频率f=50Hz极对数p =3B级绝缘,连续运行,封闭型自扇冷式,中小型三相感应电动机电磁计算程序22、已知数据:输出功率P N=11kW电压U N=380V(Y接)相数m1=3频率f=50Hz极对数p =4B级绝缘,连续运行,封闭型自扇冷式,23、已知数据:输出功率P N=18.5kW电压U N=380V(Y接)相数m1=3频率f=50Hz极对数p =3B级绝缘,连续运行,封闭型自扇冷式,中小型三相感应电动机电磁计算程序24、已知数据:输出功率P N=22kW电压U N=380V(Y接)相数m1=3频率f=50Hz极对数p =3B级绝缘,连续运行,封闭型自扇冷式,25、已知数据:输出功率P N=15kW电压U N=380V(Y接)相数m1=3频率f=50Hz极对数p =4B级绝缘,连续运行,封闭型自扇冷式,中小型三相感应电动机电磁计算程序26、已知数据:输出功率P N=18.5kW电压U N=380V(Y接)相数m1=3频率f=50Hz极对数p =4B级绝缘,连续运行,封闭型自扇冷式,27、已知数据:输出功率P N=22kW电压U N=380V(Y接)相数m1=3频率f=50Hz极对数p =4B级绝缘,连续运行,封闭型自扇冷式,中小型三相感应电动机电磁计算程序28、已知数据:输出功率P N=3kW电压U N=380V(Y接)相数m1=3频率f=50Hz极对数p =1B级绝缘,连续运行,封闭型自扇冷式,29、已知数据:输出功率P N=3kW电压U N=380V(Y接)相数m1=3频率f=50Hz极对数p =2B级绝缘,连续运行,封闭型自扇冷式,中小型三相感应电动机电磁计算程序30、已知数据:输出功率P N=3kW电压U N=380V(Y接)相数m1=3频率f=50Hz极对数p =3B级绝缘,连续运行,封闭型自扇冷式,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
鼠笼型转子三相异步电动机电磁计算说明一、主要性能数据1. 电动机五个重要的性能指标效率[η]、功率因数[ϕcos ]、最大转矩倍数[st T ]、堵转转矩倍数[st T ]、堵转电流倍数[st I ]。
2. 电动机的额定值额定功率:电动机在额定情况运行下,由轴端输出的机械功率,单位kW 。
额定电压:电动机额定运行时外加于定子绕组上的线电压,单位V 。
额定频率:电动机额定运行时电网频率,单位Hz 。
额定电流:电动机在额定电压、额定频率下、轴端有额定功率输出时,通过定子绕组的线电流单位A 。
额定转速:电动机在额定电压、额定频率下、轴端有额定功率输出时,转子的转速,单位min /r 。
3. 在电磁计算中什么是标幺值?怎么表示?标幺值是一种比值,它表示的是实际值与基值的比例关系。
一般按下面的方法表示。
如定子相电流1I 的表么值用'1i 表示,KWI I i 1'1=。
4. 为什么在电磁计算中要使用标幺值?在电磁计算中采用标幺值不但可以方便计算,又可清楚的反映各参数之间的关系。
5. 电磁计算中基值有那些。
功率基值:额定输出功率2P ,单位kW 电压基值:额定相电压1U ,单位V 电流基值:功电流KW I ,单位A阻抗基值:KWI U 1,单位Ω 6. 输出功率的计算过程ηφ⋅⋅⋅⋅=112cos 3U I P (相电压每相电流、11U I )因为,Y 接时13U U N ⋅=,△接时13I I N ⋅=(用相量计算可证明)故:ηφ⋅⋅⋅⋅=cos 32N N I U P 7. 功电流的计算功电流:132310U P I KW⋅⋅=,单位A 。
二、 三相交流绕组1. 对三相交流绕组的要求a. 在一定的导体数下,获得较大的基波电势和基波磁势。
b. 三相电势和磁势必须对称,即三相大小相等相位互差︒120。
c. 电势和磁势波形尽可能接近正弦波,谐波分量要小。
d. 用铜量少,绝缘性能和机械性能可靠。
2. 三相绕组的分类a. 按槽层数分类,可分为双层绕组和单层绕组。
b. 按每极每相槽数分类,可分为整数槽绕组和分数槽绕组。
c. 按排列方式可分为,双层绕组可分为迭绕组、波绕组;单层绕组可分为等元件绕组、单层交叉绕组和单层同心绕组。
3. 每极每相槽数q为了使三相电势相等,每相在每极下应占有相等的槽数,该槽数成为每极每相槽数。
一般用q 表示,pm Zq ⋅=(Z 为槽数,p 为极数)。
q 可以是整数,也可以是分数。
q 为分数时cbaq =中c 不能是3或3的倍数。
4. 最大并联支路数a对于整数槽p a =max ,对于分数槽c b a q =,cp a =max 。
5. 极距τ和节距y极距pZ=τ(槽),当线圈的节距τ=y 时成为等距绕组,当τ<y 时成为短距绕组。
在电动机设计中一般采用短距绕组来降低高次谐波的影响。
三、 三相交流电机的磁路计算1. 感应电势当磁通密度幅值为m B 的正弦磁场以速度v 切割长度为l 的导体时,会在导体部感应强度为幅值E 的电势,即v l B E m ⋅⋅=当m B 的单位为T ,l 的单位为m ,v 的单位为s m /m/s 时,E 的单位为V 。
2. 导体电势根据电路基础,导体电势得有效值Φ⋅⋅==f E E mc c 22.2211(推导过程省略),其中f为频率,Φ为每极磁通。
3. 匝电势线圈得两条边在不同极下,感应电势的大小相等、方向相反,且在时间上相差︒180,故整距线圈的匝电势Φ⋅⋅==f E E c t 44.4211,考虑到短距对电势的影响,11144.42p c t K f E E ⋅Φ⋅⋅==,其中)90sin(11︒⋅=τy K p 成为短距系数。
4. 线圈电势ω匝线圈的电势11t y E E ⋅=ω5. 线圈组电势考虑到线圈的分布对电势的影响(存在电角度差),线圈组(q 个线圈)的电势111d y q K E q E ⋅⋅=,其中2sin2sin1a q aq K d ⋅⋅=,称为绕组的分布系数。
(1Q p a π⋅=) 6. 相电势、每相磁通量Φ⋅⋅⋅⋅=f K E dp 144.4ω,其中111p d dp k k k ⋅=,Φ为每极磁通量,ω为每相串联导体数。
在电磁计算中一般要先假定电势求磁通,即1122.2dp K f E⋅⋅⋅=Φω,1)95.0~85.0(U E ⋅=,其中1U 为定子绕组每相电压。
7. 磁通密度、磁势的计算电机的每极磁路通过了2个定子齿、1个定子轭、2个转子齿、1个转子轭、2个气隙。
定子齿部磁密11t st S F B Φ= 转子齿部磁密22t st S F B Φ= 定子轭部磁密1121c c S B Φ⋅=转子轭部磁密2221c c S B Φ⋅=气隙磁密gsg S F B Φ= 其中s F 是反应磁路饱和影响的波幅系数,S 为各部分磁路面积。
在求得磁路各部分磁通密度后,根据铁心的磁化曲线可获得各部分的单位长度磁势at ,用at 乘以各部分磁路长度l 可得到各部分磁路的磁势,但气隙磁势求法不同。
e g g g B AT ⋅⋅=8.0,其中21c c e K K g g ⋅⋅=为有效气隙长度。
将各部分磁路的磁势相加可得每极所需磁势AT 。
磁密的单位为Tesla (国际单位制)或Gauss ,G T 100001= 磁势的单位为A 或)Turn Amp (⋅⋅T A 。
8. 磁化电流满载磁化电流122.2dp m K m pAT I ⋅⋅⋅⋅=ω单位A 。
满载磁化电流标么值kwmm I I i ='激磁电抗标么值'1mm i x =(m m I U X 1=) 空载电势标么值101x i e m ⋅-=(110X I U E m ⋅-=),其中1x 为考虑定子槽漏磁、端部漏磁、谐波影响的等效电抗,其实际值的单位为Ω。
满载电势标么值)(111x i r i e r p ⋅+⋅-=()(111X I R I U E r p ⋅+⋅-=)其中p i 为定子电流中的有功分量的标么值ϕηcos 11⋅==i i p ,r i 为定子电流中的无功分量ϕsin 1⋅=+=i i i i x m r ,x i 为满载电抗电流其大小反应了电机的漏磁、谐波影响的程度,可用电路法直接求解出。
利用电机空载电势和满载电势的比值可轻松求出空载磁路特性(如1010t t B ee B =),根据空载磁路可得空载磁化电流10022.2dp m K m pAT I ⋅⋅⋅⋅=ω9. 电机的电流电流是电机计算中的最关键参数,电磁计算其实就是计算电机各部分电流。
有功电流概念:有功电流是指定子电流中以做功(发热或产生机械能)形式消耗掉的部分,用p I 表示。
无功电流概念:无功电流是指定子电流中用于能量转换(激励磁通、电抗电流)的部分,其本身不产生热量,用r I 表示。
定子电流是有功电流分量和无功电流分量的矢量和,用1I 表示。
221r p I I I +=,转子电流(导条电流)222xp i i i +=,有效值21122Q K m I i I dp KW⋅⋅⋅=ω,试中211Q K m dp ⋅⋅ω是将转子电流折算到定子侧的电流变比,由于铸铝转子绕组是一个对称的多相绕组(每根导条为一相),实际上转子绕组共有N 根导体,其绕组系数为1。
端环电流pQ I I R ⋅⋅=π22,即表示将端环电流按电角度(2Q p⋅=πα)折算后,用导条电流计算。
四、 电动机的功率方程1. 平衡方程fw s cu fe cu P P P P P P P -----=2112是功率平衡方程。
方程中所有项目都为有功功率即以发热和做功的形式消耗,以下逐项说明。
2. 额定功率ϕηcos 32⋅⋅⋅⋅=N N I U P 是通过电机转轴输出的额定机械功率。
3. 输入功率ϕcos 31⋅⋅⋅=N N I U P 是输入电机的有功电功率。
4. 定子铜耗12113R I P cu ⋅⋅=是定子电流与定子电阻产生的电功率,也发热形式消耗。
5. 定子铁耗m fe R I P ⋅⋅=203()是定子铁心受磁滞现象和涡流现象影响的热损耗,在实际计算中是通过铁心磁路各部分磁通密度查到对应的每单位损耗值,再乘以铁心总重量,在通过校正系数得到的。
铁耗的大小与最大磁密、额定频率、材料用量、单片厚度成正比。
注意,实际中还存在转子铁耗,但转子频率非常低12f s f ⋅=,故可忽略不计。
6. 转子铜耗2222R I P cu ⋅=是转子电流与转子电阻产生的电功率,也发热形式消耗。
7. 杂散损耗s P 是反应漏磁通、谐波磁通、磁谐波磁通产生的有害附加转矩对电机的损耗,一般按经验或标准选取。
8. 机械损耗fw P 是考虑风扇和轴承对电机的损耗,一般按经验取。
9. 转差率fws fe cu P P P P P S +++='22表示为铜耗占总电磁功率的比例,式中'fe P 为旋转铁耗约占铁耗的65%。
10. 效率12P P =η为输出功率与输入功率的比值。
11. 功率因数11cos I I I I p KW=⋅=ηϕ 五、最大转矩电动机的最大转矩与额定电压的平方成正比,与频率成反比。
转差率可以影响最大转矩时转差点。
六、 起动计算鼠笼型转子电动机的起动计算十分复杂,因为起动时,起动电流很大,导致磁路饱和,磁路的各个参数改变,不能按原磁路参数计算。
另外由于转子导条有集肤效应(又称挤流效应)使转子的有效槽高变短,又改变了转子参数。
下面简单介绍一下这些关键参数。
Z K 起动时由于磁路饱和引起漏抗变化系数。
R K 考虑集肤效应使转子电阻增加系数。
一般大于1 X K 考虑集肤效应使转子电抗减小系数。
一般小于1起动电流倍数'1'111i z I Z U I st st st ⋅=⋅=,表示起动电流与额定电压成正比与起动阻抗成反比。
起动转矩倍数)1('2'2S z r T ststst -=,所以要想明显的增大起动转矩,就需要增大转子起动电阻在总起动阻抗中的占有率。
七、 电磁计算中关键尺寸及其影响1. 冲片、槽形尺寸在相同磁密的情况下冲片尺寸越大其磁通越大,也就是出力越大。
SB Φ=。
在相同冲片的下,定子槽形越大,其能容纳的导体面积越大,可以降低电密,减小热负荷,减小电阻(匝数不变)和定子铜耗,降低槽满率(匝数、线规不变),但定子齿部磁密升高,激磁电流增大导致定子电流增大(满载时影响不大),铁耗增大。
在相同冲片的下,转子槽形增大,可降低导条电密,减小热负荷,减小转子电阻和转子铜耗,但转子齿部磁密升高,激磁电流增大导致定子电流增大(满载时影响不大),无转子铁耗故铁耗不受影响。
但影响最大的是起动性能,使起动转矩大幅下降。