数据结构实习报告希尔排序
排序实验报告_排序综合实验报告材料

班级
2*10^7
10 电信 1 班
10^8
操作系统
10^5
Microsoft Windows 7 旗舰版 (64 位/Service Pck 1)
正序
xxxxxxxxxxxxx
逆序
编译软件
直接插入
Visul C++ 6.0
(带监视哨〕
emil
C
609803959.
24.874
10^4
100.158
2*10^4
中选出键值最小的记录,与无序区第一个记录 R 交换;新的无序区为 R 到
各种排序试验结果:
R[n],从中再选出键值最小的记录,与无序区第一个记录 R 交换;类似, CPU
第 i 趟排序时 R 到 R[i-1]是有序区,无序区为 R[i]到 R[n],从中选出键
(英特尔)Intel(R) Core(TM) i5 CPU M 480 2.67GHz
〔1〕二路并归排序:开始时,将排序表 R 到 R[n]看成 n 个长度为 1
录,顺序放在已排好序的子序列的后面〔或最前〕,直到全部记录排序完 的有序子表,把这些子表两两并归,便得到 n/2 个有序的子表〔当 n 为奇
毕。
数时,并归后仍是有一个长度为 1 的子表〕;然后,再把这 n/2 个有序的
〔1〕直接选择排序:首先,全部记录组成初始无序区 R 到 R[n],从 子表两两并归,如此反复,直到最终得到一个程度为 n 的有序表为止。
指导老师: 胡圣荣
序与排序要求相反时就交换两者的位置,直到没有反序的记录为止。
日期: 20XX.12.15~20XX.1.5
〔1〕冒泡排序:设想排序表 R 到 R[n]垂直放置,将每个记录 R[i]看
数据结构实验报告——排序

1.实验要求【实验目的】学习、实现、对比各种排序算法,掌握各种排序算法的优劣,以及各种算法使用的情况。
【实验内容】使用简单数组实现下面各种排序算法,并进行比较。
排序算法:1、插入排序2、希尔排序3、冒泡排序4、快速排序5、简单选择排序6、堆排序(选作)7、归并排序(选作)8、基数排序(选作)9、其他要求:1、测试数据分成三类:正序、逆序、随机数据2、对于这三类数据,比较上述排序算法中关键字的比较次数和移动次数(其中关键字交换计为3次移动)。
3、对于这三类数据,比较上述排序算法中不同算法的执行时间,精确到微秒(选作)4、对2和3的结果进行分析,验证上述各种算法的时间复杂度编写测试main()函数测试线性表的正确性。
2. 程序分析2.1 存储结构存储结构:数组2.2 关键算法分析//插入排序void InsertSort(int r[], int n) {int count1=0,count2=0;插入到合适位置for (int i=2; i<n; i++){r[0]=r[i]; //设置哨兵for (int j=i-1; r[0]<r[j]; j--) //寻找插入位置r[j+1]=r[j]; //记录后移r[j+1]=r[0];count1++;count2++;}for(int k=1;k<n;k++)cout<<r[k]<<" ";cout<<endl;cout<<"比较次数为"<<count1<<" 移动次数为"<<count2<<endl; }//希尔排序void ShellSort(int r[], int n){int i;int d;int j;int count1=0,count2=0;for (d=n/2; d>=1; d=d/2) //以增量为d进行直接插入排序{for (i=d+1; i<n; i++){r[0]=r[i]; //暂存被插入记录for (j=i-d; j>0 && r[0]<r[j]; j=j-d)r[j+d]=r[j]; //记录后移d个位置r[j+d]=r[0];count1++;count2=count2+d;}count1++;}for(i=1;i<n;i++)cout<<r[i]<<" ";cout<<endl;cout<<"比较次数为"<<count1<<" 移动次数为"<<count2<<endl; }//起泡排序void BubbleSort(int r[], int n) {插入到合适位置int temp;int exchange;int bound;int count1=0,count2=0;exchange=n-1; //第一趟起泡排序的范围是r[1]到r[n]while (exchange) //仅当上一趟排序有记录交换才进行本趟排序{bound=exchange;exchange=0;for(int j=0;j<bound;j++) //一趟起泡排序{count1++; //接下来有一次比较if(r[j]>r[j+1]){temp=r[j]; //交换r[j]和r[j+1]r[j]=r[j+1];r[j+1]=temp;exchange=j; //记录每一次发生记录交换的位置count2=count2+3; //移动了3次}}}for(int i=1;i<n;i++)cout<<r[i]<<" ";cout<<endl;cout<<"比较次数为"<<count1<<" 移动次数为"<<count2<<endl;}//快速排序一次划分int Partition(int r[], int first, int end,int &count1,int &count2){int i=first; //初始化int j=end;while (i<j){while (i<j && r[i]<= r[j]){j--; //右侧扫描count1++;}count1++;if (i<j){temp=r[i]; //将较小记录交换到前面r[i]=r[j];r[j]=temp;i++;count2=count2+3;}while (i<j && r[i]<= r[j]){i++; //左侧扫描count1++;}count1++;if (i<j){temp=r[j];r[j]=r[i];r[i]=temp; //将较大记录交换到后面j--;count2=count2+3;}}return i; //i为轴值记录的最终位置}//快速排序void QuickSort(int r[], int first, int end,int &count1,int &count2){if (first<end){ //递归结束int pivot=Partition(r, first, end,count1,count2); //一次划分QuickSort(r, first, pivot-1,count1,count2);//递归地对左侧子序列进行快速排序QuickSort(r, pivot+1, end,count1,count2); //递归地对右侧子序列进行快速排序}}//简单选择排序Array void SelectSort(int r[ ], int n){int i;int j;int index;int temp;int count1=0,count2=0;for (i=0; i<n-1; i++) //对n个记录进行n-1趟简单选择排序{index=i;for(j=i+1;j<n;j++) //在无序区中选取最小记录{count1++; //比较次数加一if(r[j]<r[index]) //如果该元素比现在第i个位置的元素小index=j;}count1++; //在判断不满足循环条件j<n时,比较了一次if(index!=i){temp=r[i]; //将无序区的最小记录与第i个位置上的记录交换r[i]=r[index];r[index]=temp;count2=count2+3; //移动次数加3 }}for(i=1;i<n;i++)cout<<r[i]<<" ";cout<<endl;cout<<"比较次数为"<<count1<<" 移动次数为"<<count2<<endl;}//筛选法调整堆void Sift(int r[],int k,int m,int &count1,int &count2) //s,t分别为比较和移动次数{int i;int j;int temp;i=k;j=2*i+1; //置i为要筛的结点,j为i的左孩子while(j<=m) //筛选还没有进行到叶子{if(j<m && r[j]<r[j+1]) j++; //比较i的左右孩子,j为较大者count1=count1+2; //该语句之前和之后分别有一次比较if(r[i]>r[j])break; //根结点已经大于左右孩子中的较大者else{temp=r[i];r[i]=r[j];r[j]=temp; //将根结点与结点j交换i=j;j=2*i+1; //下一个被筛结点位于原来结点j的位置count2=count2+3; //移动次数加3 }}}//堆排序void HeapSort(int r[],int n){int count1=0,count2=0; //计数器,计比较和移动次数int i;int temp;for(i=n/2;i>=0;i--) //初始建堆,从最后一个非终端结点至根结点Sift(r,i,n,count1,count2) ;for(i=n-1; i>0; i--) //重复执行移走堆顶及重建堆的操作{temp=r[i]; //将堆顶元素与最后一个元素交换r[i]=r[0];r[0]=temp; //完成一趟排序,输出记录的次序状态Sift(r,0,i-1,count1,count2); //重建堆}for(i=1;i<n;i++)cout<<r[i]<<" ";cout<<endl;cout<<"比较次数为"<<count1<<" 移动次数为"<<count2<<endl;}//一次归并void Merge(int r[], int r1[], int s, int m, int t){int i=s;int j=m+1;int k=s;while (i<=m && j<=t){if (r[i]<=r[j])r1[k++]=r[i++]; //取r[i]和r[j]中较小者放入r1[k]elser1[k++]=r[j++];}if (i<=m)while (i<=m) //若第一个子序列没处理完,则进行收尾处理r1[k++]=r[i++];elsewhile (j<=t) //若第二个子序列没处理完,则进行收尾处理r1[k++]=r[j++];}//一趟归并void MergePass(int r[ ], int r1[ ], int n, int h){int i=0;int k;while (i<=n-2*h) //待归并记录至少有两个长度为h的子序列{Merge(r, r1, i, i+h-1, i+2*h-1);i+=2*h;}if (i<n-h)Merge(r, r1, i, i+h-1, n); //待归并序列中有一个长度小于h else for (k=i; k<=n; k++) //待归并序列中只剩一个子序列r1[k]=r[k];}//归并排序void MergeSort(int r[ ], int r1[ ], int n ){int h=1;int i;while (h<n){MergePass(r, r1, n-1, h); //归并h=2*h;MergePass(r1, r, n-1, h);h=2*h;}for(i=1;i<n;i++)cout<<r[i]<<" ";cout<<endl;}void Newarray(int a[],int b[],int c[]) {cout<<"新随机数组:";c[0]=0;a[0]=0;b[0]=0;for(int s=1;s<11;s++){a[s]=s;b[s]=20-s;c[s]=rand()%50+1;cout<<c[s]<<" ";}cout<<endl;}2.3 其他3. 程序运行结果void main(){srand(time(NULL));const int num=11; //赋值int a[num];int b[num];int c[num];int c1[num];c[0]=0;a[0]=0;b[0]=0;Newarray(a,b,c);cout<<"顺序数组:";for(int j=1;j<num;j++)cout<<a[j]<<" ";cout<<endl;cout<<"逆序数组:";for(j=1;j<num;j++)cout<<b[j]<<" ";cout<<endl;cout<<endl;cout<<"插入排序结果为:"<<"\n";InsertSort(a,num);InsertSort(b,num);InsertSort(c,num);cout<<endl;Newarray(a,b,c);cout<<"希尔排序结果为:"<<"\n";ShellSort(a, num);ShellSort(b, num);ShellSort(c, num);cout<<endl;Newarray(a,b,c);cout<<"起泡排序结果为:"<<"\n";BubbleSort(a, num);BubbleSort(b, num);BubbleSort(c, num);cout<<endl;int count1=0,count2=0;Newarray(a,b,c);cout<<"快速排序结果为:"<<"\n";QuickSort(a,0,num-1,count1,count2);for(int i=1;i<num;i++)cout<<a[i]<<" ";cout<<endl;cout<<"比较次数为"<<count1<<" 移动次数为"<<count2<<endl; count1=0,count2=0;QuickSort(b,0,num-1,count1,count2);for(i=1;i<num;i++)cout<<b[i]<<" ";cout<<endl;cout<<"比较次数为"<<count1<<" 移动次数为"<<count2<<endl; count1=0,count2=0;QuickSort(c,0,num-1,count1,count2);for(i=1;i<num;i++)cout<<c[i]<<" ";cout<<endl;cout<<"比较次数为"<<count1<<" 移动次数为"<<count2<<endl;cout<<endl;cout<<endl;Newarray(a,b,c);cout << "简单选择排序结果为:" << "\n";SelectSort(a,num);SelectSort(b,num);SelectSort(c,num);cout<<endl;Newarray(a,b,c);cout << "堆排序结果为:" << "\n";HeapSort(a, num);HeapSort(b, num);HeapSort(c, num);cout<<endl;Newarray(a,b,c);cout << "归并排序结果为:" << "\n";MergeSort(a, c1,num );MergeSort(b, c1,num );MergeSort(c, c1,num );}。
希尔排序时间复杂度证明

希尔排序时间复杂度证明希尔排序是一种基于插入排序的排序算法,它通过将待排序的数组分割成若干个较小的子数组进行插入排序,然后逐步缩小子数组的规模,最终完成排序。
希尔排序的时间复杂度一直是人们比较关注的问题,本文将从理论分析的角度对希尔排序的时间复杂度进行证明。
我们先了解一下希尔排序的基本思想和过程。
希尔排序的关键在于选择合适的间隔序列,间隔序列的选择会影响希尔排序的时间复杂度。
在希尔排序中,通常使用的间隔序列是通过不断地将原始序列长度除以2得到的,直到间隔序列为1时结束。
接下来我们来证明希尔排序的时间复杂度。
设希尔排序的时间复杂度为T(n),其中n为待排序数组的长度。
在希尔排序的每一趟排序中,我们将数组分割成若干个较小的子数组,并对每个子数组进行插入排序。
假设在第i趟排序中,数组被分成了k个子数组,那么每个子数组的长度为n/k。
在每个子数组中,我们需要进行插入排序。
根据插入排序的时间复杂度为O(n^2),那么对于一个长度为n/k的子数组,其插入排序的时间复杂度为O((n/k)^2)。
所以,在第i趟排序中,对于k个长度为n/k的子数组进行插入排序的时间复杂度为k * O((n/k)^2),即O(n^2/k)。
在希尔排序的最后一趟排序中,数组被分成了1个子数组,即k=1。
此时,对于整个数组进行插入排序的时间复杂度为O(n^2/1),即O(n^2)。
在希尔排序中,每一趟排序的时间复杂度为O(n^2/k),其中k为每个子数组的个数。
而最后一趟排序的时间复杂度为O(n^2)。
接下来我们来求希尔排序的总时间复杂度。
根据希尔排序的过程,我们可以看到,随着每一趟排序的进行,子数组的个数k逐渐减小,而每个子数组的长度n/k也逐渐增大。
当k为1时,整个数组被分成了1个子数组,即数组已经完全有序。
假设希尔排序的总趟数为t,那么有:n/k = 1 => k = n根据上述推导,希尔排序的总时间复杂度为:T(n) = O(n^2/n) + O(n^2/n^2) + O(n^2/n^3) + ... + O(n^2/n^t)可以进一步化简为:T(n) = O(n) + O(n^2/n) + O(n^2/n^2) + O(n^2/n^3) + ... + O(n^2/n^t)我们可以观察到,除了第一项O(n)是线性的,其他的项都是平方级别的。
数据结构课程设计实践报告

数据结构实验报告本文是范文,仅供参考写作,禁止抄袭本文内容上传提交,违者取消写作资格,成绩不合格!实验名称:排序算法比较提交文档学生姓名:提交文档学生学号:同组成员名单:指导教师姓名:排序算法比较一、实验目的和要求1、设计目的1.掌握各种排序的基本思想。
2.掌握各种排序方法的算法实现。
3.掌握各种排序方法的优劣分析及花费的时间的计算。
4.掌握各种排序方法所适应的不同场合。
2、设计内容和要求利用随机函数产生30000个随机整数,利用插入排序、起泡排序、选择排序、快速排序、堆排序、归并排序等排序方法进行排序,并统计每一种排序上机所花费的时间二、运行环境(软、硬件环境)软件环境:Vc6.0编程软件运行平台: Win32硬件:普通个人pc机三、算法设计的思想1、冒泡排序:bubbleSort()基本思想: 设待排序的文件为r[1..n]第1趟(遍):从r[1]开始,依次比较两个相邻记录的关键字r[i].key和r[i+1].key,若r[i].key>r[i+1].key,则交换记录r[i]和r[i+1]的位置;否则,不交换。
(i=1,2,...n-1)第1趟之后,n个关键字中最大的记录移到了r[n]的位置上。
第2趟:从r[1]开始,依次比较两个相邻记录的关键字r[i].key和r[i+1].key,若r[i].key>r[i+1].key,则交换记录r[i]和r[i+1]的位置;否则,不交换。
(i=1,2,...n-2)第2趟之后,前n-1个关键字中最大的记录移到了r[n-1]的位置上,作完n-1趟,或者不需再交换记录时为止。
2、选择排序:selSort()每一趟从待排序的数据元素中选出最小(或最大)的一个元素,顺序放在已排好序的数列的最后,直到全部待排序的数据元素排完。
选择排序不像冒泡排序算法那样先并不急于调换位置,第一轮(k=1)先从array[k]开始逐个检查,看哪个数最小就记下该数所在的位置于minlIndex中,等一轮扫描完毕,如果找到比array[k-1]更小的元素,则把array[minlIndex]和a[k-1]对调,这时array[k]到最后一个元素中最小的元素就换到了array[k-1]的位置。
C语言版数据结构-希尔排序

2. 希尔排序详细设计#include <stdio.h>#include <stdlib.h>#include <time.h>typedef int KeyType;typedef int OtherType;#define Max_Size 5000typedef struct{KeyType key;OtherType other_data;}RecordType;void ShellInsert(RecordType r[], int length, int delta)/*对记录数组r做一趟希尔插入排序,length为数组的长度,delta 为增量*/{int i,j;for(i=1+delta;i<=length;i=i+delta)//1+delta为第一个子序列的第二个元素的下标if(r[i].key<r[i-delta].key){RecordType t;t=r[i]; //备份r[i]for(j=i;j>0 && t.key<r[j-delta].key;j-=delta)r[j]=r[j-delta];r[j]=t;}}/*ShellInsert*/void ShellSort(RecordType r[], int length, int delta[], int n)/*对记录数组r做希尔排序,length为数组r的长度,delta 为增量数组,n为delta[]的长度 */{for(int i=0;i<n;++i)ShellInsert(r,length,delta[i]);}void main(){int i;RecordType r[Max_Size];int len;int delta[4]={6,4,2,1};printf("请输入待排序记录的长度:");scanf("%d",&len);srand((unsigned)time(NULL));for(i=1;i<=len;i++)r[i].key =rand();printf("\n待排序记录:\n");for(i=1;i<=len;i++)printf("%6d ",r[i].key);printf("\n");ShellSort(r,len,delta,4);printf("\n排序后的记录:\n");for(i=1;i<=len;i++)printf("%6d ",r[i].key);printf("\n\n");}测试结果。
数据结构之各种排序的实现与效率分析

各种排序的实现与效率分析一、排序原理(1)直接插入排序基本原理:这是最简单的一种排序方法,它的基本操作是将一个记录插入到已排好的有序表中,从而得到一个新的、记录增1的有序表。
效率分析:该排序算法简洁,易于实现。
从空间来看,他只需要一个记录的辅助空间,即空间复杂度为O(1).从时间来看,排序的基本操作为:比较两个关键字的大小和移动记录。
当待排序列中记录按关键字非递减有序排列(即正序)时,所需进行关键字间的比较次数达最小值n-1,记录不需移动;反之,当待排序列中记录按关键字非递增有序排列(即逆序)时,总的比较次数达最大值(n+2)(n-1)/2,记录移动也达到最大值(n+4)(n-2)/2.由于待排记录是随机的,可取最大值与最小值的平均值,约为n²/4.则直接插入排序的时间复杂度为O(n²).由此可知,直接插入排序的元素个数n越小越好,源序列排序度越高越好(正序时时间复杂度可提高至O(n))。
插入排序算法对于大数组,这种算法非常慢。
但是对于小数组,它比其他算法快。
其他算法因为待的数组元素很少,反而使得效率降低。
插入排序还有一个优点就是排序稳定。
(2)折半插入排序基本原理:折半插入是在直接插入排序的基础上实现的,不同的是折半插入排序在将数据插入一个有序表时,采用效率更高的“折半查找”来确定插入位置。
效率分析:由上可知该排序所需存储空间和直接插入排序相同。
从时间上比较,折半插入排序仅减少了关键字间的比较次数,为O(nlogn)。
而记录的移动次数不变。
因此,折半查找排序的时间复杂度为O(nlogn)+O(n²)= O(n²)。
排序稳定。
(3)希尔排序基本原理:希尔排序也一种插入排序类的方法,由于直接插入排序序列越短越好,源序列的排序度越好效率越高。
Shell 根据这两点分析结果进行了改进,将待排记录序列以一定的增量间隔dk 分割成多个子序列,对每个子序列分别进行一趟直接插入排序, 然后逐步减小分组的步长dk,对于每一个步长dk 下的各个子序列进行同样方法的排序,直到步长为1 时再进行一次整体排序。
数据结构(C语言版)实验报告 (内部排序算法比较)

《数据结构与算法》实验报告一、需求分析问题描述:在教科书中,各种内部排序算法的时间复杂度分析结果只给出了算法执行时间的阶,或大概执行时间。
试通过随机数据比较各算法的关键字比较次数和关键字移动次数,以取得直观感受。
基本要求:(l)对以下6种常用的内部排序算法进行比较:起泡排序、直接插入排序、简单选择排序、快速排序、希尔排序、堆排序。
(2)待排序表的表长不小于100000;其中的数据要用伪随机数程序产生;至少要用5组不同的输入数据作比较;比较的指标为有关键字参加的比较次数和关键字的移动次数(关键字交换计为3次移动)。
(3)最后要对结果作简单分析,包括对各组数据得出结果波动大小的解释。
数据测试:二.概要设计1.程序所需的抽象数据类型的定义:typedef int BOOL; //说明BOOL是int的别名typedef struct StudentData { int num; //存放关键字}Data; typedef struct LinkList { int Length; //数组长度Data Record[MAXSIZE]; //用数组存放所有的随机数} LinkList int RandArray[MAXSIZE]; //定义长度为MAXSIZE的随机数组void RandomNum() //随机生成函数void InitLinkList(LinkList* L) //初始化链表BOOL LT(int i, int j,int* CmpNum) //比较i和j 的大小void Display(LinkList* L) //显示输出函数void ShellSort(LinkList* L, int dlta[], int t,int* CmpNum, int* ChgNum) //希尔排序void QuickSort (LinkList* L, int* CmpNum, int* ChgNum) //快速排序void HeapSort (LinkList* L, int* CmpNum, int* ChgNum) //堆排序void BubbleSort(LinkList* L, int* CmpNum, int* ChgNum) //冒泡排序void SelSort(LinkList* L, int* CmpNum, int* ChgNum) //选择排序void Compare(LinkList* L,int* CmpNum, int* ChgNum) //比较所有排序2 .各程序模块之间的层次(调用)关系:二、详细设计typedef int BOOL; //定义标识符关键字BOOL别名为int typedef struct StudentData //记录数据类型{int num; //定义关键字类型}Data; //排序的记录数据类型定义typedef struct LinkList //记录线性表{int Length; //定义表长Data Record[MAXSIZE]; //表长记录最大值}LinkList; //排序的记录线性表类型定义int RandArray[MAXSIZE]; //定义随机数组类型及最大值/******************随机生成函数********************/void RandomNum(){int i; srand((int)time(NULL)); //用伪随机数程序产生伪随机数for(i=0; i小于MAXSIZE; i++) RandArray[i]<=(int)rand(); 返回;}/*****************初始化链表**********************/void InitLinkList(LinkList* L) //初始化链表{int i;memset(L,0,sizeof(LinkList));RandomNum();for(i=0; i小于<MAXSIZE; i++)L->Record[i].num<=RandArray[i]; L->Length<=i;}BOOL LT(int i, int j,int* CmpNum){(*CmpNum)++; 若i<j) 则返回TRUE; 否则返回FALSE;}void Display(LinkList* L){FILE* f; //定义一个文件指针f int i;若打开文件的指令不为空则//通过文件指针f打开文件为条件判断{ //是否应该打开文件输出“can't open file”;exit(0); }for (i=0; i小于L->Length; i++)fprintf(f,"%d\n",L->Record[i].num);通过文件指针f关闭文件;三、调试分析1.调试过程中遇到的问题及经验体会:在本次程序的编写和调试过程中,我曾多次修改代码,并根据调试显示的界面一次次调整代码。
希尔排序过程

希尔排序过程
希尔排序是一种高效的排序算法,它是插入排序的一种改进。
它的基本思想是将待排序的数组分成若干个子序列,对每个子序列进行插入排序,然后再将整个序列进行插入排序。
希尔排序的时间复杂度为O(nlogn),比插入排序的时间复杂度O(n^2)要快得多。
希尔排序的过程可以分为以下几个步骤:
1.确定增量序列
希尔排序的核心是增量序列的选择。
增量序列是一个递减的序列,它决定了子序列的长度。
常用的增量序列有希尔增量序列、Hibbard 增量序列、Knuth增量序列等。
其中,希尔增量序列是最常用的增量序列,它的公式为:h = h * 3 + 1,其中h为增量,初始值为1。
2.分组排序
根据增量序列,将待排序的数组分成若干个子序列。
对每个子序列进行插入排序。
插入排序的过程与普通的插入排序相同,只是每次比较的元素之间的距离为增量序列中的值。
3.缩小增量
将增量序列缩小,继续进行分组排序。
直到增量序列为1,此时整个序列就变成了一个有序序列。
4.整体排序
最后一次分组排序后,整个序列已经基本有序。
此时,只需要进行一次插入排序即可完成排序。
希尔排序的优点是比较稳定,时间复杂度较低,适用于数据量较大的排序。
但是,增量序列的选择对排序效率有很大的影响。
如果增量序列选择不当,可能会导致排序效率降低。
希尔排序是一种高效的排序算法,它的核心是增量序列的选择。
通过分组排序和缩小增量的方式,可以将待排序的数组快速地变成一个有序序列。
在实际应用中,需要根据具体情况选择合适的增量序列,以达到最优的排序效果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数据结构试验报告
专业: 管理15-1班年级: 2015
学号: 2015011922 姓名: 侯小益
题目: 希尔排序
1.问题分析
希尔排序是一种升级版的插入排序!
2.具体设计过程
2.1设计思路
按照某种规则将数组分成多组,然后在进行插入排序!有两种方案完成分组合并的问题,第一种是递归算法!第二种是采取for循环,使得分组逐渐变化!本实验报告采取递归算法。
2.2 程序设计流程图
流程图+ 说明
第一次:d=5,排序一次
第二次:d=2,排序一次
第三次:d=1,排序一次
2.3 函数实现说明
此处对程序中的一些关键函数进行说明,例:
(1) void display()棋盘绘制函数
功能:函数display()通过for循环,对棋盘界面进行了绘制
用法:此函数调用方式为void display(char board[][SIZE]);
说明:参数是一个二维数组,size为定义的长度。
值为8
返回值:无
对ShellSort(a,d);采用递归!并且采用指针传递,保证修改成功。
3.程序运行说明
说明整个程序的运行环境、数据输入的格式及限制、输出、条件及其它相关说明。
VC6.0.发生一特殊情况,在N=11的时候,a[9]=0,最后排序的时候0会出现成11,0消失了。
4.程序运行结果
运行截图+ 说明
5.结论和心得
附录:源代码
#include<stdio.h>
#define N 11
int ShellSort(int *a,int n)
{
int i,j,k;
int d=n/2;
printf("d取值:%d\n",d);
if (d<1) return 1;
else
{
for(i=1;i<=d;i++)
{
for(j=i+d;j<N;j=j+d)
{
if(a[j]<a[j-d]){
a[0]=a[j];
for(k=j;k>0&&a[k]<a[k-d];k=k-d)
a[k]=a[k-d];
a[k]=a[0];
}
}
}
ShellSort(a,d);//程序递归
}
return 0;}
int main()
{
int a[N]={NULL,1,5,4,7,8,3,2,9,12,6};
int d=N;
ShellSort(a,d);
printf("下面是希尔排序结果\n");
for(int i=1;i<N;i++)
{
printf(" %d ",a[i]);
}
printf("\n");
return 0;
}
结论:在N为11的时候,只要a[9]是0,最后排序的结果就是11,而且排序正常。