博弈论名词解释

合集下载

博弈论的定义

博弈论的定义

博弈论的定义1. 博弈论的基本概念博弈论,是现代数学的一个分支学科,研究在多人决策环境中人们的策略选择以及可能产生的结果。

从经济学、管理学、政治学、心理学等方面来分析和解决问题时,博弈论可以为人们提供决策的基础。

因此,博弈论不仅在学术上很有价值,在实践中也具有很高的应用价值。

2. 博弈论的应用范围博弈论的应用范围广泛,如军事策略、商业竞争、政治谈判、社会决策、环境决策等领域。

另外,也被广泛应用于运输、公共建设、医学治疗等社会实践活动中。

3. 博弈论的基本元素博弈论的基本元素是“参与者”、“策略”、“收益”和“信息”。

“参与者”是指在某一决策环境中的所有相关人员,如消费者、企业、政府或其他组织和个人等。

“策略”是参与者在决策过程中选择的行动方案,也是促进参与者在决策中优化收益的关键。

“收益”或“效用”是参与者最终得到的结果,通常在博弈论中用数字来表示,这些数字可以是财务收入、数字权益等。

“信息”也是参与者在决策中极为重要的因素。

它可以分为完全信息和不完全信息两种,完全信息是指参与者对决策过程中的所有信息都有充分了解,而不完全信息是指参与者对决策过程中的某些信息存在不确定性。

因此,在不完全信息博弈中,有时决策者需要采取一些策略来“模糊化”自己的策略,以避免让其他人知道他们实际上所做的决策。

4. 博弈论的经典模型- 零和博弈零和博弈是博弈论的基本模型之一,是指参与者的利益总和为零。

在这种情况下,一个人赢得的收益等于另一个人失去的收益,如象棋、扑克等所有参与者的输赢情况总是相互抵消的。

- 非零和博弈非零和博弈是一种参与者的利益总和不为零的博弈。

在这种情况下,一方的收益可以与另一方的收益同时增加,如合作博弈中的合作关系。

- 合作博弈合作博弈是指参与者可以在决策中合作以实现双方或多方的利益最大化。

在此类博弈中,参与者通常需要通过协商和合作达成共识。

- 非合作博弈非合作博弈是指参与者在决策中只考虑自己的利益。

博弈论名词解释

博弈论名词解释

博弈论名词解释博弈论是一种研究冲突和合作决策的数学理论。

在博弈论中,玩家通过制定决策来实现自己的利益,同时也要考虑其他玩家的决策对自己利益的影响。

博弈论的研究对象是在有限的资源和信息条件下,决策制定者之间的相互作用。

以下是一些常见的博弈论名词解释:1. 纳什均衡(Nash equilibrium):是指在博弈过程中,每个玩家依据其他玩家的行为选择自己的最佳策略,而没有动机单方面改变策略。

纳什均衡是一种稳定状态,即每个玩家的策略都是最优的。

2. 零和博弈(zero-sum game):是指一个玩家的收益与另一个玩家的损失完全相等,总收益为零。

在零和博弈中,一个玩家的利益的增加必然导致另一个玩家的利益的减少,双方利益存在完全的对立关系。

3. 非零和博弈(non-zero-sum game):是指一个玩家的利益的增加不一定导致另一个玩家的利益减少。

在非零和博弈中,玩家之间的利益可以相互协调、互利互惠。

4. 博弈树(game tree):是博弈论中常用的一种图形表示方式,用于展示博弈过程中的决策步骤和可能的结果。

博弈树由顶点和边组成,顶点表示玩家的决策点,边表示不同的行动选择。

5. 最优策略(optimal strategy):在博弈论中,最优策略是指玩家的最佳选择,使得在对手的任何策略下,自身获得最大利益。

最优策略可能根据玩家的目标和信息不同而变化。

6. 合作与背叛(cooperation and defection):博弈论中常涉及到的两个关键概念。

合作指玩家之间通过协调行动来获得共同利益,背叛指玩家为了自身利益而选择对方不合作。

7. 博弈矩阵(game matrix):是一种表示博弈参与者和策略选择关系的表格。

博弈矩阵以参与者为行,以策略选择为列,用数字表示参与者在不同策略下的收益情况。

8. 支配策略(dominant strategy):在博弈论中,一种策略如果在所有可能的对手策略下都能带来最佳结果,则被称为支配策略。

博弈论讲的是什么

博弈论讲的是什么

博弈论讲的是什么
博弈论是研究决策制定者之间相互关系的一门数学分支,主要关注在冲突和合作的情境下,个体或群体的最佳决策和策略选择问题。

博弈论的研究对象可以包括个体、团体、国家、公司等各种决策制定者。

以下是博弈论的一些核心概念和主要内容:
1.博弈的定义:博弈是指多方参与者在特定环境下做出决策,彼此之间的决策会相互影响。

每个参与者的目标是通过制定最佳策略来最大化其利益。

2.参与者:博弈论中的参与者被称为“玩家”,可以是个体、群体、国家等。

每个玩家都有自己的目标和利益,但他们的决策会影响其他玩家的结果。

3.策略:策略是玩家在博弈中可选的行动或决策。

博弈论研究玩家如何选择最优策略以最大化他们的利益。

4.支付:支付是指每个玩家根据博弈的结果获得的收益或损失。

博弈论分析玩家如何在不同策略下分配支付,以及如何最大化其期望收益。

5.博弈的分类:博弈可以分为零和博弈和非零和博弈。

零和博弈中,一个玩家的利益损失就是其他玩家的利益增益,总和为零。

非零和博弈中,各玩家的利益不一定互相抵消,可以共赢或共输。

6.博弈的解:博弈论研究如何找到博弈中的均衡点或解决方案。

最著名的解决概念之一是纳什均衡,它描述了一种情况,在该情况下,每个玩家的策略是对方玩家策略的最佳响应。

7.博弈的应用:博弈论在经济学、政治学、生物学、计算机科学
等领域有广泛的应用。

例如,在商业谈判、拍卖、国际关系、网络安全等方面,博弈论都可以提供洞察和指导。

总体而言,博弈论通过数学建模和分析,帮助我们理解在决策制定者之间互动的情境中,各方如何做出最佳的决策以达到其个体或集体的目标。

博弈论名词解释

博弈论名词解释

博弈论名词解释博弈论名词解释1、博弈:是指代表不同利益主体的决策者,在一定的环境条件和规则下,同时或先后、一次或多次从各自允许选择的行动方案中加以选择并实施。

从而取得各自相应结果的活动。

2、参与人:也称局中人或博弈方。

是指博弈中能独立决策、独立行动并承担决策结果的利益主体。

3、行动:是参与人在博弈的某个时点的决策变量。

4、博弈信息:是参与人在博弈中的知识,包括博弈的环境条件、博弈的规则、自然的“安排”、其他参与人的特征及行为、博弈的结果、进程等等。

5、策略:是指各博弈方可选择的行动方案,亦称战略。

6、纯策略:指一个策略规定参与人在每一个给定的信息情况下只选择一种特定的行动。

7、混合策略:指一个策略规定参与人在给定信息情况下以某种概率分布随机地选择不同的行动。

8、支付函数:也称得益。

是指博弈方(参与人)策略实施后所获得的效用水平。

9、结果:是指博弈分析者所探寻的各种要素的集合,比如策略组合、支付向量等。

10、纳什均衡:是指在对方策略确定的情况下,每个参与人的策略都是最好的。

此时没有人愿意单独改变自己的策略。

11、两人博弈:就是参与人是两方的博弈。

12、多人博弈:是参与人有三个或三个以上的博弈。

13、零和博弈:每个支付向量的“总和”始终等于零的博弈称为零和博弈。

14、常和博弈:我们把每个支付向量的“总和”始终等于某个常数的博弈称为常和博弈。

15、变和博弈:我们把每个支付向量的“总和”并不相同的博弈称为变和博弈。

16、静态博弈:我们把所有参与人同时或可看作同时选择策略的博弈称为静态博弈。

17、动态博弈:我们把各参与人不是同时,而是先后、依次进行选择、行动。

而且后选择行为的参与人通常能观察到先进行选择、行为的参与人的选择、行为的博弈称为动态博弈。

18、重复博弈:就是同样结构的博弈重复进行多次。

19、完全信息博弈:如果所有策略组合下的支付向量都是共同知识,我们就说这一博弈是“完全信息”的,称为完全信息博弈。

博弈论基本概念

博弈论基本概念

1.博弈就是策略对抗,或策略有关键作用的游戏(博弈就是一些个人、队组或其他组织,面对一定的环境条件,在一定的规则下,同时或先后,一次或多次,从各自允许选择的行为或策略中进行选择并加以实施,各自取得相应结果的过程。

)2.博弈论:就是研究在互动局势中如何策略性选择自己行为的系统理论。

3.博弈方:独立决策、独立承担博弈结果的个人或组织4.策略:博弈中各博弈方的选择内容5.得益:各博弈方从博弈中所获得的利益6.零和博弈:也称“严格竞争博弈”。

博弈方之间利益始终对立,偏好通常不同.—猜硬币,田忌赛马,石头-剪刀-布常和博弈:博弈方之间利益的总和为常数。

博弈方之间的利益是对立的且是竞争关系—分配固定数额的奖金、利润,遗产官司变和博弈:零和博弈和常和博弈以外的所有博弈。

合作利益存在,博弈效率问题的重要性。

—囚徒困境、产量博弈、制式问题等7.有限博弈:每个博弈方的策略数都是有限的.无限博弈:至少有某些博弈方的策略有无限多个8.静态博弈:所有博弈方同时或可看作同时选择策略的博弈.—田忌赛马、猜硬币、古诺模型动态博弈:各博弈方的选择和行动有先后次序且后选择、后行动的博弈方在自己选择、行动之前可以看到其他博弈方的选择和行动—弈棋、市场进入、领导——追随型市场结构重复博弈:同一个博弈反复进行所构成的博弈,提供了实现更有效博弈结果的新可能。

—长期客户、长期合同、信誉问题9.完全理性:有完美的分析判断能力和不会犯选择行为的错误有限理性:博弈方的判断选择能力有缺陷个体理性:以个体利益最大为目标集体理性:追求集体利益最大化合作博弈:允许存在有约束力协议的博弈非合作博弈:不允许存在有约束力协议的博弈10.完全信息博弈:各博弈方都完全了解所有博弈方各种情况下的得益。

不完全信息博弈:至少部分博弈方不完全了解其他博弈方得益的情况的博弈,也称为“不对称信息博弈”完美信息博弈:每个轮到行为的博弈方对博弈的进程完全了解的博弈不完美信息博弈:至少某些博弈方在轮到行动时不完全了解此前全部博弈的进程的博弈。

博弈论(整理过名词解释和简答)

博弈论(整理过名词解释和简答)

博弈论(整理过名词解释和简答)一、名词解释:1、博弈:一些个人、团体或其他组织,在一定的规则约束下,依据所掌握的信息,同时或者先后,一次或者多次从允许选择的行为或战略进行选择并加以实施,并从中各自取得相应结果或收益的过程。

2、囚徒困境:从博弈中的两个利益主体出发选择行为,结果是既没有实现两人总体的最大利益,也没有真正实现自身的个体最大利益,比如经济领域的寡头竞争、公共产品的供给。

3、非合作博弈与合作博弈:人们行为相互作用时,当事人能达成一个具有约束力的协议,也就是合作博弈,反之,就是非合作博弈。

4、常和博弈:是指博弈双方的得益总和为非零的常数变和博弈:是指在不同的策略组合或者结果下,所有博弈方的得益总和一般是不相同的零和博弈:是指在博弈中,一方的得益就是另一方的损失,所有博弈方的得益总和为零5、博弈论:研究决策主体的行为及其相互决策和均衡问题的学科。

在经济学中,博弈论是研究经济主体的决策相互影响6、战略:参与人在给定信息集的情况下的行为规则的完备描述。

7、均衡:所有参与人的最优战略组合。

8、均衡路径:如果一个博弈有几个子博弈,一个特定的纳什均衡决定了原博弈树上唯一的一条路径,或者说是一个纳什均衡结果在博弈树中所形成的路径。

9、占优均衡:无论其他参与人选择什么战略,参与人的某一种战略均是最优的。

10、重复剔除劣战略的占优均衡:首先找到某个参与人的劣战略(假定存在),把这个劣战略删除掉,重新构造一个不包含已删除的劣战略的新的博弈,然后再删除这个新的博弈中的某个参与人的劣战略,一直重复这个过程,直到只剩下唯一的战略组合为止。

11、纳什均衡:给定你的策略,我的策略是最好的策略;给定我的策略,你的策略也是最好的策略,即双方在给定的战略上不愿意改变自己的策略。

12、混合战略:如果一个战略规定参与人在给定信息情况下以某种概率随机选择不同的行为,我们称该战略为混合战略。

13、子博弈:从单结信息集开始至博弈结束的过程,由一个决策结x和所有的后续决策结T(x)构成,满足条件:(1)决策结x是单结信息集;(2)在一个信息集的决策结必须是同一个决策结的后续结。

博弈论(名词解释和简答)

博弈论(名词解释和简答)

博弈论名词解释:1、博弈:一些个人、团体或其他组织,在一定的规则约束下,依据所掌握的信息,同时或者先后,一次或者多次从允许选择的行为或战略进行选择并加以实施,并从中各自取得相应结果或收益的过程。

2、囚徒困境:从博弈中的两个利益主体出发选择行为,结果是既没有实现两人总体的最大利益,也没有真正实现自身的个体最大利益,比如经济领域的寡头竞争、公共产品的供给。

3、非合作博弈与合作博弈:人们行为相互作用时,当事人能达成一个具有约束力的协议,也就是合作博弈,反之,就是非合作博弈。

4、常和博弈:是指博弈双方的得益总和为非零的常数变和博弈:是指在不同的策略组合或者结果下,所有博弈方的得益总和一般是不相同的零和博弈:是指在博弈中,一方的得益就是另一方的损失,所有博弈方的得益总和为零5、博弈论:研究决策主体的行为及其相互决策和均衡问题的学科。

在经济学中,博弈论是研究经济主体的决策相互影响6、战略:参与人在给定信息集的情况下的行为规则的完备描述。

7、均衡:所有参与人的最优战略组合。

8、均衡路径:如果一个博弈有几个子博弈,一个特定的纳什均衡决定了原博弈树上唯一的一条路径,或者说是一个纳什均衡结果在博弈树中所形成的路径。

9、占优均衡:无论其他参与人选择什么战略,参与人的某一种战略均是最优的。

10、重复剔除劣战略的占优均衡:首先找到某个参与人的劣战略(假定存在),把这个劣战略删除掉,重新构造一个不包含已删除的劣战略的新的博弈,然后再删除这个新的博弈中的某个参与人的劣战略,一直重复这个过程,直到只剩下唯一的战略组合为止。

11、纳什均衡:给定你的策略,我的策略是最好的策略;给定我的策略,你的策略也是最好的策略,即双方在给定的战略上不愿意改变自己的策略。

12、混合战略:如果一个战略规定参与人在给定信息情况下以某种概率随机选择不同的行为,我们称该战略为混合战略。

13、子博弈:从单结信息集开始至博弈结束的过程,由一个决策结x和所有的后续决策结T(x)构成,满足条件:(1)决策结x是单结信息集;(2)在一个信息集的决策结必须是同一个决策结的后续结。

博弈论名词解释(修改)

博弈论名词解释(修改)

博弈论名词解释(修改)1.有限博弈:一个博弈中每个博弈方的策略数都是有限的。

常见的是数种策略。

无限博弈:一个博弈中至少有某些博弈方的策略有无限多个。

零和博弈:一方的得益必定是另一方的损失,博弈方之间利益始终对立,偏好通常不同。

两人零和博弈也称为“严格竞争博弈”。

2.常和博弈:博弈方之间利益的总和为常数。

博弈方之间的利益是对立的且是竞争关系。

3.变和博弈:零和博弈和常和博弈以外的所有博弈。

合作利益存在,博弈效率问题的重要性。

可以站在社会利益的立场对其效率进行评价。

4.静态博弈:所有博弈方同时或可看作同时选择策略的博弈。

5.动态博弈:各博弈方的选择和行动有先后次序且后选择、后行动的博弈方在自己选择、行动之前可以看到其他博弈方的选择和行动。

6.重复博弈:同一个博弈反复进行所构成的博弈,提供了实现更有效略博弈结果的新可能。

7.完全信息博弈:各博弈方都完全了解所有博弈方各种情况下的得益8.不完全信息博弈:至少部分博弈方不完全了解其他博弈方得益的情况的博弈,也称“不对称信息博弈”9.完美信息博弈:每个轮到行为的博弈方对博弈的进程完全了解的博弈10.不完美信息博弈:至少某些博弈方在轮到行动时不完全了解此前全部博弈的进程的博弈11.完全理性:有完美的分析判断能力和不会犯选择行为的错误12.有限理性:博弈方的判断选择能力有缺陷13.个体理性:以个体利益最大为目标;集体理性:追求集体利益最大化14.上策均衡:一个博弈的某个策略组合中的所有策略都是各个博弈方各自的上策,必然是该博弈比较稳定的结果,上策均衡不是普遍存在的。

15.严格下策反复消去法:反复寻找策略之间两两比较意义上的“严格下策”,并将它们消去的方法。

16.反应函数:对于厂商2的每一个可能的产量,厂商1的最佳对策产量的计算公式,它是厂商2产量的一个连续函数,我们称这个连续函数为厂商1对厂商2产量的一个“反应函数”。

17.帕累托上策均衡:博弈中存在多个纳什均衡,如这些纳什均衡存在明显的优劣差异,所有博弈方都偏好其中同一个纳什均衡,该纳什均衡给所有博弈方带来的得益都大于其他纳什均衡。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、博弈:是指代表不同利益主体的决策者,在一定的环境条件和规则下,同时或先后、一次或多次从各自允许选择的行动方案中加以选择并实施,从而取得各自相应结果的活动。

2、参与人:也称局中人或博弈方。

是指博弈中能独立决策、独立行动并承担决策结果的利益主体。

3、行动:是参与人在博弈的某个时点的决策变量。

4、博弈信息:是参与人在博弈中的知识。

包括博弈的环境条件、博弈的规则、自然的“安
排”、其他参与人的特征及行为、博弈的结果、进程等等。

5、策略:是指各博弈方可选择的行动方案,亦称战略。

6、纯策略:指一个策略规定参与人在每一个给定的信息情况下只选择一种特定的行动。

7、混合策略:指一个策略规定参与人在给定信息情况下以某种概率分布随机地选择不同的
行动。

8、支付函数:也称得益,是指博弈方(参与人)策略实施后所获得的效用水平。

9、结果:是指博弈分析者所探寻的各种要素的集合,比如策略组合、支付向量等。

10、纳什均衡:是指在对方策略确定的情况下,每个参与人的策略都是最好的,此时没有人
愿意单独改变自己的策略。

11、两人博弈:就是参与人是两方的博弈。

12、多人博弈:是参与人有三个或三个以上的博弈。

13、零和博弈:每个支付向量的“总和”始终等于零的博弈称为零和博弈。

14、常和博弈:我们把每个支付向量的“总和”始终等于某个常数的博弈称为常和博弈。

15、变和博弈:我们把每个支付向量的“总和”并不相同的博弈称为变和博弈。

16、静态博弈:我们把所有参与人同时或可看作同时选择策略的博弈称为静态博弈。

17、动态博弈:我们把各参与人不是同时,而是先后、依次进行选择、行动,而且后选择行
为的参与人通常能观察到先进行选择、行为的参与人的选择、行为的博弈称为动态博弈。

18、重复博弈:就是同样结构的博弈重复进行多次。

19、完全信息博弈:如果所有策略组合下的支付向量都是共同知识,我们就说这一博弈是“完
全信息”的,称为完全信息博弈。

20、不完全信息博弈:如果并非所有策略组合下的支付向量都是共同知识,我们就称这一博
弈为“不完全信息博弈”
21、纳什定理:如果允许混合策略,那么每个有限博弈都有纳什均衡。

22、博弈论:就是系统研究各种各样博弈中参与人的合理选择及其均衡的理论。

相关文档
最新文档