主板复位电路图精解
10 复位电路

• 主板复位电路故障检测点
• •
• • •
• •
••
主板无复位信号
检查复位开关的 3.3V 或 5V 是否正常 是
否
检查复位开关到电源插座间的线 路故障,并更换损坏部件
检测复位开关到南桥 是否输出低电平 是
否
检查复位开关到南桥的线路故 障,并更换损坏元器件
检测电源的第 8 脚 (PG 信号)到南桥的线路 是否正常 是
否
检测电源第 8 脚到南桥间的线路 故障(三极管、电阻等) ,并更换 损坏元器件
检查门电路芯片 是否向各个部件输出 复位信号 否
是
检测门电路芯片与各个部件相连 的线路故障,并更换损坏元器件
检查门电路芯片 供电是否正常
否
检测电源插座到门电路芯片的线 路故障,并更换损坏元器件
是
检查南桥给门 电路芯片的复位信号 是否正常 是 门电路芯片损坏,更 换门电路芯片
主板复位电路分析
北大青鸟昌平校区
主板复位电路分析
• 10.1.1 主板复位电路组成 • 主板的复位电路主要由复位开关(RESET键)、74门电路、南桥、 电阻和电容等元件组成,如图10-1所示
复位开关
74 门电路芯片
南桥芯片(它的 内部内置复位系 统控制模块)
• 主板复位电路工作原理
• 在复位电路中南桥内部的复位系统控制模块是整个复位电路的核心,当南桥 内部的复位系统控制模块被复位后,会产生硬件所需的复位信号,复位信号 再交给门电路芯片处理,产生足够强的复位信号,再送往主板各处硬件的复 位信号引脚,如图10-4所示为主板复位信号分布图。
否
南桥损坏,更换南桥
主板复位电路常见故障的判定及解决方法 • 主板复位电路常见故障现象及原因 • 1. 主板复位电路常见故障现象 • (1)主板诊断卡中的复位灯长亮。 • (2)主板诊断卡中的复位灯不亮。 • (3)CPU的复位信号不正常。 • (4)部分设备没有复位信号。 • 2. 造成主板复位电路故障的原因 • (1)复位开关(RESET开关)无高电平。 • (2)无PG信号(电源第8脚到南桥的线路中有元器件损 坏)。 • (3)门电路芯片损坏。 • (4)无时钟信号。 • (5)南桥或北桥损坏。 • (6)复位芯片损坏。 • (7)CPU电压识别无效。
5分钟看懂原理图之复位电路

5分钟看懂原理图之复位电路我们查看电路图时经常会看见复位电路,今天我们来讲一下复位电路数字系统中CPU是靠时钟系统来作为同步信号的,时钟每一次跳转,CPU就进行一次动作,所以整个系统上电后一定要等时钟系统稳定工作后,才能启动,这就是为什么需要一个复位信号,这个复位信号拉低来使得CPU进入等待状态,待系统时钟初始化完毕,可以正常工作了再把复位信号拉高,CPU进入正常工作状态。
下面我们来看几个典型的复位电路上电复位电路如上图所示,a图中,VCC为系统电源,当电源接通后,由于电容的隔直流通交流特性,RST管脚上初始为高电平,同时电容C开始充电,RST管脚上的电压开始下降,直到下降到低电平,RST管脚就完成了从高电平到低电平的时序变化,一次复位过程就此结束。
电容C充电的时间,就是预留给时钟系统初始化的时间,所以这个电容C的值需要根据芯片手册上复位时序的要求来选择,这个值一般为10uF。
但是a图中的复位电路有个问题,就是断电后,电容C中还是存储着电能,只能慢慢的放电,这个时候再重新上电的话,RST就不能正常复位,而是会一直保持高电平,所以我们加上一个二极管,用来作为电容的泄放回路,把电容的电荷快速释放掉,为下次复位做准备,如c所示。
按键复位我们日常生活中的多数电器都可以通过按键来启动或关闭的,上图就是一个按键复位电路,当按键S1按下时,电容C中的电荷迅速通过回路释放掉,RST通过电阻R拉低到低电平,CPU这时进入复位状态,当S1松开时,电容开始充电,RST端的电压随着电容充电慢慢上升,上升到高电平阈值时,CPU进入正常工作状态,这样就完成了一次复位过程。
这次由于有按键的参与,就不需要上图中的二极管了,你看明白了吗?这个作为一个问题留给大家分析。
积分上电复位积分上电型复位电路相比于按键复位电路增加了一个反相器,反相器用来将高电平变为低电平,低电平变为高电平。
上电后,由于电容C1的充电和反相门的作用,使RST持续一段时间的高电平。
主板复位电路及VRM电路原理分析

基本工作原理
Vg VL(t) V (t) VL(t) L diL(t)
dt
VL(t) V (t) VL(t) L diL(t) , Len' s Law
dt
基本工作原理
D Vo VD IL RL , and VD IL RDS(on) synFET VI VD IL RDS(on)
M/B 基本架构
第一章 Power on Chipset : 915P+ICH6 时序
Power on MAP
VRM
VID_GD
CPU process
VRM_GD
MCH
PWR_GD
MS-7 PWR_OK Power supply
H_PWRD
VRM_GD ICH
PWR_GD
SLP_S4#
Step2 PWBTIN#
第三章 VRM原理
VRM (Voltage Regulator Module)是电压调节模块, 它的功能是提供给 CPU 用的核心工作电压. 它的Power source 是12V,经过VRM 的调节 转化出CPU 的core voltage. 而Core voltage 是由 VID 决定的.
基本工作原理
D Vo IL RDS(on) synFET IL RL VI IL RDS(on) synFET IL RDS(on)
Vo IL (RDS(on) synFET RL) VI IL (RDS (on) synFET RDS (on))
基本工作原理
典型的交换式电压转换器输出波形
MOSFET Driver 此部分电路主要是将PWM Controller输出的PWM信号转换为 DRVH和DRVL来驱动2个N-Channel的MOSFET.
主板RESET分析

主板RESET分析我们知道,对于计算机用户来说,RESET在多数情况下都是一种正常的人为操作。
最熟悉的就是在机箱前面板上有一个专门用于执行RESET操作的RESET按键,还有在某些高级操作系统如WIN95/98/2000的启始菜单中也有重新启动的功能。
但您在实际工作中一定也遇见过非人为的RESET现象,有时甚至令您莫名其妙,因为当时您不希望系统RESET。
那么这时出现的RESET现象就是不正常的,是一种故障。
这一故障可能我们经常使用电脑的人都遇见过。
我们现在就要分析一下有关RESET的原理及造成RESET故障的可能因素。
主要包括下列内容:一、RESET的分类、原理及实现过程。
二、导致非正常RESET的可能因素。
三、工程测试。
四、生产中的相关问题分析。
一、RESET的分类、原理及实现过程1、RESET的分类:从用户的使用角度来分,可分为正常RESET和非正常RESET。
正常RESET 即用户由于某种原因人为执行的RESET操作;非正常RESET即非人为的操作,是由于系统工作不正常后由BIOS引起的Soft RESET或某种情况下硬件上的信号干扰造成的。
从原理上来分,可分为硬件引起的RESET和操作系统或BIOS引起的Soft RESET。
这两种引起RESET的原因都可能是正常的,也可能是非正常的。
2、RESET的原理:无论是正常RESET还是非正常RESET,或者硬件RESET还是Soft RESET,其最根本的原理都是相同的,最终反映到硬件逻辑上都是引发主板上的南桥或ICH发出PCIRST#而引起的。
下面我们集中讨论一下RESET的原理:首先介绍重要的信号PCIRST#: PCIRST#是由南桥或ICH发出的一个信号,发出的目的原意是为了复位挂在PCI总线上的设备,而现在PCIRST#的意义已经不仅仅限于PCI设备,它已经成为整个系统全面复位的控制信号,通过控制其它设备的RESET信号来达到系统全面复位的目的。
电脑主板复位电路工作分析1

电脑主板开机电路工作原理分析复位电路的目的产生复位信号使主板及其他部件复位,进入初始化状态。
复位电路在主板的供电、时钟正常后才开始工作。
复位信号的产生复位信号主要由ATX电源的第8脚产生或由RESET(复位)开关产生。
其中ATX电源第8脚在开机后100-500ms会自动产生一个由低到高的电平信号,作为复位信号。
此信号经处理后,一般首先进入南桥芯片、BIOS芯片、时钟芯片、电源管理芯片,让南桥、BIOS电路、时钟电路、电源电路先复位。
在南桥复位后,其内部系统复位控制模块又产生各种不同的复位信号,这些复位信号再通过门电路芯片处理后产生足够强的信号,然后再分配给其他电路,使其复位。
在复位电路中,南桥内部的系统复位控制模块是整个复位电路的核心。
复位电路实际上就是对复位信号进行放大、传递的电路。
复位电路的分类根据主板复位信号的产生源和产生方式,可分为自动复位电路和手动复位电路。
复位电路的组成主板复位电路主要由ATX电源的第8脚、复位开关、74门电路、南桥、电阻、电容等元器件组成。
复位电路常见故障现象1.主板诊断卡的复位灯常亮。
2.主板诊断卡的复位灯不亮。
3.CPU复位信号不正常。
4.部分设备无复位信号。
故障原因1.复位开关无高电平。
2.无PG信号(ATX电源第8脚到南桥的线路中有元器件损坏)。
3.门电路损坏。
4.无时钟信号。
5.南桥或北桥损坏。
6.复位芯片(在华硕主板中,所有的复位信号通常由一个单独的芯片产生,常见型号为AS97127,此芯片受控于南桥芯片)损坏。
7.CPU电压识别无效。
复位电路易损元器件复位电路中的易损元器件主要有门电路芯片、南桥、PG信号连接的三极管等。
电源、时钟、复位是主板能正常工作的三大要素。
主板在电源、时钟都正常后,复位系统发出复位信号,主板各个部件在收到复位信号后,同步进入初始化状态。
如图1所示为复位电路的工作原理图,各个十板实现复位的电路不尽相同,但基本原理是一样的。
图1假设主板已经通电运行,当按下复位键时,就会产生一个跳变的触发信号,此信号经过A点进入74HC14门电路芯片,经过两次反相后(信号波形不变,只是进行电平转换),经过B点进入南桥芯片。
图解:主板电线接法(电源开关、重启等)

钥匙开机其实并不神秘还记不记得你第一次见到装电脑的时候,JS将CPU、内存、显卡等插在主板上,然后从兜里掏出自己的钥匙(或者是随便找颗螺丝)在主板边上轻轻一碰,电脑就运转起来了的情景吗?是不是感到很惊讶(笔者第一次见到的时候反正很惊讶)!面对一个全新的主板,JS总是不用看任何说明书,就能在1、2分钟之内将主板上密密麻麻的跳线连接好,是不是觉得他是高手?呵呵,看完今天的文章,你将会觉得这并不值得一提,并且只要你稍微记一下,就能完全记住,达到不看说明书搞定主板所有跳线的秘密。
这个叫做真正的跳线首先我们来更正一个概念性的问题,实际上主板上那一排排需要连线的插针并不叫做“跳线”,因为它们根本达不”到跳线的功能。
真正的跳线是两根/三根插针,上面有一个小小的“跳线冒”那种才应该叫做“跳线”,它能起到硬件改变设置、频率等的作用;而与机箱连线的那些插针根本起不到这个作用,所以真正意义上它们应该叫做面板连接插针,不过由于和“跳线”从外观上区别不大,所以我们也就经常管它们叫做“跳线”。
看完本文,连接这一大把的线都会变得非常轻松至于到底是谁第一次管面板连接插针叫做“跳线”的人,相信谁也确定不了。
不过既然都这么叫了,大家也都习惯了,我们也就不追究这些,所以在本文里,我们姑且管面板连接插针叫做跳线吧。
轻松识别各连接线的定义为了更加方便理解,我们先从机箱里的连接线说起。
一般来说,机箱里的连接线上都采用了文字来对每组连接线的定义进行了标注,但是怎么识别这些标注,这是我们要解决的第一个问题。
实际上,这些线上的标注都是相关英文的缩写,并不难记。
下面我们来一个一个的认识(每张图片下方是相关介绍)!电源开关:POWER SW英文全称:Power Swicth可能用名:POWER、POWER SWITCH、ON/OFF、POWER SETUP、PWR等功能定义:机箱前面的开机按钮复位/重启开关:RESET SW英文全称:Reset Swicth可能用名:RESET、Reset Swicth、Reset Setup、RST等功能定义:机箱前面的复位按钮电源指示灯:+/-可能用名:POWER LED、PLED、PWR LED、SYS LED等硬盘状态指示灯:HDD LED英文全称:Hard disk drive light emitting diode 可能用名:HD LED报警器:SPEAKER可能用名:SPK功能定义:主板工作异常报警器这个不用说,连接前置USB接口的,一般都是一个整体音频连接线:AUDIO可能用名:FP AUDIO功能定义:机箱前置音频看完以上简单的图文介绍以后,大家一定已经认识机箱上的这些连线的定义了,其实真的很简单,就是几个非常非常简单英文的缩写。
复位电路

(4)I/O芯片复位信号。I/O芯片复位信号通常由南桥芯片输出,I/O芯片复 位信号为低电平复位,复位时为低电平,正常时为高电平。有些主板的 I/O芯片 复位信号直接从复位电路中得到。
(5)AGP总线复位信号。AGP总线复位信号通常由南桥芯片输出,AGP总 线复位信号为高电平,复位时为低电平。
复位电路的组成结构
在南桥芯片复位后,其内部的系统复位控制模块便开始工作,产生复 位信号,其中通过PCIRST#端和PLTRST#端为各PCI插槽提供复位信号,使 它们复位;通过 AC_RST# 端、 SLP_S3# 端和 PWRBTN# 端分别为声卡芯片 、 电 源 开 关 电 路 和 I/O 芯 片 提 供 复 位 信 号 , 使 它 们 复 位 。 另 外 通 过 ICH_PWRGD 端进入CPU插座,为CPU提供PG复位信号。当北桥复位后, 通过北桥芯片的CPURST#端输出1.5V复位信号发送给CPU,为CPU提供复 位信号。
开机控制芯片+南桥芯片组成的开机 电路工作原理
当计算机死机需要手动复位时,在按下复位开关键时,开关键一端接地, 此时开关键的高电平端产生一个低电平信号,此信号通过 SYS_RST#端为南桥 芯片提供一个低电平信号。然后南桥芯片通过SLP_S3#端经过门电路提供给开 机复位芯片,使开机复位芯片开始工作。开机复位芯片工作后,输出三路信号 分别到电源控制芯片、北桥芯片和南桥芯片。电源控制芯片得到复位芯片传递 来的复位信号后开始工作,为CPU插座供电。南桥芯片得到复位信号后开始工 作,内部系统复位控制模块输出复位信号到达各个部件和设备,例如PCI插槽 、声卡芯片等,使它们开始复位工作。另外,南桥芯片还通过 LPC_RST#端为 I/O提供复位信号,使I/O芯片开始工作,然后I/O芯片又会分别通过LAN_RST# 端为网络芯片提供复位信号,使其复位工作;通过FWH_RST#端为BIOS芯片提 供复位信号使其工作;通过 IDERST#端为IDE接口提供复位信号;使其工作。 另外I/O芯片还通过PCIE_RST#端为PCI-E插槽提供复位信号。
主板维修课程:第八课 复位(RST)电路

SYSTEM BUS
不上CPU测试时 阻值为几百Ω ; 装上CPU测试时 阻值均小十多Ω 否则CPU座坏或 PCB OPEN.
HUB Bus总线测试点
A B 两点对地值一样 南桥坏 C D 两点对地值一样 北桥坏
HUB板供电时钟是否正常;(可通过测量PCI B16脚得知) B、测量ATX电源8脚电压是否正常; C、测量RST排针上电压是否正常;(3-5V) D、测量南桥的工作条件: ①②③④⑤ E、测量RST电路的输入输出; F、换I/O,拆除网卡或1394卡; G、nVIDIA和VIA芯片组BIOS DATA和电路也会引起主板无复位 ; H、换南桥。
第八课 复位(RST)电路
一.怎样找RST芯片: 追RST排针和ATX电源8脚PG与那相连。
二.RST电路组成形式:(复位系统控制器集成在南桥里) 1、 门电路﹢南桥 2、 南桥 3、 I/O﹢南桥
三. RST电路工作原理: 复位其实就是使设备初始化,主板复位有自动和手动复位两种形式: 自动复位:主板在供电和时钟都正常时RST才开始工作。当主板触发后,ATX 电源PG信号会延时100—500ms输出,产生一个由0—1变化的电平信号,这个瞬间 变化的电平信号会作用于复位系统控制器(南桥)产生复位信号送往各个设备中。 手动复位:当主板在运行过程中,出现意外问题,需要强行复位时,通过复位 按键给复位系统控制器低电平信号,实现电脑重启(这是冷重启);热重启则为键 盘Ctrl﹢Alt﹢Delete同时按下实现。
CPU VCORE + VMEM NB NG
芯片组供电 + VMEM
NB NG
CPU VCORE +芯片组供电
NB NG
VCC3 +芯片组供电
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
主板复位电路
复位包括按POWER键,按RESET键或CTRL+ALT+ DEL或软件的复位因此复位故障包括不复位,复位后自动消失等故障。
一、复位原理
首先,电源启动后,由ATX电源发出电源正常信号PWRER OK即ATX PWRGD,
经反相器HCT14整形后,输出CLROFF信号,进入南桥82371,对其内部寄存器进行清零,同时输入与非门HC132。
当电压达到额定值,且稳定以后,电压控制芯片发出VRMPWRGD信号,也输入
VHC132,
这两信号进入VHC132X 逻辑运算,输出信号,经HCT14整形后,由HCT14的PIN10输出
信号,经处理形成POWROK信号,对南桥及北桥进行复位。
南桥复位后,再发出RSTDRV信号,经处理形成ISA RST ,IDERSTDRV 对ISA插
槽及IDE接口进行复位,发出PCI RST信号,对PCI插槽进行复位,复位后主板开始工作。
当按RESET键进行热启动时,U18的PIN9信号为触发复位。
当在设置或WIN98或按CTRL+ALT+DEL进行软关机时,由371发出BIOSRST信号,在U18
的PIN9处输入信号,.触发复位。
二、检修流程(ISA RESET不正常)
1、U18 VHC132的PIN9输入波形不为
1)5165电压控制芯片或其相关电路如C85等损坏,信号不正常;
2)C159、CT26、C356漏电引起4V电压低;
3)软启动与BIOSRST 相关电路有关。
2、U18 VHC132的PIN10 CLF OFF 信号(不正常)
1)C48漏电;
2) U19损坏;
3、 U18的第8脚波形正常,但南桥发出的RSTDRV信号不正常(查U19的PIN13应为)
1)用动态分析法观察U21的10脚是否为,判断是否U21坏;
2)南桥复位信号PWPOK信号不正常,检查相关电容是否漏电或断开连线检查南桥是否损坏(测量反向阻值);
3)检查南桥工作条件,检查32K晶振上是否正常,CMOD放电电压VBAT 2.8V是否正常, ,14.318MHZ、48MHZ、33MHZ频率是否正常,RN29、RN30排阻是否正常;3.3V、5V、3.6V、3VSB是否短路,若以上条件都正常可判断为南桥坏。
4、南桥发出的RSTDRV信号正常,但ISARST信号不正常,
若RSTDRV正常,但ISARST不正常,检查此通道电路U19或C48是否漏电,I/O芯片是否损坏。
三、维修技巧:
1、信号发生法(迅速判断南桥信号是否正常)
上电后,将U18的PIN8与PIN16短路一下,强制产生信号,若此时ISARST
信号正常,则可判定U18后端电路,包括南桥均工作正常,故障出在U18前端,具体查检修流程第一步、第二步。
2、南桥故障判断法
1) U21的第10脚是否有效送入南桥,可用断开电阻查南桥端阻抗判断;
2) 14.318MHZ是否有效送入南桥,可用断开电阻,测南桥端阻抗来判断,阻抗太小可判定为371坏,阻抗太大或无穷大,代换南桥是否OK..
四、维修实例:
1、)BIS主板找不到硬盘参数
分析:因为主板可显示,说明371给443,371给PCI、ISA的RESET信号正常。
测量A 点的电平为半高状态,并且A点阻值偏低。
可判断132损坏,造成IDE的RESET不正常。
2、)BIS主板C1-05不显,ISARST恒低
分析:短路RST针,用示波器测U18的第8脚有跳变,但U19的第13脚无变化,恒低。
据经验,挑开U19的第13脚,再测其焊点阻抗,也就是直接唯一的量南桥输出端RSTDRV
的阻抗。
发现其阻抗为无穷大,可判断为371空焊。