超疏水表面亲水原理

合集下载

超疏水表面

超疏水表面

剂。
化学溶液沉积法制备超疏水氧化锌薄膜
实验步骤
将清洗好的玻璃衬底采用旋涂工艺在匀胶机上制备ZnO缓冲层,转 速2000r/min。反复旋涂、干燥四次后,将玻璃衬底在400℃热处理 30min以形成ZnO缓冲层薄膜。 配备硝酸锌浓度为0.01mol/L的溶液作为化学沉积的溶液,NaOH浓 度分别为0.35mol/L、0.4mol/L、0.45mol/L。将已涂覆缓冲层的玻 璃衬底垂直插入沉积溶液中,在一定的加热速度和磁力搅拌速度下 升温至 75 ℃,继续反应一定的时间后,即可在玻璃衬底上获得 ZnO 纳米棒阵列膜。 将所制得的ZnO薄膜分别经去离子水淋洗后,在100℃下烘干。然 后放入葵基三乙氧基硅烷/乙醇溶液(10mmol/L)中,24h后取出,用 乙醇淋洗,在150℃加热2h。
刻 蚀 法
沉 积 法
模 板 法
溶 胶 凝 胶 法
相 分 离 法
静 电 纺 丝 法
纳 米 颗 粒 法
化 学 腐 蚀
激 光 刻 蚀
等 离 子 体 刻 蚀
光 刻 技 术
平 版 印 刷 术
物 理 气 相 沉 积
水 热 生 长 法
化 学 气 相 沉 积
电 化 学 方 法
层 层 组 装 技 术
超疏水表面技术存在的问题
适当增加沉积时间可以提高ZnO薄膜的疏水性,但薄膜的 疏水性与ZnO纳米棒阵列膜的规则性似乎关系不大。
谢 谢
超疏水表面技术的发展趋势
解决现存问题, 进行规模化生产
产业化
发 展 趋 势
多功能化
对自然界动植 物进行仿生
光、电、磁、热 等外界刺激响应
智能化
超疏水表面技术的潜在应用
门窗玻璃
潜 在 应 用

材料科学中的超疏水表面技术

材料科学中的超疏水表面技术

材料科学中的超疏水表面技术材料科学是一门重要的学科,它研究各种物质的性质、结构、制备和应用等方面。

在材料科学中,超疏水表面技术受到越来越多的关注和研究。

下面,我们将详细了解这一技术的原理、应用和未来发展方向。

一、超疏水表面技术的原理超疏水表面技术是指通过特殊方法处理表面,使得其具有极强的疏水性能,即液滴在表面上呈现出球形或半球形的情况。

这种技术的核心在于微纳级的表面结构和化学成分的优化。

其中,微纳级的表面结构是关键因素之一。

通过制备一定尺度的微纳级结构,可以增加表面的接触角,即水滴在表面上的接触角大于90度。

同时,微纳级结构还可以改变水滴在表面上的运动方式,使其更容易滚动或滑落。

这些特性使得表面具有更好的自清洁、防污和防腐蚀功能。

另一个重要的因素是化学成分。

通过在表面增加亲水基团或疏水基团,可以调节表面的亲疏水性。

通过控制不同基团的分布密度和类型,可以实现不同功能的超疏水表面。

二、超疏水表面技术的应用超疏水表面技术具有广泛的应用前景,尤其在以下几个方面。

1. 自清洁材料超疏水表面可以有效地减少物质在表面上的侵蚀和积垢,因此可以应用于自清洁材料的制备。

例如,建筑材料、汽车玻璃、纺织品等都可以通过超疏水表面技术实现自清洁效果。

2. 防水和防污涂层超疏水表面可以抵御水和油等液体的渗透和附着,因此可以用于制备防水和防污涂层。

例如,建筑物的屋顶和外墙、飞机的机身和车辆的表面等都可以通过超疏水涂层实现防水和防污效果。

3. 生物医学应用超疏水表面还可以应用于生物医学领域。

通过在医疗器械表面制备超疏水结构,可以防止细菌和其他微生物的附着,从而减少感染的发生。

同时,超疏水表面还可以在肝功能损伤等情况下,帮助肝脏细胞愈合和再生。

三、超疏水表面技术的未来发展在未来,超疏水表面技术将会得到进一步发展和应用。

其中,以下几个方面将是重点。

1. 细化表面结构随着技术的逐步提升,表面结构已经从微观范围向纳米级发展。

未来,细化表面结构将更加普遍,甚至可能到达亚微米级。

超疏水材料的设计与制备

超疏水材料的设计与制备

超疏水材料的设计与制备近年来,超疏水材料备受关注,因其在自洁、防污、抗污染等领域具有广泛应用前景。

本文将讨论超疏水材料的设计原理以及制备方法。

一、超疏水材料的设计原理超疏水材料的疏水性主要取决于其表面的微观结构和化学成分。

常见的超疏水材料设计原理包括微结构模仿与表面修饰两种。

微结构模仿是通过模仿自然界中一些生物体表面的特殊结构,实现超疏水性。

例如,莲叶表面是超疏水的,其疏水性能源于其微米级的细疙瘩结构和纳米级的蜡质颗粒。

将这种微结构复制到材料表面,可以使其具有类似的超疏水性能。

表面修饰是通过在材料表面改变其化学成分,实现超疏水性。

这种方法通常包括两个步骤:首先,将材料表面处理成亲水性;然后,通过化学反应将亲水表面转变为疏水表面。

具体的表面修饰方法包括化学气相沉积、溶液浸渍和化学修饰等。

这些方法可以改变材料表面的化学成分,使其具有疏水性。

二、超疏水材料的制备方法超疏水材料的制备方法多种多样,根据具体需求的不同,选择适合的制备方法至关重要。

下面将介绍几种常用的制备方法。

1. 纳米粒子法纳米粒子法是一种常见的制备超疏水材料的方法。

首先,通过化学合成或物理方法获得一定大小的纳米粒子;然后,在材料表面涂覆一定厚度的纳米粒子,形成类似于莲叶表面的微结构,从而实现超疏水性。

2. 化学修饰法化学修饰法是通过在材料表面进行一系列的化学反应,改变其化学成分,实现超疏水性。

常用的化学修饰方法包括硅烷偶联剂修饰、金属有机骨架材料修饰等。

3. 高分子涂层法高分子涂层法是通过在材料表面涂覆一层高分子材料,形成一定的表面结构和化学成分,实现超疏水性。

常用的高分子材料包括聚四氟乙烯、聚合物聚合方法和聚合物共挤出法等。

三、超疏水材料的应用前景超疏水材料具有广泛的应用前景。

以下是几个典型的应用领域。

1.自洁涂料超疏水涂料能够使涂层表面形成微细的颗粒结构,使污染物无法附着在涂层表面,从而实现自洁效果。

这种自洁涂料可以应用于建筑、汽车、船舶等领域。

亲水与超亲水、疏水、超疏水的接触角界限

亲水与超亲水、疏水、超疏水的接触角界限

亲水与超亲水、疏水、超疏水的接触角界限
在表面科学中,接触角是一个重要的概念,它用于描述液体与固体表面接触时的角度。

接触角越小,液体在固体表面上的粘附力越大,表面就越亲水;反之,接触角越大,液体在固体表面上的粘附力越小,表面就越疏水。

在这个基础上,又有超亲水、超疏水等概念。

亲水与超亲水的界限:一般认为,接触角小于5度的表面被称为超亲水表面。

超亲水表面的液体接触角非常小,甚至可以达到0度,液体在表面上会形成完美的薄膜,表面张力非常小。

这种表面的应用非常广泛,例如防水材料、自清洁表面等。

疏水与超疏水的界限:接触角大于90度的表面被称为疏水表面。

在疏水表面上,液体的粘附力非常小,液滴会在表面上形成球形,表面张力非常大。

超疏水表面的接触角大于150度,液滴在表面上几乎不会留下任何痕迹。

这种表面的应用也非常广泛,例如防污材料、防腐蚀材料等。

总的来说,接触角是一个非常重要的概念,它可以用来描述液体与固体表面的相互作用。

超亲水和超疏水表面的应用非常广泛,例如在防水、自清洁、防污、防腐蚀等方面都有着重要的应用。

说通电使超疏水表面变成亲水

说通电使超疏水表面变成亲水

说说:用个电池通电,这个超疏水表面立即变成亲水,而且是可控的
2017-08-22 23:02 推荐文献:
研究人员使用电沉积方法在铜表面获得微纳结构(看上去像圣诞树),使其获得具有超疏水能力(下图左),但是,当接通电源时(用个普通电池1.5v的即可)发现其表面立即向亲水性转变(下图右),而且这种转变的能力大小可以通过电压和作用时间操控,意味着可以操控表面的浸润性,研究人员认为作用机理是表面氧化态的变化(CuO和Cu2O之间的转换),如下图所示:
此前其他研究人员尝试过使用Uv或者X-rays操控表面浸润性,但是条件苛刻,非常不适合实际应用。

而上述方法简单,有望在微流控和有害物质净化等领域应用,研究人员认为在其它金属或合金表面也可以获得类似的效果。

解释:没有通电前,CuO与水的电磁力小,加上1.5V的电后,电磁力一定是增大了,引力也就增大了,亲水性就增大了。

超疏水表面微结构对其疏水性能的影响及应用

超疏水表面微结构对其疏水性能的影响及应用

超疏水表面微结构对其疏水性能的影响及应用一、本文概述超疏水表面,也称为超防水表面或荷叶效应表面,是指具有极高水接触角和低滑动角的固体表面。

这种特殊的表面性质使水滴在其上几乎无法附着,即使附着也能轻易滚落,因此具有自清洁、防腐蚀、防结冰、防雾等独特功能。

超疏水表面的这些特性在材料科学、物理学、化学、生物学、机械工程、航空航天、建筑等领域具有广泛的应用前景。

超疏水表面的特性主要来源于其独特的微结构,这些微结构可以在微米甚至纳米尺度上影响水滴与固体表面的接触行为。

因此,研究超疏水表面微结构对其疏水性能的影响,对于理解超疏水表面的作用机制、优化超疏水表面的制备工艺、拓展超疏水表面的应用领域具有重要的理论价值和实际意义。

本文旨在全面系统地探讨超疏水表面微结构对其疏水性能的影响,包括微结构的类型、尺寸、分布等因素对超疏水性能的影响机制。

本文还将介绍超疏水表面的制备方法、应用领域以及存在的挑战和未来的发展方向。

通过本文的研究,我们期望能够为超疏水表面的进一步研究和应用提供有益的理论支持和实践指导。

二、超疏水表面微结构的基本原理超疏水表面,也称为超防水表面或荷叶效应表面,是一种具有特殊微纳米结构的表面,其水接触角大于150°,滚动角小于10°。

这种表面具有优异的防水性能,水珠在其表面难以停留,极易滚动脱落。

超疏水表面的微结构原理主要基于两个方面:表面粗糙度和表面化学组成。

表面粗糙度对超疏水性能的影响至关重要。

通过构建微纳米尺度的粗糙结构,可以大大增加固体表面的实际面积,从而在表面与水滴之间捕获更多的空气,形成稳定的空气垫。

这种空气垫的存在显著减少了固体表面与水滴的直接接触面积,降低了表面能,从而提高了表面的疏水性能。

表面化学组成也对超疏水性能产生重要影响。

通过引入低表面能的物质,如氟硅烷、长链烷烃等,可以降低固体表面的自由能,进一步提高其疏水性能。

这些低表面能物质可以在微纳米结构表面形成一层自组装单分子层,进一步减少水滴与固体表面的接触,增强超疏水效果。

超疏水表面的原理及应用

超疏水表面的原理及应用

超疏水表面的原理及应用摘要:超疏水表面有着广泛的应用前景,比如在减阻、润滑等方面。

本文主要介绍了超疏水表面的基本理论和相关制备方法,以及它的两种影响因素和相关研究进展,并在此基础上归纳总结了超疏水表面应用的一些优缺点。

关键词:超疏水表面、润湿性、微/纳米结构、防冰冻、减阻超疏水表面的基本原理1. 自然界中有很多动植物的表面具有超疏水的性质,例如玫瑰和荷叶。

仿照生物表面的微观结构,人们开始关注仿生材料。

通过对这些生物的研究,人们对于超疏水表面的认识更加深入,新技术在生活中的应用更加广泛。

1.1超疏水表面的基本理论当液体与固体接触时,液体沿固体表面扩展的现象称为液体与固体的浸润现象。

在气体、液体、固体三相的交界处作液体表面与固体表面的切线,则此切线所构成的液体内部的夹角θ即为接触角。

液滴在斜面上时,随着斜面倾斜角的增大,液滴开始滚动的临界角则定义为滚动角。

在理想固体表面上,接触角由三相的表面张力决定,并满足Young’s[1]方程:cosθ=(γsg-γsl)/γlgγsg、γsl 、γlg分别为固-气、固-液、气-液间的表面张力。

由于真实固体表面并非理想固体的光滑表面,故必须还要考虑表面的粗糙度。

提出相关的较为成熟的基本理论有Cassie状态及Wenzel状态等。

Cassi研究了组成不均一的固体表面对液滴浸润性的影响[2]。

在Cassie理论中,水滴未进入固体表面粗糙的微孔,从而形成水滴与空气膜界面。

Cassie方程为:cosθc=f1cosθ1+f2cosθ2θc为表观接触角,θ1、θ2分别为液-气、固-气的接触角,f1和f2为液体、固体表面和空气接触的比例。

而Wenzel[3]理论则描述了水滴完全湿润固体表面,与固体不存在空气膜的情况。

Wenzel提出的接触角方程为:cosθw=r(γsg-γsl)/γlg=r cosθ其中r为表面粗糙因子。

当接触角小于90°时,表面为亲水性表面;当接触角大于90°时,表面为疏水性表面;当接触角大于150°,且滚动角小于10°时,表面称为超疏水表面。

超疏水表面的定义

超疏水表面的定义

超疏水表面的定义1. 引言超疏水表面是一种特殊的表面结构,其具有非常强的疏水性质,即液体在其上无法附着。

这种表面的应用潜力巨大,可以在许多领域发挥重要作用,如自清洁涂层、防污染材料、液滴传感器等。

本文将详细介绍超疏水表面的定义、原理、制备方法以及应用领域。

2. 超疏水表面的定义超疏水表面是指具有非常高的接触角和低的滑移角的表面。

接触角是指液体与固体界面上形成的接触线与固体表面之间形成的夹角,而滑移角则是指液体在固体表面上滑动时形成的夹角。

当接触角大于90度且滑移角接近于0度时,就可以将该表面称为超疏水表面。

3. 超疏水表面的原理超疏水表面的疏水性质主要源于两个方面:微纳米结构和化学改性。

3.1 微纳米结构超疏水表面通常具有微纳米级别的结构特征,如微凸起、纳米柱状结构等。

这些结构可以使液体在表面上只接触到少量的固体区域,从而减小了液体与固体之间的接触面积,使接触角增大。

微纳米结构还可以形成空气层,在液体滑过表面时降低摩擦力,从而实现液滴无法附着的效果。

3.2 化学改性除了微纳米结构外,化学改性也是实现超疏水表面的重要手段。

通过在表面上引入特定的化学官能团或涂层,可以使表面具有更好的疏水性质。

在聚合物材料上引入氟碳链可以增加表面的亲-疏水性差异,从而提高接触角;在金属材料上进行化学溶液处理可以形成氧化物层,进一步提高疏水性能。

4. 超疏水表面的制备方法制备超疏水表面的方法多种多样,常见的包括物理处理和化学处理。

4.1 物理处理物理处理方法主要是通过改变表面的形貌来实现超疏水性质。

常见的物理处理方法包括刻蚀、薄膜沉积、激光加工等。

刻蚀可以通过化学腐蚀或机械加工来改变表面的形貌,形成微纳米结构;薄膜沉积可以在表面上形成具有特定性质的涂层;激光加工则可以通过瞬间高温和高压来改变材料表面的形貌。

4.2 化学处理化学处理方法主要是通过在材料表面引入特定的化学官能团或涂层来实现超疏水性质。

常见的化学处理方法包括溶液浸泡、溶胶凝胶法、自组装等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

超疏水表面亲水原理
超疏水表面亲水原理
超疏水表面是一种新型材料,它有着特殊的表面结构,能够在水接触
时将其完全弹开,形成极度减少接触面积的微观水泡,使液体无法附
着其表面。

超疏水表面有着广泛的应用,例如自清洁、增加传热性能、生物医学应用等领域,在这篇文章中,我们将探究超疏水表面亲水的
原理。

超疏水表面结构
超疏水表面的结构是超级微观的,可以通过高分辨率显微镜来观察。

该表面的结构是一种类似于菊花状的结构,由微米级的柱子或组织构成。

在这个结构之下,还有一层罩在上面的氟碳聚合物薄膜,这种薄
膜是一种具有高化学稳定性和低表面自由能的物质。

超疏水表面对水的作用
当水分子接触超疏水表面时,由于该表面的菊花状结构,大部分水分
子将从高小面塞入该表面上,而不是贴在表面上。

在水分子进入该表
面微孔之后,由于空气合力作用,会形成一种微观上的水泡,这种水
泡易于流动,大量的空隙留了在该表面的水与其它物质接触面之间,
从而减少了该表面与液体的接触面积。

在液体浸润超疏水表面的过程中,水分子的表面张力完美地掌握了水分子的行为,使它们疏离与超
疏水表面的“交往”状态。

超疏水表面亲水原理
超疏水表面亲水是一种极其受欢迎的特性,它是指表面积聚一定的能
够与水分子接触的原子基团,即向水分子开放一定的接受范围的机会,以确保该材料表面上的水分子在合理的范围内能够像普通干净水一样,或者更容易地拥有强大的悬浮性和流动性,从而使这些表面和液体的
接触面积得到进一步的缩减,从而最大限度地模拟液体的本来特性。

总之,超疏水表面亲水的原理是通过表面上特殊的结构和表面张力控制,减少表面与液体的接触,从而降低对超疏水表面的附着力,形成
超疏水表面的亲水特性。

该特性为超疏水表面的广泛应用提供了基础,可以在很多不同领域中使用。

相关文档
最新文档