多元函数微分学测试题及答案
第五章-多元函数微分学习题参考答案

第五章-多元函数微分学习题参考答案第五章多元函数微分学习题练习5.11.在空间直⾓坐标系下,下列⽅程的图形是什么形状? (1) )(4222椭圆抛物⾯z y x =+ (2)圆锥⾯)(4222z y x =+(3) 椭球⾯)(19164222=++z y x (4) 圆柱⾯)(122=+z x 2.求下列函数的定义域: (1)y x z --=解:??≥-≥0y x y即??≥≥≥y x x y 200 ∴函数的定义域为{}y x y x y x ≥≥≥2,0,0|),((2) z =解:0≥-y x{}0|),(≥-∴y x y x 函数的定义域为3. ()y x f ,对于函数=yx yx +-,证明不存在),(lim 0y x f x →分析:由⼆元函数极限定义,我们只须找到沿不同路径0(0,0)p p →时,所得极限值不同即可。
证明:①(,)0,0)(0,0)p x y x x y p ≠=0当沿轴(此时趋于时,(,)(,0)1,lim (,)1x y f x y f x f x y →→===②当0(,)(0)00p x y y kx k p =≠沿直线趋于(,)时, 0011(,)lim (,)1(0)11x y x kx k kf x y f x y k x kx k k→→---=1.求下列函数的偏导数①;,,33yz x z xy y x z -=求解:23323,3xy x yz y y x x z -=??-=?? ②;,,)ln(yzx z xy z =求解:[]1211ln()2z xy y x xy -?=??=?[]1211ln()2z xy x y xy -== ③222ln(),,z z z x x y x x y=+?求解:1ln()z x y x x x y=+++ 2222)(2)(1))(ln()(y x y x y x x y x y x y x x y x x x z x x z ++=+-+++=+++??==??2221()(ln())()()z z x x yx y x y y x y x y x y x y x y ==++=-=?++++ ④;,3z y x ue u xyz=求解;22,()xyz xyz xyz xyz u u yze ze yzxze z xyz e x x y==+=+? 3222()(())(12)()xyz xyz xyzu u z xyz e xyz e z xyz xye x y z z x y z==+=+++???=)31()21(222222z y x xyz e z y x xyz xyz e xyz xyz ++=+++y x f y xy ?-?+=→?)1,2()1,2(lim,),(02则解:①22(1)200(2,1)(2,1)0lim lim ()0y y y f y f e e y y +??→?→+?--=??未定式22(1)04(1)10lim 1y y e y +??→?+??-= = 42e ②22201(2,1)(2,1)lim(2,1)24xy y x y y f y f f e xye y=?→=+?-'==?=?3.设23ln(1),111x y z ux y z u u u '''=+++++在点(,,)处求解:2311x u x y z '=+++ 2321yyu x y z '=+++ 22331z z u x y z '=+++ (1,1,1) 1233()|4442x y z u u u '''∴++=++= 4.设2,20xy z zz e xy x y=+=求证: 证明:2xy y z e y e x y-?=?=?Q 22331(2)2x xy y z e x xy e y y-?=??-=-?Q22222323122(2)22x x x xy y y y z z x y xy e ye x xy e y xy e x y y---??∴+=+??-=-?+?? = 0证毕练习5.31.求下列函数的全微分(1) 求z xy =在点(2,3)处当时的全增量与全微分与2.01.0-=?=?y x 解:全增量12.068.21.2)3,2()2.03,1.02(-=-?=--+=?f f zx y dz z dx z dy ydx xdy ''=+=+(2,3)0.10.230.12(0.2)0.1dx dy dz==-=?+?-=-(2)求时的全微分当2,1),1ln(22==++=y x y x z解:22222211z z x y dz dx dy dx dy x y x y x y ??=+=+??++++ dy dx dy dx dz323141144112)2,1(+=+++++=(3),u xy yz zx du =++求解:u u udu dx dy dz x y z=2.计算下列各式的近似值(分析运⽤公式010000000()(,)(,)(,)x y f x x y y f x y f x y x f x y y ''+?+?≈+?+?)(1)03.2)1.10(解:令03.0,2,1.0,10,),(00=?==?==y y x x x y x f y 取2.03(10.1)=00000000(,)(,)(,)(,)x y f x x y y f x y f x y x f x y y ''+?+?≈+?+?01.0ln 1.010)2,10()2,10(12?+?+=-x x yx y y9.10810ln 32100≈++= (2) )198.003.1ln(43-+解:令)1ln(),(43-+=y x y x f 取 02.0,1,03.0,100-=?==?=y y x x 原式(10.03,10.02)f =+-23(1,1)11)|(0.03)x -≈+-+34(1,1)1|(0.02)y -+-= 0+005.002.04103.031=?-(3) 0046tan 29sin解:令y x y x f tan sin ),(= 取 00,,,61804180x x y y ππ==-=?=则原式=)1804,1806(ππππ+-f(,)(,)()(,)646418064180x y f f f ππππππππ''≈+-+ =2(,)(,)646411cos tan |()sin sec |2180180x y x y ππππππ?+-+?= 0.5023练习5.41. 求下列函数的导数或偏导数。
(完整版)多元函数微分学复习题及答案

第八章 多元函数微分法及其应用 复习题及解答一、选择题1. 极限lim x y x yx y→→+00242= (提示:令22y k x =) ( B ) (A) 等于0 (B) 不存在 (C) 等于12 (D) 存在且不等于0或12 2、设函数f x y x y y xxy xy (,)sin sin=+≠=⎧⎨⎪⎩⎪1100,则极限lim (,)x y f x y →→0= ( C )(提示:有界函数与无穷小的乘积仍为无穷小)(A) 不存在 (B) 等于1 (C) 等于0 (D) 等于23、设函数f x y xy x y x y x y (,)=++≠+=⎧⎨⎪⎩⎪222222000,则(,)f x y ( A )(提示:①在220x y +≠,(,)f x y 处处连续;②在0,0x y →→ ,令y kx =,200(0,0)x x y f →→→=== ,故在220x y +=,函数亦连续.所以,(,)f x y 在整个定义域内处处连续.)(A) 处处连续 (B) 处处有极限,但不连续 (C) 仅在(0,0)点连续 (D) 除(0,0)点外处处连续4、函数z f x y =(,)在点(,)x y 00处具有偏导数是它在该点存在全微分的 ( A ) (A)必要而非充分条件(B)充分而非必要条件(C)充分必要条件 (D)既非充分又非必要条件5、设u y x =arctan ,则∂∂u x = ( B )(A)xx y 22+(B) -+y x y 22 (C) yx y 22+(D)-+xx y 226、设f x y yx(,)arcsin=,则f x '(,)21= ( A ) (A )-14(B )14 (C )-12 (D )127、设yxz arctan=,v u x +=,v u y -=,则=+v u z z ( C )(A )22v u v u -- (B )22v u u v -- (C )22v u v u +- (D )22v u uv +-8、若f x x x x f x x x x (,),(,)'232612=+=+,则f x x y '(,)2= ( D ) (A) x +32(B) x -32(C) 21x + (D) -+21x 9、设z y x =,则()(,)∂∂∂∂z x zy+=21 ( A ) (A) 2 (B) 1+ln2 (C) 0 (D) 110、设z xye xy =-,则z x x x'(,)-= ( D ) (A)-+2122x x e x () (B)2122x x e x ()- (C)--x x e x ()122 (D)-+x x e x ()12211、曲线x t y t z t ===24sin ,cos ,在点(,,)202π处的法平面方程是 (C )(A) 242x z -=-π (B) 224x z -=-π (C) 42y z -=-π (D) 42y z -=π12、曲线45x y y z ==,,在点(,,)824处的切线方程是 (A )(A)842204x z y --=-= (B)x y z +==+122044 (C) x y z -=-=-85244 (D)x y z -=-=351413、曲面x z y x z cos cos +-=ππ22在点ππ2120,,-⎛⎝ ⎫⎭⎪处的切平面方程为 (D )(A )x z -=-π1 (B )x y -=-π1 (C )x y -=π2 (D )x z -=π214、曲面x yz xy z 2236-=在点(,,)321处的法线方程为 (A ) (A )x y z +=--=--58531918 (B )x y z -=-=--3823118(C )83180x y z --= (D )831812x y z +-=15、设函数z x y =-+122,则点 (,)00是函数 z 的 ( B ) (A )极大值点但非最大值点 (B )极大值点且是最大值点 (C )极小值点但非最小值点 (D )极小值点且是最小值点 16、设函数z f x y =(,)具有二阶连续偏导数,在P x y 000(,)处,有2)()(,0)()(,0)(,0)(000000======P f P f P f P f P f P f yx xy yy xx y x ,则( C )(A )点P 0是函数z 的极大值点 (B )点P 0是函数z 的极小值点 (C )点P 0非函数z 的极值点 (D )条件不够,无法判定 17、函数f x y z z (,,)=-2在222421x y z ++=条件下的极大值是 ( C )(A) 1 (B) 0 (C)-1 (D) -2 二、填空题 1、极限limsin()x y xy x→→0π= ⎽⎽⎽⎽⎽⎽⎽ .答:π 2、极限limln()x y x y e x y→→++01222=⎽⎽⎽⎽⎽⎽⎽ .答:ln23、函数z x y =+ln()的定义域为 ⎽⎽⎽⎽⎽⎽⎽ .答:x y +≥14、函数z xy=arcsin 的定义域为 ⎽⎽⎽⎽⎽⎽⎽ .答:-≤≤11x ,y ≠0 5、设函数f x y x y xy y x (,)ln =++⎛⎝ ⎫⎭⎪22,则f kx ky (,)= ⎽⎽⎽⎽⎽⎽⎽ .答:k f x y 2⋅(,)6、设函数f x y xy x y (,)=+,则f x y x y (,)+-= ⎽⎽⎽⎽⎽⎽⎽ .答:222x y x-(22()()(,)()()2x y x y x y f x y x y x y x y x+--+-==++-Q )7、设f x y x y x y A x y (,)ln()//=-⋅+<+≥⎧⎨⎩11212222222,要使f x y (,)处处连续,则A= ⎽⎽⎽⎽⎽⎽⎽ .答:-ln28、设f x y x y x y x y Ax y (,)tan()(,)(,)(,)(,)=++≠=⎧⎨⎪⎩⎪22220000,要使f x y (,)在(0,0)处连续,则A= ⎽⎽⎽⎽⎽⎽⎽ .答:1 9、函数221x y z x +=-的间断点是 .答:直线10x -=上的所有点10、函数f x y x y yx (,)cos =-122的间断点为 ⎽⎽⎽⎽⎽⎽⎽ .答:直线y x =±及x =011、设z x y y =-+sin()3,则∂∂z xx y ===21_________ .答:3cos512、设f x y x y (,)=+22,则f y (,)01= _________ .答:113、设u x y z x y z(,,)=⎛⎝ ⎫⎭⎪,则)3,2,1(d u =_________ .答:38316182d d ln d x y z --14、设u x x y =+22,则在极坐标系下,∂∂ur= _________ .答:0 15、设u xy y x =+,则∂∂22u x = _________.答:23yx16、设u x xy =ln ,则∂∂∂2u x y = ___________ .答:1y17、函数y y x =()由12+=x y e y 所确定,则d d y x = ___________ .答:22xye xy - 18、设函数z z x y =(,)由方程xy z x y z 2=++所确定,则∂∂zy= _______ .答:2112xyz xy --19、由方程xyz x y z +++=2222所确定的函数z z x y =(,)在点(1,0,-1)处的全微分d z = _________ .答:d d x y -220、曲线x t y t z t ===23213,,在点(,,)1213处的切线方程是_________.答:x y z -=-=-12221321、曲线x te y e z t e t t t ===232222,,在对应于 t =-1点处的法平面方程是___________. 答:01132=+--e y x 22、曲面xe y e z e ey z x ++=+223321在点(,,)210-处的法线方程为_________ . 答:e ze y x 22212=-+=- 23、曲面arctan y xz 14+=π在点(,,)-210处的切平面方程是_________.答:y z +=2124、设函数z z x y =(,)由方程123552422x xy y x y e z z +--+++=确定,则函数z的驻点是_________ .答:(-1,2) 27、函数z x y x y =----2346122的驻点是_________.答:(1,1)25、若函数f x y x xy y ax by (,)=+++++22236在点 (,)11-处取得极值,则常数a =_________, b =_________.答:a =0,b =426、函数f x y z x (,,)=-22在x y z 22222--=条件下的极大值是_______答:-4 三、计算题1、求下列二元函数的定义域,并绘出定义域的图形.(1) z = (2)ln()z x y =+ (3)1ln()z x y =+ (4)ln(1)z xy =-解:(1)要使函数z =有意义,必须有2210x y --≥,即有221x y +≤.故所求函数的定义域为22{(,)|1}D x y x y =+≤,图形为图3.1(2)要使函数ln()z x y =+有意义,必须有0x y +>.故所有函数的定义域为{}(,)|0D x y x y =+>,图形为图3.2(3)要使函数1ln()z x y =+有意义,必须有ln()0x y +≠,即0x y +>且1x y +≠.故该函数的定义域为{}(,)|01D x y x y x y =+>+≠,,图形为图3.3(4)要使函数ln(1)z xy =-有意义,必须有10xy ->.故该函数的定义域为{(,)|1}D x y xy =>,图形为图3.4图3.1 图3.2图3.3 图3.42、求极限limsin x y y xxy →→+-0211.解:lim sin x y y xxy →→+-0211=⋅++→→lim sin ()x y y x xy xy 00211= 43、求极限lim sin()x y x y x yxy →→-+0023211. 解:原式=lim ()sin()x y x y x y x y xy →→-++0232211=-++⋅→→limsin()x y x y xy xy 002111=-124、求极限lim x y xxye xy→→-+0416 . 解:lim x y xxye xy→→-+00416=++-→→lim ()x y x xye xy xy 00416= -85、设u x y y x =+sin cos ,求 u u x y ,. 解:u y y x x =-sin sinu x y x y =+cos cos6、设z xe ye y x =+-,求z z x y ,. 解:z e ye x y x =--z xe e y y x =+-7、设函数z z x y =(,)由yz zx xy ++=3所确定,试求∂∂∂∂z x zy,(其中x y +≠0). 解一:原式两边对x 求导得yz x x zxz y ∂∂∂∂+++=0,则∂∂z x z y y x =-++同理可得:∂∂z y z x y x =-++ 解二:xy xz F F y z xy y z F F x z x y y x ++-=-=++-=-=∂∂∂∂, 8、求函数z x xy y x y =-++-+23243122的极值.解:由z x y z x y x y=-+==-+-=⎧⎨⎩43403430,得驻点(,)-10074334>=--==yy yxxy xx z z z z D z xx =>40,函数z 在点(,)-10处取极小值z (,)-=-101.9、设z e x y =+32,而x t y t ==cos ,2,求d d z t. 解:d d (sin )()zte t e t x y x y =-+++3223232=-++(sin )3432t t e x y10、设z y xy x =ln(),求∂∂∂∂z x z y,. 解:z y y xy xy x x x =⋅+ln ln 1 z xy xy yy y x x =+-11ln() 11、设u a x a x yz a =->+ln ()0,求d u . 解:∂∂u x a a ax x yz =-+-ln 1,∂∂u y a z a x yz =⋅+ln ,∂∂u zya a x yz =+ln d (ln )d ln (d d )u a a ax x a a z y y z x yz x yz =-+++-+112、求函数z x y e xy =++ln()22的全微分.解:∂∂∂∂z x x ye x y e z y y xe x y e xyxyxyxy=+++=+++222222,[]d ()d ()d z x y ex ye x y xe y xyxy xy =+++++12222 四、应用题1、要造一容积为128立方米的长方体敞口水池,已知水池侧壁的单位造价是底部的2倍,问水池的尺寸应如何选择,方能使其造价最低? 解:设水池的长、宽、高分别为x y z ,,米.水池底部的单位造价为a .则水池造价()S xy xz yz a =++44 且 xyz =128令 ()L xy xz yz xyz =+++-44128λ由 ⎪⎪⎩⎪⎪⎨⎧=-==++==++==++=01280440404xyz L xy y x L xz z x L yz z y L z y x λλλλ得 x y z ===82由于实际问题必定存在最小值,因此当水池的长、宽、高分别为8米、8米、2米时,其造价最低.2、某工厂生产两种商品的日产量分别为x 和y (件),总成本函数22128),(y xy x y x C +-=(元).商品的限额为42=+y x ,求最小成本. 解:约束条件为042),(=-+=y x y x ϕ,构造拉格朗日函数22(,,)812(42)F x y x xy y x y λλ=-+++-,解方程组160240420x y F x y F x y F x y λλλ'⎧=-+=⎪'=-++=⎨⎪'=+-=⎩,得唯一驻点)17,25(),(=y x ,由实际情况知,)17,25(),(=y x 就是使总成本最小的点,最小成本为8043)17,25(=C (元).3、某工厂生产两种产品甲和乙,出售单价分别为10元与9元,生产x 单位的产品甲与生产y 单位的产品乙的总费用是)33(01.03240022y xy x y x +++++元, 求取得最大利润时,两种产品的产量各为多少?解:),(y x L 表示获得的总利润,则总利润等于总收益与总费用之差,即有利润目标函数)]33(01.032400[)910(),(22y xy x y x y x y x L +++++-+=)0,0(,400)33(01.06822>>-++-+=y x y xy x y x ,令⎩⎨⎧=+-='=+-='0)6(01.060)6(01.08y x L y x L yx,解得唯一驻点(120,80).又因06.0,01.0,006.0-=''=-=''=<-=''=yy xy xx L C L B L A ,得0105.332>⨯=--B AC .得极大值320)80,120(=L . 根据实际情况,此极大值就是最大值.故生产120单位产品甲与80单位产品乙时所得利润最大320元. 五、证明题 1、设)11(yx e z +-=, 求证z yz y x z x 222=∂∂+∂∂.证明: 因为2)11(1x e xzy x ⋅=∂∂+-, 2)11(1ye y z y x ⋅=∂∂+-, 所以 z e e yz y x z x y x y x 2)11()11(22=+=∂∂+∂∂+-+-2、证明函数nx ey tkn sin 2-=满足关系式22x y k t y ∂∂=∂∂ 证明:因为nx e kn kn nx e ty tkn t kn sin )(sin 2222⋅-=-⋅⋅=∂∂--, nx nex y tkn cos 2-=∂∂, nx e n xy t kn sin 2222--=∂∂, nx e kn xyk t kn sin 2222--=∂∂,所以22x y k t y ∂∂=∂∂.3、设z =xy +xF (u ), 而xyu =, F (u )为可导函数, 证明xy z y z y x z x +=∂∂+∂∂⋅.证明:y z y x z x ∂∂⋅+∂∂⋅])([])()([yu u F x x y x u u F x u F y x ∂∂'+⋅+∂∂'++=)]([)]()([u F x y u F xyu F y x '+⋅+'-+==xy +xF (u )+xy =z +xy .。
《多元函数微分学》练习题参考答案

解:在 L 上任取一点 P ( x, y ),
f (x , y ) = 0
考虑 d = ( x − x0 ) + ( y − y0 ) 在条件 f ( x, y ) = 0 下的极值问题 作 F = ( x − x 0 ) + ( y − y 0 ) + λ f ( x , y ) ,则
' ⎧ ⎪ F x = 2(x − x 0 ) + λ f 'x ( x , y ) = 0 , ⎨ ' ⎪ ⎩F y = 2( y − y 0 ) + λ f 'y (x , y ) = 0 2 2 2 2 2
P87-练习 4 设 z = f ( xy,
x y ) + g ( ) ,其中 f 有二阶连续偏导数, g 有二阶导数,求 y x
∂2z . (2000) ∂x∂y
解: 根据复合函数求偏导公式
∂z 1 y = f1′ ⋅ y + f 2′ ⋅ + g ′ ⋅ (− 2 ) , ∂x y x
24
∂2 z ∂ ⎛ ∂z ⎞ ∂ ⎛ 1 y ⎞ = ⎜ ⎟ = ⎜ f1′ ⋅ y + f 2′ ⋅ + g ′ ⋅ ( − 2 ) ⎟ ∂x∂y ∂y ⎝ ∂x ⎠ ∂y ⎝ y x ⎠ x 1 1 x y 1 = f1′ + y[ f11′′ x + f12′′ ⋅ (− 2 )] − 2 f 2′ + [ f 21′′ x + f 22′′ ⋅ (− 2 )] − g ′′ ⋅ 3 − g ′ ⋅ 2 y y y y x x 1 x y 1 = f1′ + xyf11′′ − 2 f 2′ − 3 f 22′′ − 3 g ′′ − 2 g ′ y y x x
多元函数微分学练习题及答案

三. 设Lx, y, z, ln x ln y 3ln z (x2 y2 z2 5R2 )
求得此函数定义域内唯一的稳定点R,,R 3R , 也是所 求函数的最大值点, 所求最大值为f R, R, 3R ln 3 3R5 .
ln x ln y 3ln z ln 3 3R5
u y xf2 ( xz xyz y ) f 3
.
3、f x ( x, y)
(
x
2 xy 3 2 y2
)2
,
x
2
0, x 2 y 2 0
y2
0 ,
f y (x,
y)
x2(x2 (x2
y2 y2 )2
)
,
x2
o, x 2 y 2 0
y2
0
五、(
f1
f2 )dx
y (z) 1
f2 (z) dy. y (z) 1
六、 xe2 y fuu e y fuy xe y f xu f xy e y fu.
4、1; 5、必要条件,但不是充分条件; 6、可微;
7、 2 f (v )2 f 2v ; v 2 y v y 2
8、
9 2
a
3
;
9、(1,2);10、 1 ; 8
二、(1)当 x y 0时,在点( x, y)函数连续;
(2)当 x y 0时,而( x, y)不是原点时,
则( x, y)为可去间断点,(0,0)为无穷间断点.
4、lim( x 2 y )2 x2 y2 ( ). x0 y0
5、函数 f ( x, y)在点( x0 , y0 )处连续,且两个偏导数 f x ( x0 , y0 ), f y ( x0 , y0 )存在是 f ( x, y)在该点可微
(完整版)多元函数微分法及其应用习题及答案

1第八章 多元函数微分法及其应用(A)1.填空题.填空题(1)若()y x f z ,=在区域D 上的两个混合偏导数y x z ∂∂∂2,xy z ∂∂∂2,则在D 上,上, x y zy x z ∂∂∂=∂∂∂22。
(2)函数()y x f z ,=在点()00,y x 处可微的处可微的 条件是()y x f z ,=在点()00,y x 处的偏导数存在。
偏导数存在。
(3)函数()y x f z ,=在点()00,y x 可微是()y x f z ,=在点()00,y x 处连续的处连续的 条件。
条件。
2.求下列函数的定义域.求下列函数的定义域(1)y x z -=;(2)22arccos yx zu +=3.求下列各极限.求下列各极限(1)x xyy x sin lim 00→→; (2)11lim 00-+→→xy xy y x ; (3)22222200)()cos(1lim y x y x y x y x ++-→→ 4.设()xy x z ln =,求y x z ∂∂∂23及23yx z ∂∂∂。
5.求下列函数的偏导数.求下列函数的偏导数(1)x y arctg z =;(2)()xy z ln =;(3)32z xy e u =。
6.设u t uv z cos 2+=,te u =,t v ln =,求全导数dt dz。
7.设()z y e u x-=,t x =,t y sin =,t z cos =,求dtdu 。
8.曲线⎪⎩⎪⎨⎧=+=4422y yx z ,在点(2,4,5)处的切线对于x 轴的倾角是多少?轴的倾角是多少? 9.求方程1222222=++c z b y a x 所确定的函数z 的偏导数。
的偏导数。
10.设y x ye z x2sin 2+=,求所有二阶偏导数。
,求所有二阶偏导数。
11.设()y x f z ,=是由方程y zz x ln =确定的隐函数,求x z∂∂,yz ∂∂。
(完整版)多元函数微分学测试题及答案

第8章 测试题1.),(y x f z =在点),(00y x 具有偏导数且在),(00y x 处有极值是 0),(00=y x f x 及0),(00=y x f y 的( )条件.A .充分B .充分必要C .必要D .非充分非必要2.函数(,)z f x y =的偏导数z x∂∂及z y ∂∂在点(,)x y 存在且连续是 (,)f x y 在该点可微分的( )条件.A .充分条件B .必要条件C .充分必要条件D .既非充分也非必要条件3. 设(,)z f x y =的全微分dz xdx ydy =+,则点(0,0) 是( )A 不是(,)f x y 连续点B 不是(,)f x y 的极值点C 是(,)f x y 的极大值点D 是(,)f x y 的极小值点4. 函数22224422,0(,)0,0x y x y x y f x y x y ⎧+≠⎪+=⎨⎪+=⎩在(0,0)处( C )A 连续但不可微B 连续且偏导数存在C 偏导数存在但不可微D 既不连续,偏导数又不存在5.二元函数22((,)(0,0),(,)0,(,)(0,0)⎧+≠⎪=⎨⎪=⎩x y x yf x y x y 在点(0,0)处( A). A .可微,偏导数存在 B .可微,偏导数不存在C .不可微,偏导数存在D .不可微,偏导数不存在6.设),(),,(y x v v v x f z ==其中v f ,具有二阶连续偏导数. 则=∂∂22y z( ). (A)222y v v f y v y v f ∂∂⋅∂∂+∂∂⋅∂∂∂; (B)22y vv f∂∂⋅∂∂;(C)22222)(y v v fy v v f ∂∂⋅∂∂+∂∂∂∂; (D)2222y v v f y v v f ∂∂⋅∂∂+∂∂⋅∂∂.7.二元函数33)(3y x y x z --+=的极值点是( ).(A) (1,2); (B) (1.-2); (C) (-1,2); (D) (-1,-1). 8.已知函数(,)f x y 在点(0,0)的某个邻域内连续,且223(,)(0,0)(,)lim 1()x y f x y xy x y →-=+,则下述四个选项中正确的是( ).A .点(0,0)是(,)f x y 的极大值点B .点(0,0)是(,)f x y 的极小值点C .点(0,0)不是(,)f x y 的极值点D .根据所给条件无法判断点(0,0)是否为(,)f x y 的极值点10.设函数(,)z z x y =由方程z y z x e -+=所确定,求2z y x ∂∂∂ 11.设(,)f u v 是二元可微函数,,y x z f x y ⎛⎫= ⎪⎝⎭,求 z z x y x y ∂∂-∂∂ 12.设222x y z u e ++=,而2sin z x y =,求u x ∂∂11.设(,,)z f x y x y xy =+-,其中f 具有二阶连续偏导数,求 2,z dz x y ∂∂∂.13.求二元函数22(,)(2)ln f x y x y y y =++的极值14.22在椭圆x +4y =4上求一点,使其到直线2360x y +-=的距离最短.第8章测试题答案1.A2.A3.D4.C5.A6.C7.D8.C 8. ()()3(1)z y z y e e ---9. 2122z z x y x y f f x y y x∂∂-=-∂∂ 10.2222(12sin )x y z u xe z y x++∂=+∂11.123123231113223233 ()(),()()dz f f yf dx f f xf dyzf f x y f f x y f xyf x y=+++-+∂=+++-+-+∂∂12.极小值11(0,)f ee-=-13. r h==14. 83(,)55。
第八章 多元函数微分自测题及答案

第八章 多元函数微分学自测题及解答一、选择题1.若函数) ,(y x f 在点) ,( y x 处不连续,则( C )(A )) ,(lim y x f y y x x→→必不存在; (B )) ,( y x f 必不存在;(C )) ,(y x f 在点) ,( y x 必不可微;(D )) ,( y x f x 、) ,( y x f y 必不存在。
2.考虑二元函数) ,(y x f 的下面4 条性质: ①函数) ,(y x f 在点) ,( y x 处连续;②函数) ,(y x f 在点) ,( y x 处两个偏导数连续; ③函数) ,(y x f 在点) ,( y x 处可微;④函数) ,(y x f 在点) ,( y x 处两个偏导数存在。
则下面结论正确的是( A )(A )②⇒③⇒①;(B )③⇒②⇒①;(C )③⇒④⇒①; D )③⇒①⇒④。
3.设函数⎪⎩⎪⎨⎧=+≠++=0 , 0 0 ,),(2222242y x y x y x yx y x f ,则在)0 ,0(点处( C )(A )连续,偏导数存在; (B )连续,偏导数不存在; (C )不连续,偏导数存在; (D )不连续,偏导数不存在。
解:取2x y =,∵0)0,0(21lim),(lim 4440002=≠=+=→→=→f x x xy x f x x y x ,∴)0,0(f 在)0 ,0(点处不连续,而0)0,0()0,0(==y x f f 。
故应选(C ) 4.设z y x u =,则=∂∂)2,2,3(yu ( C )(A )3ln 4; (B )3ln 8; (C )3ln 324; (D )3ln 162。
5.若函数),(y x f 在区域D 内具有二阶偏导数:22x f ∂∂,22y f ∂∂,y x f ∂∂∂2,xy f∂∂∂2, 则( D ) (A )必有xy f y x f ∂∂∂=∂∂∂22; (B )),(y x f 在D 内必连续; (C )),(y x f 在D 内必可微; (D )以上结论都不对。
多元函数微分学练习题及解答

xy
1
ex cos y 8、 lim
x, y0,01 x y
[解]:函数 z ex cos y 在 0, 0点连续,故 lim ex cos y e0 cos 0 1 。
1 x y
x,y0,01 x y 1 0 0
教材 P63 页习题 9-1 第 6 大题求极限。
xy
9、讨论函数
x
f22
x y2
x2
f11
2x2 y2
f12
x2 y4
f22
2x y3
f
2
。
20、设
f
具有连续导数,
z
xy
xf
y x
,证明
x
z x
y
z y
xy
z
[证明]:
z x
y
f
y x
x
f
y x
y x2
y
f
y x
y x
f
y x
z y
x
x
f
y x
1 x
x
f
y x
x
z x
y
高等数学(B)—多元函数微分学复习题
1、 二元函数 z f x, y在点 P0 x0 , y0 处的两个偏导数存在是 z f x, y在点 P0 x0 , y0 处连
续的 ______ 条件(填:充分、必要、充要或无关)
[解]:无关条件,
2、 如果函数 z f x, y 的两个混合偏导数 2 z , 2 z 在区域 D 内
26、求 3x2 y2 z2 16 在 1, 2, 3处的切平面与 xoy 面夹角的余弦
y
5)
2z y 2
x sin x
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第8章 测试题
1、),(y x f z =在点),(00y x 具有偏导数且在),(00y x 处有极值就是 0),(00=y x f x 及0),(00=y x f y 的( )条件.
A .充分
B .充分必要
C .必要
D .非充分非必要
2、函数(,)z f x y =的偏导数z x
∂∂及z y ∂∂在点(,)x y 存在且连续就是 (,)f x y 在该点可微分的( )条件.
A.充分条件
B.必要条件
C.充分必要条件
D.既非充分也非必要条件
3、 设(,)z f x y =的全微分dz xdx ydy =+,则点(0,0)
就是( )
A 不就是(,)f x y 连续点
B 不就是(,)f x y 的极值点
C 就是(,)f x y 的极大值点
D 就是(,)f x y 的极小值点
4、 函数2
2
2
24422,0
(,)0,0
x y x y x y f x y x y ⎧+≠⎪+=⎨⎪+=⎩在(0,0)处( C )
A 连续但不可微
B 连续且偏导数存在
C 偏导数存在但不可微
D 既不连续,偏导数又不存在
5
、二元函数22((,)
(0,0),(,)0,(,)(0,0)
⎧
+≠⎪=⎨⎪=⎩x y x y f x y x y 在点(0,0)处( A
)、 A.可微,偏导数存在 B.可微,偏导数不存在
C.不可微,偏导数存在
D.不可微,偏导数不存在
6、设),(),,(y x v v v x f z ==其中v f ,具有二阶连续偏导数、 则=∂∂2
2y z ( )、
(A)222y v v f y v y v f ∂∂⋅∂∂+∂∂⋅∂∂∂; (B)22
y v
v f
∂∂⋅∂∂;
(C)22222)(y v v f
y v v f ∂∂⋅∂∂+∂∂∂∂; (D)22
22y v v f y v v f ∂∂⋅∂∂+∂∂⋅∂∂、
7、二元函数33)(3y x y x z --+=的极值点就是( )、
(A) (1,2); (B) (1、-2); (C) (-1,2); (D) (-1,-1)、 8、已知函数(,)f x y 在点(0,0)的某个邻域内连续,且223(,)(0,0)
(,)lim 1()x y f x y xy x y →-=+,则下述四个选项中正确的就是( )、
A.点(0,0)就是(,)f x y 的极大值点
B.点(0,0)就是(,)f x y 的极小值点
C.点(0,0)不就是(,)f x y 的极值点
D.根据所给条件无法判断点(0,0)就是否为(,)f x y 的极值点
10、设函数(,)z z x y =由方程z y z x e -+=所确定,求2z y x ∂∂∂
11、设(,)f u v 就是二元可微函数,,y x z f x y ⎛⎫= ⎪⎝⎭
,求 z z x y x y ∂∂-∂∂ 12、设222
x y z u e ++=,而2sin z x y =,求u x ∂∂
11、设(,,)z f x y x y xy =+-,其中f 具有二阶连续偏导数,求 2,z dz x y ∂∂∂、
13、求二元函数
22(,)(2)ln f x y x y y y =++的极值
14、22在椭圆x +4y =4上求一点,使其到直线2360x y +-=的距离最短.
第8章测试题答案
1、A
2、A
3、D
4、C
5、A
6、C
7、D
8、C 8、 ()
()3(1)z y z y e e --- 9、 2122z z x y x y f f x y y x
∂∂-=-∂∂ 10、2222(12sin )x y z u xe z y x ++∂=+∂
11、
123123
2
31113223233 ()(),
()()
dz f f yf dx f f xf dy
z
f f x y f f x y f xyf x y
=+++-+
∂
=+++-+-+
∂∂
12、极小值11
(0,)
f e
e
-=-
13、
r h
==14、83
(,)
55。