如何进行盾构法施工隧道管片选型排版
管片选型技术

但实际拼装过程中不存在12点与6点拼装点位,而 且一般情况下,本着有利于隧道防水的要求,都只 使用上部6个点位。
管片选型要适应盾构机姿态
所谓“盾构姿态”是指盾构机的空间方位和 走向、管片是在盾尾内拼装,所以不可避免 地受到盾构机姿态的限制。 实际施工中盾构姿态失控的主要有两种表现: 一是使盾构主机偏离DTA, 二是使盾尾间隙局部变小。
衬砌管片
管片按其材料可分为钢筋混凝土管片和金属 管片,其中钢筋混凝土管片应用的更广泛。 管片按其形状可分为标准环和转弯环两种。 标准环和转弯环可以按照不同的组合形式拟 合出不同半径的曲线隧道。
隧道设计轴线(DTA)
在理想的情况下,主机是严格按照DTA向前 掘进的,主机的前后产考点应该都位于DTA 上。如果DTA为一段直线,每掘进一环推进 油缸向前推进相同的距离,如果DTA为曲线, 掘进时位于曲线外侧的油缸就会比内侧油缸 距离长一些,在曲线内外两侧的推进油缸上 产生行程差,否则管片的走向就会和主机的 走向偏离。
上式表明,在400m圆曲线上,每隔2.282m 就要用一环转弯环,广州地铁的管片长度为 1.5m,也就是说每隔2.282×2=4.564m就需 要两环转弯环,即标准环与转弯环的关系为1 环标准环+2环转弯环。
管片的钟点特征
我们从管片设计图上已经知道管片的纵向螺栓孔有 10个,而且他们沿管片的圆周方向是均匀分部的, 任何相邻的两个纵向螺栓孔与管片中心所成角度都 为36度,也就是说管片沿环向有十个安装位置,每 个位置称为管片的一个安装钟点。为了方便理解我 们把拼装点位与时间刻度相结合,楔形块位于最上 方时管片相对隧道的位置称为12点,楔形块位置顺 时针旋转18度后管片相对隧道的安装位置称为1点, 再转36度后称为2点,以此类推,如下图:
盾构通用环管片选型技术

一、引言
目前国内地铁盾构隧道衬砌管片形式主要有普通环形式和通用环形式。 普通环形式包括标准环和左右转弯环,在直线段使用标准环,曲线段采 用左右转弯环,竖曲线则使用不同厚度的橡胶垫块拟合,需要设计和加 工直线、左转、右转以及特殊形式的圆环,由于转弯环的拼装点位是较 为固定的,从而不利于在隧道施工中对隧道轴线的精确控制。目前北京、 上海、广州、南京、杭州、天津、西安、哈尔滨等城市地铁采用普通环 管片型式。
mm×K21=1 52.80 m-1m7.(2 ≈24.8×172.=2 49.6 mm7.)1
-7.1
K12
-18.6
18.6
0
0
K13
-17.2
17.2
-7.1
7.1
K14
-13.2
13.2
-13.2
13.2
K15
-7.1
7.1
-17.2
17.2
三、通用环管片选型影响因素
如何在盾构掘进完成一环时通过盾构掘进施工参数进行通 用环管片选型? 错缝拼装 盾尾间隙 推进千斤顶油缸行程差 管片姿态
7.1
-7.1
-17.2
17.2
K2
13.2
-13.2
-13.2
13.2
即沿半K径3 R=3001m7.2的曲线每-1前7.进2 1.2 m-,7.需1 要 24.87.m1 m 的楔形
量以抵K消4 因曲线所18产.6生的内外-1弧8.6长差。 0
0
本工K5程管片环在17平.2 面上的楔-1形7.2量有 37.27.1mm、 34-.73.61 mm、
管片成型轴线与设计轴线的夹角等于盾构轴线与设计轴线夹角加上管 片轴线与盾构轴线夹角。
盾构隧道管片拼装施工选型与排版总结

盾构隧道管片拼装施工选型与排版总结区间盾构结构为预制钢筋混凝土环形管片,外径6200mm,内径5500mm,厚度350mm,宽度1200mm。
在盾构施工开工前,应对管片进行预排版,确定管片类型数量.1)隧道衬砌环类型为满足盾构隧道在曲线上偏转及蛇形纠偏的需要,应设计楔形衬砌环,目前国际上通畅采用的衬砌环类型有三种:①直线衬砌环与楔形衬砌环的组合;②通用型管片;③左、右楔形衬砌环之间相互组合。
国内一般采用第③种,项目隧道采用该衬砌环。
直线衬砌环与楔形衬砌环组合排版优缺点:优点—简化施工控制,减少管片选型工作量;缺点—需要做好管片生产计划,增加钢模数量。
盾构推进时,依据预排版及当前施工误差,确定下一环衬砌类型。
由于采用衬砌环类型不完全确定性,所以给管片供应带来一定难度。
2)管片预排版1、转弯环设计区间转弯靠楔形环完成,分三种:标准换、右转弯环、左转弯环。
即管片环向宽度六块不是同一量,曲线外侧宽,内侧窄。
管片楔形量确定主要因素有三个:①线路的曲线半径;②管片宽度;③标准环数与楔形环数之比u值。
还有一个可供参考的因素:楔形量管模的使用地域。
楔形量理论公式如下:△=D(m+n)B/nR ①(D-管片外径,m:n-标准环与楔形环比值,B-环宽,R-拟合圆曲线半径)本次南门路到团结桥楔形环设计为双面楔形,楔形量对称设置于楔形环的两侧环面。
按最小水平曲线半径R=300m计算,楔形量△=37.2mm,楔形角β=0.334°。
值得注意的是转弯环设计时,环宽最大和最小处是固定的,左转弯以K块在1点位设计,右转弯以K块在11点位设计,即在使用转弯环时,要考虑错缝拼装和管片位置要求。
2、圆曲线预排版设需拟合圆曲线半径为450m(南门路到团结桥区间曲线半径值),拟合轴线弧长270m,需用总楔形量计算如下:β=L/R=0.6 ②△总=(R+D/2)β-(R-D/2)β=3720mm ③由△总计算出需用楔形环数量:n1=△总/△=100 ④标准环数量为:n2=(L-n1*B)/B=125 ⑤标准环和楔形环的比值为:u=n2:n1=5:4 ⑥即在R=450圆曲线上,标准环和楔形环比例为5:4,根据曲线弧长计算管片数量,确定出各类型管片具体数量,出现小数点时标准环数量减1,转弯环加1。
地铁盾构隧道管片选型与拼装

地铁盾构隧道管片选型与拼装发表时间:2019-03-26T13:10:28.017Z 来源:《建筑细部》2018年第18期作者:杨文超[导读] 在盾构施工中因管片的选型和拼装不当而引起成型隧道管片破损及漏水现象是个普遍现象,结合西安六号线丈八六路站~丈八四路站区间右线的管片选型和拼装质量为研究对象,总结在施工过程中的经验说明了管片选型的原则,从管片不同拼装点位等方面叙述了施工中管片拼装要求。
杨文超中铁六局集团有限公司交通工程分公司北京丰台 100070摘要:在盾构施工中因管片的选型和拼装不当而引起成型隧道管片破损及漏水现象是个普遍现象,结合西安六号线丈八六路站~丈八四路站区间右线的管片选型和拼装质量为研究对象,总结在施工过程中的经验说明了管片选型的原则,从管片不同拼装点位等方面叙述了施工中管片拼装要求。
关键词:盾构机、管片、盾尾间隙、盾构机姿态、油缸行程差1工程概况西安地铁六号线一期TJSG-7标丈八六路站~丈八四路站区间采用盾构法施工,右线区间长度1138.4m,最小曲线半径R=2000m。
区间隧道底部埋深介于17.14-24.52m之间。
隧道从丈八四路站西端以线间距14.0m坡度2‰出站后,以25‰的坡度下行,继续以14‰的坡度下行至区间最低点。
然后以20‰的坡度上行,最终以2‰的坡度进入丈八六路站。
2管片设计2.1本区间隧道管片采用C50P12预制钢筋混凝土管片,管片设计具体参数见下表:3管片选型的影响因素管片作为成型隧道衬砌、是隧道永久支护的一部分,会受到来自土层、地下水压力等特殊外力,如管片选型不当,会引起管片错台、开裂、隧道渗水,所以管片的选型至关重要。
选取管片主要需要考虑3方面的因素:(1)盾尾间隙;(2)推进油缸行程差;(3)铰接油缸行程差。
3.1管片选型首先要考虑盾尾间隙对管片选型的影响本工程采用小松TM614PMX-12号盾构机盾尾外径为6140mm、壁厚为40mm的圆柱形钢结构,管片的外径为6000mm。
盾构机管片选型和安装

盾构管片选型和安装林建平在盾构法施工中,管片的选型和安装好坏直接影响着隧道的质量和使用寿命。
本文根据广州地铁三号线客~大区间的实际施工情况,就盾构管片选型和安装技术做总结分析。
一、工程概况客~大盾构区间分为两条平行的分离式单线圆形盾构隧道,总长度为3016.933米,管片生产与安装2011环。
管片外径6000mm,内径5400mm,宽度1500mm,防渗等级S10,砼C50。
依据配筋将管片分为A、B、C三类,C类配筋最高、B类配筋最低;管片的楔形量38mm,分左转、右转、标准三类。
二、管片的特征1、管片的拼装点位本区间的管片拼装分10个点位,和钟表的点位相近,分别是1、2、3、4、5、7、8、9、10、11。
管片划分点位的依据有两个:管片的分块形式和螺栓孔的布置。
拼环时点位尽量要求ABA(1点、11点)形式。
在广州盾构隧道管片要求错缝拼装,相邻两环管片不能通缝。
管片拼装点位有很强的规律,管片的点位可划分为两类,一类为1点、3点、5点、8点、10点;二类为11点、2点、4点、7点、9点。
同一类管片不能相连,例如1点后不能跟3、5、8、10这四个点位,只能跟11、2、4、7、9五个点位。
在成型隧道里两联络通道之间的奇数管片是同一类,偶数管片是同一类。
(竖列表示拼装好的管片,横向:√-表示可选后续的管片;×-表示不可选后续的管片)2、隧道管片排序鉴于管片拼装的规律性,所以盾构施工前必须对隧道管片做好排序,并根据设计,模拟出联络通道和泵房位置,管片拼到联络通道处时,点位要正好和设计点位符合,否则联络通道位置会被改变。
在本工程中,是从左线始发,第325、326环处是联络通道,此处拼装点位是11点,将标准块A3块拼到洞门位置。
盾构始发时的负环是6环,1环零环。
从负环到325环共332环,第325环是11点,相当于第332环是11点,那么负环第一环点位应该是1点,或3点、5点、8点、10点。
管片排序时,要优化洞门的长度,在广州洞门长度要求在400mm以上,一环管片的长度是1500mm,在条件允许的条件下,通过调整始发负环的位置,把每节隧道两端的洞门长度之和控制在1500mm以内,当隧道长度除以管片长度的余数大于两倍最小洞门宽度800mm(各地洞门的最小宽度要求不同)时,就取余数的一半为洞门长度。
管片选型技术

根据盾尾间隙进行管片选型
如果盾尾间隙过小,盾壳上的力直接作用在管 片上,则盾构机在掘进过程中盾尾将会与管片 发生摩擦、碰撞。轻则增加盾构机向前掘进的 阻力,降低掘进速度,重则造成管片错台(通 过调整盾构间隙,可以大大减少管片错台量), 盾构一边间隙过小,另一边相应变大,这时盾 尾尾刷密封效果降低,在注浆压力作用下,水 泥浆很容易渗漏出来,破环盾尾的密封效果。
但实际拼装过程中不存在12点与6点拼装点位,而 且一般情况下,本着有利于隧道防水的要求,都只 使用上部6个点位。
管片选型要适应盾构机姿态
所谓“盾构姿态”是指盾构机的空间方位和 走向、管片是在盾尾内拼装,所以不可避免 地受到盾构机姿态的限制。 实际施工中盾构姿态失控的主要有两种表现: 一是使盾构主机偏离DTA, 二是使盾尾间隙局部变小。
衬砌管片
管片按其材料可分为钢筋混凝土管片和金属 管片,其中钢筋混凝土管片应用的更广泛。 管片按其形状可分为标准环和转弯环两种。 标准环和转弯环可以按照不同的组合形式拟 合出不同半径的曲线隧道。
隧道设计轴线(DTA)
在理想的情况下,主机是严格按照DTA向前 掘进的,主机的前后产考点应该都位于DTA 上。如果DTA为一段直线,每掘进一环推进 油缸向前推进相同的距离,如果DTA为曲线, 掘进时位于曲线外侧的油缸就会比内侧油缸 距离长一些,在曲线内外两侧的推进油缸上 产生行程差,否则管片的走向就会和主机的 走向偏离。
管片的标准环和转弯环
标准环与转弯环的不同之处在于从拼装好的一整环 管片的顶部看,标准环在平面上的投影为一矩形, 而转弯环在平面上的投影为对称的梯形,梯形长边 比短边长38mm。在管片拼装时,如果正在安装的 一环为转弯环,且转弯环中的楔型块的位置处于隧 道的正上方,这时隧道腰部两侧将会产生衬砌长度 的不同,这种长度的不同称为超前,它的数值称为 超前量。如上介绍的管片,每拼装一环将会在隧道 腰部两侧产生38mm的超前量。
宝典5盾构施工法管片选型拼装

2.根据圆弧长公式:L=a.π.R/180
3.根据管片拼装模式(错缝拼装、 通缝拼装),封顶块(K件)所
在位置时,管片环所对应楔变角 度。
4.则对于管片环宽度所对应圆弧线 的圆心角为:
管片宽度对应的圆心角
=管片宽度 弧长
360 0
楔型环 标准环
管片环直径
5. K件所在位置所对应的楔变角度 与管片环宽度所对应的圆心角之 比,则得出管片环所组合模式。
第二种情况
盾尾间隙
标准环 楔型环
盾构机
盾尾间隙
第一种情况
管片环半径 管片环半径+盾尾间隙
第三种情况
第一种情况:使用楔型管片
a=AB a,=A,B, b=2200-a b,=2200-a, B1=a.tana B2=-( a’tana) c1=B1+btan(2a+b) c2=-(B2+b’tan(2a+b))
心角Q=1.5÷447.45×57=
二)管片环修正排列计算
圆曲线半径450m,管片环宽度 1.5m。计算管片环排列及偏差
1.半径450米所需的轴线偏转角,管片环K件在 ±18°(拼装模式:S(-18°)—R (18°)—S(-18°)—R(18°)….,圆曲 线圆心角57°,则弧长为447.45m
用每一环管片环节构成的短直线将其相互连接,尽 可能地将管片环节构成的隧道轴线与设计隧道轴线 吻合。但仍然存在一定的误差。
直线管片
楔形管片 直线管片
短直线
允许误差
管片模拟轴线 设计轴线
(一)管片拟合的隧道轴线
▪ 提出一个问题:为什么目前广州地铁的大 多数管片环为宽度1500mm,内径5400mm, 管片环楔变量38mm?
地铁盾构隧道管片选型

将数据代入得θ =0.458 根据圆心角的计算公式: a=180L/∏R 式中: L-一段线路中心线的长度; R-曲线半径,取1000m 而θ = a 将之代入,得出L=7.994m 上式表明,在800m的圆曲线上,每隔7.994m要用一 环转弯环,管片长度为1.2m,就是说,在800m的 圆曲线上,标准环与转弯环的拼装关系为6环标准 环+1环转弯环。
调整的基本原则
哪边的盾尾间隙过小,就选择拼装反方向的 转弯环。在不同点位拼装一环左转弯环的盾尾 间隙调整。如此时盾构机在进行直线段的掘进, 则必须注意在拼装完一环左转弯环后,选择适 当的时机,再拼装一环右转弯环将之调整回来, 否则左边盾尾间隙将越来越小,直至盾尾与管 片发生碰撞。如盾构机处于曲线段,则应根据 线路的特点进行综合考虑。
1、 管片选型要适合隧道设计线路
当一个盾构工程开工之前,就要根据设计线路 对管片作一个统筹安排,通常把这一步骤叫管片 排版。通过管片排版,就基本了解了这个线路 需要多少转弯环(包括左转弯、右转弯),多 少标准环,曲线段上标准环与转弯环的布置方 式。现根据北京地铁四号线二十标段工程颐和 园 --- 北宫门区间的管片排版, 其简要技术参数 如表1所示。
2) 盾构机掘进 盾构机应尽量根据设计线路进行掘进,避免产生 不必要的偏差,这样基本可以根据管片排版进行管 片拼装,也有利于管片按计划进行生产。如果盾构 机偏离设计线路,在纠偏过程中也不要过急,否则 转弯环管片的偏移量跟不上盾构机的纠偏幅度,盾 尾仍然会挤时间坏管片。
目前,有些较为先进的盾构机上配备的自动测量系 统已经有了自动进行管片选型的功能。但该系统还不 是很完善,所以在实际的管片选型的过程中,还需要 人工进行复核和修正。 在盾构工程中管片选型是一项较为复杂且极为重要 的工作,对此应该认真对待,一旦选型失误,将会对 隧道质量产生重大影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广州地铁四号线琶大区间,分布三组圆曲线,半径分别为450米、800米、竖曲线3000米。
依照曲线的圆心角与转弯环产生的偏转角的关系,可以计算出区间线路曲线段的转弯环与标准环的布置方式。
转弯环偏转角的计算公式:
θ=2γ=2arctgδ/D
式中:
θ―――转弯环的偏转角
δ―――转弯环的最大楔形量的一半
D―――管片直径
将数据代入得出θ=0.3629
根据圆心角的计算公式:
右转弯环的情况与左转弯相反,这里就不再列举。
通过管片不同点位的拼装,就可以实现隧道的调向。
2.2 根据盾尾间隙进行管片选型
右转弯环盾尾间隙的调整量与上表相反,由上表可以看出,拼装一环左转弯环之后,左边盾尾间隙将减小,右边盾尾间隙将增大,同时通过拼装不同的点位,还可以调节上、下方向的盾尾间隙。
如此时盾构机在进行直线段的掘进,则必须注意在拼装完一环左转弯环后,选择适当的时机,再拼装一环右转弯环将之调整回来,否则左边盾尾间隙将越来越小,直至盾尾于管片发生碰撞。
如盾构机处于曲线段,则应根据线路的特点进行综合考虑。
2.3 根据油缸行程差进行管片选型
盾构机是依靠推进油缸顶推在管片上所产生的反力向前掘进的,我们把推进油缸按上、下、左、右四个方向分成四组。
而每一个掘进循环这四组油缸的行程的差值反应了盾构机与管片平面之间的空间关系,可以看出下一掘进循环盾尾间隙的变化趋势。
由图2可以看出,当管片平面不垂直于盾构机轴线时,各组推进油缸的行程就会有差异,当这个差值过大时,推进油缸的推力就会在管片环的径向产生较大的分力,从而影响已拼装好的隧道管片以及掘进姿态。
同时也可以看出如果继续拼装标准环的话,下部的盾尾间隙将会
进一步减小。
通常我们以各组油缸行程的差值的大小来判断是否应该拼装转弯环,在两个相反的方向上的行程差值超过40mm时,就应该拼装转弯环进行纠偏,拼装一环转弯环对油缸行程的调整量见表1,也就是拼装1环10点左转弯环,可以使左、右两组的油缸行程差缩小38mm。
德国海瑞克公司的土压平衡式盾构机,如图3所示,10对推进油缸分为A、B、C、D四组,分别代表上、右、下、左四个方向。
油缸行程可以通过位移传感器反映在显示屏上,通过计算各组油缸之间的差值,就能进行正确的管片选型。
下面举例说明:
现有一组油缸行程的数据如下:
B组(右):1980mm C组(下):1964mm
D组(左):1934mm A组(上):1943mm
左右行程差为:D-B=1934-1980=-46mm
上下行程差为:A-C=1943-1964=-21mm
图油缸分区图
由上可以看出,盾构机的轴线相对于管片平面向左上方倾斜。
在对这环管片进行选型的时候,就应选择一环左转弯环且还要有向上的偏移量。
对照表1后得出,此环应选择左转弯环在1点拼装。
拼装完管片后掘进之前油缸行程的初始数据理论为:A组(上):454mm B组(右):465mm C组(下):453m D组(左):450mm。
这样左右与上下的油缸行程差值基本控制在20mm之内,有利于盾构掘进及保护管片不受破坏。
(如果上述数据在左转弯曲线上,下一环管片仍安装一环左转弯环管片,那么盾构姿态基本调整过来)。
4、盾构间隙与油缸行程之间的关系
在进行管片选型的时候,既要考虑盾尾间隙,又要考虑油缸行程的差值。
而油缸行程的差值更能反映盾构机与管片平面的空间关系,通常情况下应把油缸行程的差值作为管片选型的主要依据,只有在盾尾间隙接近于警戒值(25mm)时,才根据盾尾间隙进行管片选型。
3、影响管片选型的其他因素
3.1 铰接油缸行程的差值
目前地铁盾构工程中大多采用的是铰接式盾构机,即盾构机不是一个整体,而是在盾构机中体与盾尾之间采用铰接油缸进行连接,铰接油缸可以收放,这样就更加有利于盾构机在曲线段的掘进及盾构机的纠偏。
铰接油缸利用位移传感器将上、下、左、右四个方向的行程显示在显示屏上,当铰接油缸的上下或左右的行程差值较大时,盾构机中体与盾尾之间产生一个角度,这将影响到油缸行程差的准确性。
这时应当将上下或左右的行程差值减去上下或左右的铰接油缸行程的差值,最后的结果作为管片选型的依据。
(海瑞克盾构铰接油缸有三种模式,锁、收和自由放开,当盾构在直线上,盾构姿态很好,可以使用锁定模式,当
在曲线上,应把铰接油缸自由放开,当显示铰接油缸行程差较大或使用大于2/3行程后,应通过针对性收模式来调整行程差)
3.2 盾构机掘进
盾构机应尽量根据设计线路进行掘进,避免产生不必要的偏差,这样基本可以根据管片排版进行管片拼装,也有利于管片按计划进行生产。
如果盾构机偏离设计线路,在纠偏过程中也不要过急,否则转弯环管片的偏移量跟不上盾构机的纠偏幅度,盾尾仍然会挤坏管片。
盾构掘进纠偏原则:蛇行修正应以长距离慢慢修正,修正过急,盾构蛇行将更加明显,在直线推进的情况下,应选取盾构当前所在位置点与设计线上远方的点作为直线,然后以这条线为新的基准进行线形管理,在曲线推进情况下,应使盾构当前所在位置点与远方点的连线同设计的曲线相切(如:目前盾构垂直方向处于-40,计划控制在-20内,每环纠偏宜控制在5mm变化内,不宜超过10mm,那么应至少4环才能把盾构姿态调整到预设范围内)。