15电工学第七版第15章基本放大电路

合集下载

基本放大电路-课件

基本放大电路-课件

EXIT
模拟电子技术
一、特点及主要技术指标
特点
功率放大电路是一种能够向负载提供足够大的功
率的放大电路。因此,要求同时输出较大的电压和电

流。 管子工作在接近极限状态。一般直接驱动负载,
锡 职
带载能力要强。


术 学
主要技术指标

(1)最大输出功率Pom :在电路参数确定的情况下负载
可能获得的最大交流功率。
T2 +
uo

优点:具有良好的低 频特性,可以放大缓慢 变化的信号;无大电容 和电感,容易集成。
缺点:静态工作点相 互影响,分析、计算、 设计较复杂;存在零 点漂移。
EXIT
模拟电子技术
2.阻容耦合
优点:直流通路是相互独
+Vcc 立的,电路的分析、计算
无 锡 职 业 技 术 学 院
Rb11 C1
Rs
EXIT
模拟电子技术
由于放大电路的工作点达到了三极管 的截止区而引起的非线性失真。对于NPN管, 输出电压表现为顶部失真。
截止失真
无 锡 职 业 技 术 学 院
注意:对于PNP管,由于是负电源供电,失真的 表现形式,与NPN管正好相反。
EXIT
模拟电子技术
四、放大电路的动态参数
1.交流通路
交流电流流经的通路,用于动态分析。对于交流通路:
(2)转换效率 :最大输出功率与电源提供的功率之比,

= Pom / PV
EXIT
模拟电子技术
思考题1:功率放大电路与前面介绍的电
压放大电路有本质上的区别吗?
无本质的区别,都是能量的控制与转换。不同
之处在于,各自追求的指标不同:电压放大电路

15 基本放大电路 同济大学

15 基本放大电路 同济大学
适当减小基 极电流可消除 失真。
t O
O
uCE/V uCE/V
uo
章目录 返回 上一页 下一页
UCE
t
6.3.2 非线性失真
iC/mA
动画
若Q设置过低, iB/A
Q
O O
晶体管进入 iB/A 截止区工作, 造成截止失真。 适当增加基 极电流可消除 失真。 Q t
O O
uCE/V uCE/V UCE uo
6.1 基本放大电路的组成
6.1.2 基本放大电路各元件作用
C2 + iC + C1 iB + + + T uCE + u RS RB BE – RL uo – ui + + – iE EB es – – – RC
晶体管T--放大元 件, iC= iB。要保 + 证集电结反偏,发 EC 射结正偏,使晶体 – 管工作在放大区 。 基极电源EB与基极 电阻RB--使发射结 处于正偏,并提供 大小适当的基极电 流。
章目录 返回 上一页 下一页
信 号 源
共发射极基本电路
负载
6.1 基本放大电路的组成
C2 + iC + C1 iB + + + T uCE + u RS RB BE – RL uo – ui + + – iE EB es – – – RC
+ – EC RB RC
+UCC
RS es – +
C1 + +
章目录 返回 上一页 下一页
第15章 基本放大电路
本章要求:
1. 理解单管交流放大电路的放大作用和共发射极、 共集电极放大电路的性能特点。 2. 掌握静态工作点的估算方法和放大电路的微变等 效电路分析法。 3. 了解放大电路输入、输出电阻和多级放大的概念, 了解放大电路的频率特性。

第15章 基本放大电路

第15章 基本放大电路

一般在20~200之间,在手册中常用hfe表示。
晶体管的 r U CE 输出电阻 ce I C
u ce ic I
B
IB
rce愈大,恒流特性愈 好。因rce阻值很高, 一般忽略不计。
(3)晶体管的微变等效电路:
ic
ic
C + uce
B ib + ube rbe
C +
ib B
+ ube -
RC
+UCC
共发射极基本电路
单电源供电
二、放大电路的静态和动态
静态:当ui=0时的工作状态,也称直流工作状态。 动态:有输入信号的工作状态,也称交流工作状态 。 符号的区分: 静态值: IB、IC、IE、UCE、UBE 交流瞬时值:ib、ic、ie、uce、ube 交流有效值:Ib、Ic、Ie、Uce、Ube 总瞬时值: iB、iC、iE、iCE、iBE 总平均值: IB(AV)、IC(AV)、IE(AV)、UCE(AV)、 UBE(AV)
第15章 基本放大电路
章目录 上一页 下一页 返回
退出
本章目录
15.1 15.2 15.3 15.4 15.5 15.6 15.7 15.8 15.9 共发射极放大电路的组成 放大电路的静态分析 放大电路的动态分析 静态工作点的稳定 放大电路中的频率特性 射极输出器 差动放大电路 互补对称功率放大电路 场效应管及其放大电路
负载电阻愈小,放大倍数愈小。
例2
I i
+ RS
U i
B
Ib
rbe E RE
I c C
βI b
+ RC RL U o
U I r I R i b b e e E

电工学-dz15

电工学-dz15

目录第15章基本放大电路3第15.2节放大电路的静态分析 (3)第15.2.3题 (3)第15.3节放大电路的动态分析 (3)第15.3.2题 (3)第15.3.3题 (4)第15.3.4题 (5)第15.3.5题 (6)第15.4节静态工作点的稳定 (6)第15.4.2题 (6)第15.4.5题 (7)第15.6节射极输出器 (9)第15.6.1题 (9)第15.6.2题 (9)第15.7节差分放大电路 (11)第15.7.3题 (11)第15.9节场效晶体管及其放大电路 (13)第15.9.2题 (13)第15.9.3题 (14)List of Figures1习题15.2.3图 (3)2习题15.3.3图 (4)3习题15.3.5图 (6)4习题15.4.5图 (8)5习题15.6.1图 (9)6习题15.6.2图 (10)7习题15.7.3图 (11)8习题15.9.2图 (13)9习题15.9.2图 (14)15基本放大电路15.2放大电路的静态分析15.2.3在图1中,若U CC=10V,今要求U CE=5V,I C=2mA,试求R C和R B 的阻值。

设晶体管的β=40。

[解]图1:习题15.2.3图由U CE=U CC−R C I C可求R C=U CC−U CEI C=10−52×10−3Ω=2.5kΩI B≈I Cβ=240mA=0.05mAR B≈U CCI B=100.05kΩ=200kΩ15.3放大电路的动态分析15.3.2在习题1图所示的固定偏置放大电路中,U CC=9V,晶体管的β=20,I C= 1mA。

今要求|A u|≤100,试计算R C,R B及U CE。

[解]I B≈I Cβ=120mA=0.05mAR B≈U CCI B=90.05kΩ=180kΩr be=[200+(20+1)×261.05]Ω=720Ω=0.72kΩ|A u|=βR Cr be(空载时|A u|最大)R C=|A u|r beβ=100×0.7220kΩ=3.6kΩU CE=U CC−R C I C=(9−3.6×1)V=5.4V15.3.3有一放大电路如习题1图所示,其晶体管的输出特性以及放大电路的交、直流负载线如图2所示。

基本放大电路总结

基本放大电路总结

基本放大电路总结基本放大电路总结基本放大电路是指可以将输入信号放大到一定程度的电路,广泛应用于各种电子设备中。

本文将总结常见的几种基本放大电路及其特点。

1. 直接耦合放大电路直接耦合放大电路是一种简单的放大电路,常用于低频放大。

其基本结构由放大器管、耦合电容和负载电阻组成。

输入信号经过耦合电容进入放大器管,通过共集电极、共基极或共射极等放大方式放大后,经过负载电阻输出。

该电路具有简单、负载阻抗稳定的特点,适用于对频率响应要求不高的场合。

2. 交流耦合放大电路交流耦合放大电路也是一种常见的放大电路,主要用于中小功率的放大。

其结构由输入电容、耦合电容、直流阻值和输出电阻组成。

输入信号经过两个电容耦合,通过负反馈将直流分量消除,然后经过直流阻值放大并输出。

该电路具有频率响应较好、互不影响的优点,能够实现较高的放大倍数。

3. 集电极负反馈放大电路集电极负反馈放大电路是一种常用的中小功率放大电路,常见于音频放大器等设备中。

其基本结构由放大器管、负反馈元件和负载电阻组成。

输入信号经过放大器管放大,同时一部分经过负反馈元件返回输入端,通过负反馈调节放大倍数。

该电路具有输入输出阻抗稳定、放大倍数可调的特点,可用于提高音频放大器的稳定性和性能。

4. 共集电极放大电路共集电极放大电路是一种常见的放大电路,常用于高频放大。

其基本结构由输入电容、共集电阻和输出电阻组成。

输入信号经过输入电容进入共集电阻后,通过放大器管放大并输出。

该电路具有高输入阻抗、低输出阻抗的特点,能够实现较高的电压放大倍数,适用于需要放大高频信号的场合。

5. 共射放大电路共射放大电路是一种常见的放大电路,常用于低频和中频放大。

其基本结构由输入电容、倍增电阻和输出电阻组成。

输入信号经过输入电容进入倍增电阻后,通过放大器管放大并输出。

该电路具有低输出阻抗、高输入阻抗的特点,能够实现较高的电流放大倍数,适用于需要放大低频和中频信号的场合。

总结来说,基本放大电路主要包括直接耦合放大电路、交流耦合放大电路、集电极负反馈放大电路、共集电极放大电路和共射放大电路等。

电工学:第15章 基本放大电路

电工学:第15章 基本放大电路

输入电压
放大电路的主要性能指标:

Io
+

Uo
-
输出电流
RL
输出电压
电频Pom压带与放f效bw大;率倍最数大A不u;失输真入输电出阻电ri压;;输最出大电输阻出ro功;率通
20
1、电压放大倍数Au
电压放大倍数反映了放大器的放大能力。
Au
=
Uo Ui

Ii
+
Rs


Us
+
Ui
--
ro
´ ri • + Uo
晶体管知识复习:
1.基本结构:三个极、三个区、两个结
以NPN型为例
集电结
B
基极 发射结
C 集电极
N P N E
发射极
集电区: 面积较大
基区:较薄 掺杂浓度低
发射区:掺 杂浓度较高
1
2. 输入输出特性曲线:三个工作区(即工作状态)
(1) 输入特性:(发U射C结E一电定压)UBE与基极电流IB的关系
工作压降:
uCE
RL
E+iCUC CC uo
ui uBE
各极电压电流均为直流 与交流的叠加!
16
动态波形
iB IB
uBE UBE
iC IC
uCE UCE
ib
iB = IB + ib
t
ube
动态信号驮载 在静态之上
基本共射放大电路的电压放大作 用是利用晶体管的电流放大作用 ,并依靠RC将电流的变化转化成 电压的变化来实现的。
IB
VCC RB
=
12 300
= 40103 mA = 40A

基本放大电路【PPT课件】PPT课件

基本放大电路【PPT课件】PPT课件
UE RE IE
C2
IC RL
CE
uo
作用。
分压式偏置电路
41
1. 保持基极对地的静态电位UB基本
+EC 固定,即IB1>>IBQ
ui
RB1 C1
RB2 IB2
IBR1 C IB
UE RE IE
C2
IC RL
CE
分压式偏置电路
UB
I B2 RB2
R B2 R B1 R B2
EC
2. 发射极保持有足够大的电流负反 馈,即UE>>UBE
Ku
uo ui
R
' L
rbe
34
负号表示共射极放大电路中,输出电压 与输入电压位相相反。
上式表示:增加晶体三极管的电流放大 系数β和输出端的总负载电阻RL以及减小晶 体三极管的输入电阻rbe,都可以在一定程度上 提高放大器的电压放大倍数。
但由于rbe和β都与晶体管的静态工作 电流有关,所以放大倍数实际上还是与静态工 作电流有密切关系。当输出端开路(即RL未接 入,空载)时,Ku比接RL时高。可见,负载电阻RL 愈小,则电压放大倍数愈低。
集电极电流iC中的直流
成分不能到达负载RL。
但其交流成分iC,除了通
过RC和EC构成的支路 外,还通过由C2和RL组
ui
成的支路。对交流信号
而言,电容和直流电源均
可视为短路,因此可画出
放大器带负载时的交流
通路,
交流通路
uo
RB
RC RL
23
交流负载线:由 交流通路可以看到,输出 电压uo实际上加于 R’L 上, R’L就是放大器交流 通路的等效负载,简称交 流负载,为 RC//RL。

电子电工技术PPT课件第15章基本放大电路

电子电工技术PPT课件第15章基本放大电路

工作原理
01
02
03
信号输入
基本放大电路通过输入信 号源将微弱信号输入到输 入级。
信号放大
输入信号经过输入级、中 间级和输出级的逐级放大, 实现信号的电压、电流和 功率的放大。
信号输出
放大的信号通过输出级输 出,以驱动负载或进行信 号传输。
02
晶体管放大电路
电路组成
输入级
输出级
负责将信号源的微弱电 信号进行放大,通常采 用共基极或共射极电路。
04
多级放大电路
电路组成
前置放大级
前置放大级是整个多级放大电路的第一级,主要作用是放 大微弱的输入信号,为后续各级提供足够的信号幅度。
电压放大级
电压放大级是整个多级放大电路的核心部分,主要作用是 实现信号的电压放大,提高输出信号的电压幅度。
功率放大级
功率放大级是整个多级放大电路的最后一级,主要作用是 将电压放大级的输出信号进行功率放大,以满足负载的需 要。
产生原因
由于放大电路中存在电抗元件(如电 容、电感),不同频率的信号通过电 抗元件时表现出不同的阻抗特性,导 致放大电路对不同频率信号的放大能 力不同。
单级阻容耦合放大电路的频率响应
频率响应分析
通过分析电路中电容、电感的阻 抗特性,计算出放大倍数与频率 的关系,从而得到频率响应曲线。
带宽
放大倍数大于0.707倍的频率范围。
信号的相位失真。
THANKS FOR WATCHING
感谢您的观看
负责将已放大的信号进 行功率放大,提供足够 的电流和电压驱动负载。
电压放大倍数
表示输出信号与输入信 号电压的比值,是衡量 放大电路性能的重要指
标。
电流放大倍数
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020/5/28
例2:用估算法计算图示电路的静态工作点。
+UCC 由KVL可得出
RB
RC IC
U C C IB R BU B EIE R E
晶体管T--放大元件,
RC +C2
RS +
es –
C1 +
+
ui + ––
iB iC + + TuCE
RBuB–E – RL
EB
iE
+ uo –
共发射极基本电路
iC= iB。要保证集
+ 电结反偏,发射结正
EC –
偏,使晶体管工作在 放大区 。
基极电源EB与基极电 阻RB--使发射结 处于正偏,并提供大小
变化的电压。
耦合电容C1 、C2 --隔离输入、输出
信 号
负载 与放大电路直流的
共发射极基本电路
联系,同时使信号

顺利输入、输出。
2020/5/28
15.1 基本放大电路的组成
RC +C2
RS +
es –
C1 +
+
ui + ––
iB iC + + TuCE
RBuB–E – RL
EB
iE
+ uo –
用来计算静态工作点。 交流通路:有信号时交流分量(变化量)的通路,
用来计算电压放大倍数、输入电阻、 输出电阻等动态参数。
2020/5/28
例:画出下图放大电路的直流通路
对直流信号电容 C 可看作开路(即将电容断开)
断开 RB
C1 +
RS + + ui
es– –
+UCC
RC +C2 断开
iB iC + + TuCE + uB–E – RL uo
iC
+O
ic
t
IC
O
t
O
t
静态分析
动态分析
2020/5/28
结论:
(3) 若参数选取得当,输出电压可比输入电压大, 即电路具有电压放大作用。
ui
uo
O
t
O
t
(4) 输出电压与输入电压在相位上相差180°, 即共发射极电路具有反相作用。
2020/5/28
1. 实现放大的条件 (1) 晶体管必须工作在放大区。发射结正偏,集
已知:UCC=12V,RC=4k,RB=300k, =37.5。
+UCC
解:IC IB U IR B C B C3 3.15 7 020 m .00m A 4 0.01 A 4m .5m RA B IBA U+RBC–ETU–+ICCE
UCE UCC ICRC 121.54V6V
注意:电路中IB 和 IC 的数量级不同
O
UBE
UBE
O
UCE
UCE
(IB、UBE) 和(IC、UCE)分别对应于输入、输出特 性曲线上的一个点,称为静态工作点。
2020/5/28
15.1.3. 共射放大电路的电压放大作用
RB C1+ +
ui

+UCC
RC iB iC
+C2 ++
u+B–E
T
uCE –
uo
iE

uo uo0= 0 uBEu=BEU=BUE+BEui uCEuC=EU=CUE+CEuo
适当的基极电流。
2020/5/28
15.1 基本放大电路的组成
15.1.2 基本放大电路各元件作用
RC +C2
RS +
es –
C1 +
+
ui + ––
iB iC + + TuCE
RBuB–E – RL
EB
iE
+ uo –
集电极电源EC --为 电路提供能量。并保
证集电结反偏。
+
EC –
集电极电阻RC--将 变化的电流转变为
电结反偏。 (2) 正确设置静态工作点,使晶体管工作于放大区。 (3) 输入回路将变化的电压转化成变化的基极电流。 (4) 输出回路将变化的集电极电流转化成变化的
集电极电压,经电容耦合只输出交流信号。
2020/5/28
2. 直、流通路和交流通路
因电容对交、直流的作用不同。在放大电路中如 果电容的容量足够大,可以认为它对交流分量不起 作用,即对交流短路。而对直流可以看成开路。这 样,交直流所走的通路是不同的。 直流通路:无信号时电流(直流电流)的通路,
第15章 基本放大电路
15.1 共发射极放大电路的组成 15.2 放大电路的静态分析 15.3 放大电路的动态分析 15.4 静态工作点的稳定 15.5 放大电路中的频率特性 15.6 射极输出器 15.7 差动放大电路 15.8 互补对称功率放大电路
2020/5/28
2020/5/28
2020/5/28
iC + uB–E
T
+ uCE –
iE
RL
短路
+ uo –

电源的端电压恒定, 直流电源对交流可看 作短路。
交流通路
用来计算电压 放大倍数、输入 电阻、输出电阻 等动态参数。
+
RS
es+ –
ui –
RB
+ RC RL uO

2020/5/28
2020/5/28
2020/5/28
例1:用估算法计算静态工作点。
共发射极基本电路
+ EC

RS +
es –
RB C1
+ + ui

RC
+UCC +C2
iB iC + + TuCE + uB–E – RL uo
iE

单电源供电时常用的画法
2020/5/28
15.1.3 共射放大电路的电压放大作用
+UCC
RB C1+ +
ui

RC iB iC
+C2 ++
u+B–E
T
uCE –
uo
iE

uo = 0 uBE = UBE uCE = UCE
无输入信号(ui = 0)时
iC
uCE
uBE
iB
O
2020/5/28
UBE tO
IB tO
IC
UCE
tO
t
结论:
(1) 无输入信号电压时,三极管各电极、UCE 。
IB
IC
IB
Q
Q IC
iE

+UCC
RB
RC IC
IB
+
U+B–ETU–CE
直流通路
IE
直流通路用来计算静态工作点Q ( IB 、 IC 、 UCE )
2020/5/28
对交流信号(有输入信号ui时的交流分量)
+UCC
RB
RC
+C2 对地短路
XC 0,C 可看作短 路。忽略电源的内阻,
RS +
es–
C1 +
iB
+
ui 短路
无 有uC输E =入U信CC号-(uiiC=≠R0C)时:
iC
uCE
uo
ui
uBE
iB
O
t
O
t
UBE
IB
? IC
UCE
O
tO
tO
tO
t
2020/5/28
结论:
(2) 加上输入信号电压后,各电极电流和电压的大
小均发生了变化,都在直流量的基础上叠加了
一个交流量,但方向始终不变。
直流分量 交流分量
iC 集电极电流 iC
15.1 基本放大电路的组成
15.1.1 共发射极基本放大电路组成
RC +C2
RS +
es –
C1 +
+
ui + ––
iB iC + + TuCE
RBuB–E – RL
EB
iE
+ uo –
共发射极基本电路
+
EC –
2020/5/28
15.1 基本放大电路的组成
15.1.2 基本放大电路各元件作用
相关文档
最新文档