Linux下的串口编程
嵌入式Linux下串口应用编程

式标志
ns u i ne g d s h o r t c
_
I f l a g  ̄ l i n e ,
式标志
ns u i ne g d s h o r t c
_
}
u ns i ne g d s h o r t C
_
r e a d ( ) 函数立 即返 回。若有可读 的数据时 ,则 读 取数据并返 回被 读取的字节 数,否则读取 失 败 并返 回0 ( 2 ) M I N 大于0 ,T I M E 为0 :r e a d ( ) 函数会等 待 到有M I N 个字节可 以被读取 ,否则一直处于 阻塞状态 。 ( 3 ) M I N 为0 ,而 T I M E > O : 只要满 足 两种情 形下:a 、存在数 据可读 ;b 、阻塞T I M E 的十 分 之一秒 ,r e a d 函数 就会返 回,其中返 回值为 读 取到的字节数 。如果在有数据 可读前超 时,则 r e a d ( ) 函数返 回值为0 。 ( 4 ) M I N 和T I M E 全 都大于0 : 只有满足如 下 两种情形之一 时,r e a d 0函数才会返 回 : 缓存 区 中有 M I N 个字节 ,或 者在两个 字符 之 间超 时 T I 艇个 十分之 一秒 。 从严格意义上 来讲,原始模式是一 种特 殊 的非规范模 式。在原始模 式下,对输入数据 的 处理方式是按 字节为单位 ,并且终端是 不可回 显的 。通过 调用C f m a k e r a w ( ) 函数就 可 以将 把 终端的该工作模式设置为原始模式 。 三 、简单 的串口设置详解流程 下面 以指 纹识别系统为例介 绍下串 口的操 作流程 。 本 系统 中,对串 口的操作和使用 可 以分为 如下几个 部分 :串口的初 始化 ( 包括 串 口设备 的打开 、串 口设备属 性的设置 )、串 口数据单 字节读取 、串 口数据 的多字节读取 、串 口数据 的单字节 写入、串 口数据 的多字节写入 串 口 设备的关闭 。 I . 串口设备 的初始化过程 ( 1 ) 打开 串口 在L i n u x 系统 中,对设 备的操 作如 同普通 文件 一样,在本系统 中打开串 口设备 的代码如 下所示 :
Linux下串口通信编程

Linux下串口通信编程一、什么是串口通信?串口通信是指计算机主机与外设之间以及主机系统与主机系统之间数据的串行传送。
使用串口通信时,发送和接收到的每一个字符实际上都是一次一位的传送的,每一位为1或者为0。
二、串口通信的分类串口通信可以分为同步通信和异步通信两类。
同步通信是按照软件识别同步字符来实现数据的发送和接收,异步通信是一种利用字符的再同步技术的通信方式。
2.1 同步通信同步通信是一种连续串行传送数据的通信方式,一次通信只传送一帧信息。
这里的信息帧与异步通信中的字符帧不同,通常含有若干个数据字符。
它们均由同步字符、数据字符和校验字符(CRC)组成。
其中同步字符位于帧开头,用于确认数据字符的开始。
数据字符在同步字符之后,个数没有限制,由所需传输的数据块长度来决定;校验字符有1到2个,用于接收端对接收到的字符序列进行正确性的校验。
同步通信的缺点是要求发送时钟和接收时钟保持严格的同步。
2.2 异步通信异步通信中,数据通常以字符或者字节为单位组成字符帧传送。
字符帧由发送端逐帧发送,通过传输线被接收设备逐帧接收。
发送端和接收端可以由各自的时钟来控制数据的发送和接收,这两个时钟源彼此独立,互不同步。
接收端检测到传输线上发送过来的低电平逻辑"0"(即字符帧起始位)时,确定发送端已开始发送数据,每当接收端收到字符帧中的停止位时,就知道一帧字符已经发送完毕。
在异步通行中有两个比较重要的指标:字符帧格式和波特率。
(1)字符帧,由起始位、数据位、奇偶校验位和停止位组成。
1.起始位:位于字符帧开头,占1位,始终为逻辑0电平,用于向接收设备表示发送端开始发送一帧信息。
2.数据位:紧跟在起始位之后,可以设置为5位、6位、7位、8位,低位在前高位在后。
3.奇偶校验位:位于数据位之后,仅占一位,用于表示串行通信中采用奇校验还是偶校验。
(2)波特率,波特率是每秒钟传送二进制数码的位数,单位是b/s。
异步通信的优点是不需要传送同步脉冲,字符帧长度也不受到限制。
linux串口编程参数配置详解

linux串口编程参数配置详解1.linux串口编程需要的头文件#include <stdio.h> //标准输入输出定义#include <stdlib.h> //标准函数库定义#include <unistd.h> //Unix标准函数定义#include <sys/types.h>#include <sys/stat.h>#include <fcntl.h> //文件控制定义#include <termios.h> //POSIX中断控制定义#include <errno.h> //错误号定义2.打开串口串口位于/dev中,可作为标准文件的形式打开,其中:串口1 /dev/ttyS0串口2 /dev/ttyS1代码如下:int fd;fd = open(“/dev/ttyS0”, O_RDWR);if(fd == -1){Perror(“串口1打开失败!”);}//else//fcntl(fd, F_SETFL, FNDELAY);除了使用O_RDWR标志之外,通常还会使用O_NOCTTY和O_NDELAY这两个标志。
O_NOCTTY:告诉Unix这个程序不想成为“控制终端”控制的程序,不说明这个标志的话,任何输入都会影响你的程序。
O_NDELAY:告诉Unix这个程序不关心DCD信号线状态,即其他端口是否运行,不说明这个标志的话,该程序就会在DCD信号线为低电平时停止。
3.设置波特率最基本的串口设置包括波特率、校验位和停止位设置,且串口设置主要使用termios.h头文件中定义的termios结构,如下:struct termios{tcflag_t c_iflag; //输入模式标志tcflag_t c_oflag; //输出模式标志tcflag_t c_cflag; //控制模式标志tcflag_t c_lflag; //本地模式标志cc_t c_line; //line disciplinecc_t c_cc[NCC]; //control characters}代码如下:int speed_arr[] = { B38400, B19200, B9600, B4800, B2400, B1200, B300, B384 00, B19200, B9600, B4800, B2400, B1200, B300, };int name_arr[] = {38400, 19200, 9600, 4800, 2400, 1200, 300, 38400, 19200, 9 600, 4800, 2400, 1200, 300, };void SetSpeed(int fd, int speed){int i;struct termios Opt; //定义termios结构if(tcgetattr(fd, &Opt) != 0){perror(“tcgetattr fd”);return;}for(i = 0; i < sizeof(speed_arr) / sizeof(int); i++){if(speed == name_arr[i]){tcflush(fd, TCIOFLUSH);cfsetispeed(&Opt, speed_arr[i]);cfsetospeed(&Opt, speed_arr[i]);if(tcsetattr(fd, TCSANOW, &Opt) != 0){perror(“tcsetattr fd”);return;}tcflush(fd, TCIOFLUSH);}}}注意tcsetattr函数中使用的标志:TCSANOW:立即执行而不等待数据发送或者接受完成。
linux_虚拟串口实现方法_概述及解释说明

linux 虚拟串口实现方法概述及解释说明1. 引言1.1 概述本文将介绍Linux下实现虚拟串口的方法,并对每种方法进行解释说明。
虚拟串口指的是一种软件仿真的串口设备,可以模拟物理串口的功能,实现数据的收发和传输。
在Linux系统中,使用虚拟串口可以满足一些特定场景下的需求,如开发、测试和调试等。
1.2 文章结构本文按照以下结构进行组织:- 第一部分为引言,对文章进行概述,并介绍文章的结构和目标;- 第二部分将介绍虚拟串口的背景知识,包括串口通信原理、虚拟串口定义与作用以及Linux中虚拟串口的应用场景;- 第三部分将详细介绍Linux下实现虚拟串口的三种方法:内核模块方式、用户空间模拟方式和设备树(DT)方式;- 第四部分将对每种实现方法进行解释说明,包括其原理、特点和适用情况;- 第五部分为总结与展望,对文章内容进行总结并展望未来发展方向。
1.3 目的本文旨在提供一个全面且清晰的介绍Linux下实现虚拟串口方法的资料,帮助读者理解虚拟串口的概念和原理,并根据实际需求选择合适的实现方法。
通过阅读本文,读者将了解到不同实现方法的优缺点,以及它们在不同场景下的应用情况。
同时,本文也对未来虚拟串口技术的发展进行展望。
2. 虚拟串口的背景:2.1 串口通信的基本原理:串口是一种用于在计算机和外部设备之间进行数据传输的通信接口。
它通过一个物理连接,使用一组控制信号和数据信号来实现双向通信。
串口通信具有简单、可靠、广泛应用等特点,因此在许多领域都得到了广泛应用,如电脑与打印机、调制解调器、路由器等设备之间的连接。
2.2 虚拟串口的定义与作用:虚拟串口是对物理串口进行仿真或模拟的一种技术。
它通过软件方式模拟了一个不存在的串行接口,使得应用程序可以通过虚拟串口与外部设备进行通信。
虚拟串口具有操作灵活、易于扩展等特点,可以提供与物理串口相似或更强大的功能。
2.3 虚拟串口在Linux中的应用场景:在Linux系统中,虚拟串口广泛应用于各种嵌入式系统开发和调试场景。
嵌入式操作系统Linux中的串口应用编程

I
嵌入式操作系统 L x 的审口应用编程 iu 中 n
■ 厦 门 大 学 唐 建 东 卢 贵 主
针 对 嵌 入 式 Linux 操 作 系统 的 特 点 , 分 析 在 该 系统 下 串行 通 信 口编 程 控 制 的 方 法 , 总 结 程 序
摘
要
设 计 的 步 骤 ; 在 嵌 入 式 Linux 系 统 上 , 编 写控 制 程 序 , 成 功 地 实 现 嵌 入 式 系统 与微 机 系 统
4
Te s I s r m e s, U SA .TM ¥3 0C X / X / xa n t u nt 2 l C2
更详 细 的 内容 在 此 不 再 多述 , 本 人将 另 文 介 绍 。■ _
参考 文献
l 彭 启 琮 , 李 玉 柏 ,管 庆 .DS P与 实 时 数 字 信 号 处 理 .成 都 :电 子 科 技 大 学 出版 社 , l 9 5 9 2 戴 明 桢 .数 字 信 号 处理 的 硬 件 实现 . 北 京 :
根 据 不 同 条 件 控 制 不 同 的 设 备 。 基 于 美 国 电 子 工 业 协 会 E A 的 串 口通 信 标 准 一 I RS 3 , 是 目前 广 泛 使 22 用 的 设备 控 制 通 信 接 口 。在 嵌 入 式 系统 中实 现 串 口 通 信 , 可 延 伸 系 统 的 应 用 触 角 , 扩 大 系 统 的 数 据 采
# k od iln m e il tpe u b r um b r m n f e a f ey n m e n l e2
1 嵌 入式 操作 系统 L n x串 口模 块 u i
L n x操 作 系 统 的 主 要 优 点 是 稳 定 、 内 核 可 重 iu 新 编 译 、 提 供 开 放 的 内 核 源 代 码 。 Li u 内 核 采 用 n x
嵌入式linux串口应用程序编写流程

嵌入式linux串口应用程序编写流程嵌入式Linux系统提供了丰富的串口接口,可以通过串口与其他设备进行通信,这为开发嵌入式系统提供了很多可能性。
下面是编写嵌入式Linux串口应用程序的流程:1. 确定串口设备:首先要确定要使用的串口设备,可以使用命令`ls /dev/tty*`来查看系统中可用的串口设备列表。
根据需要选择合适的串口设备。
2. 打开串口设备:在Linux系统中,使用文件的方式来操作串口设备。
可以使用C语言中的open函数来打开串口设备文件,并返回串口设备的文件描述符。
例如:`int serial_fd = open("/dev/ttyUSB0", O_RDWR | O_NOCTTY | O_NDELAY);`。
其中,`O_RDWR`表示以读写模式打开串口设备,`O_NOCTTY`表示打开设备后不会成为该进程的控制终端,`O_NDELAY`表示非阻塞模式。
3. 配置串口参数:打开串口设备后,需要配置串口参数,包括波特率、数据位、停止位、校验位等。
可以使用C语言中的termios库来进行串口参数的配置。
例如:```cstruct termios serial_config;tcgetattr(serial_fd, &serial_config);cfsetispeed(&serial_config, B115200);cfsetospeed(&serial_config, B115200);serial_config.c_cflag |= CS8;serial_config.c_cflag &= ~PARENB;serial_config.c_cflag &= ~CSTOPB;tcsetattr(serial_fd, TCSANOW, &serial_config);```上述代码将波特率设置为115200,数据位设置为8位,无校验位,一个停止位。
Linux下串口通信详解(上)打开串口和串口初始化详解

Linux下串口通信详解(上)打开串口和串口初始化详解Linux下串口通信主要有下面几个步骤串口通信流程图下面我会一一介绍这几个步骤。
1.打开串口代码(串口为ttyUSB0)[java] view plain copy1.//打开串口2.int open_port(void)3.{4.int fd;5.6.fd=open("/dev/ttyUSB0",O_RDWR | O_NOCTTY | O_NON BLOCK);//O_NONBLOCK设置为非阻塞模式,在read时不会阻塞住,在读的时候将read放在while循环中,下一节篇文档将详细讲解阻塞和非阻塞7.// printf("fd=%d\n",fd);8.9.if(fd==-1)10.{11.perror("Can't Open SerialPort");12.}13.14.return fd;15.}打开串口时也可以多加一些内容,比如判断串口为阻塞状态、测试是否为终端设备等,这些是必要的,所以较上面的基本的打开串口的代码,更加完整健壮一些的代码流程如下所示:打开串口较完整流程图代码:[cpp] view plain copy1./**2.* open port3.* @param fd4.* @param comport 想要打开的串口号5.* @return 返回-1为打开失败6.*/7.int open_port(int fd,int comport)8.{9.char *dev[]={"/dev/ttyUSB0","/dev/ttyS1","/dev/ttyS2"};10.11.if (comport==1)//串口112.{13.fd = open( "/dev/ttyUSB0", O_RDWR|O_NOCTTY|O_N DELAY);14.if (-1 == fd)15.{16.perror("Can't Open Serial Port");17.return(-1);18.}19.}20.else if(comport==2)//串口221.{22.fd = open( "/dev/ttyS1", O_RDWR|O_NOCTTY|O_NDEL AY); //没有设置<span style="font-family: Arial, Helvetica, sans-serif;">O_NONBLOCK非阻塞模式,也可以设置为非阻塞模式,两个模式在下一篇博客中具体说明</span>23.24.if (-1 == fd)25.{26.perror("Can't Open Serial Port");27.return(-1);28.}29.}30.else if (comport==3)//串口331.{32.fd = open( "/dev/ttyS2", O_RDWR|O_NOCTTY|O_NDEL AY);33.if (-1 == fd)34.{35.perror("Can't Open Serial Port");36.return(-1);37.}38.}39./*恢复串口为阻塞状态*/40.if(fcntl(fd, F_SETFL, 0)<0)41.printf("fcntl failed!\n");42.else43.printf("fcntl=%d\n",fcntl(fd, F_SETFL,0));44./*测试是否为终端设备*/45.if(isatty(STDIN_FILENO)==0)46.printf("standard input is not a terminal device\n");47.else48.printf("isatty success!\n");49.printf("fd-open=%d\n",fd);50.return fd;51.}关键函数解释:功能描述:用于打开或创建文件,成功则返回文件描述符,否则返回-1,open返回的文件描述符一定是最小的未被使用的描述符[cpp] view plain copy1.#include<fcntl.h>2.int open(const char *pathname, int oflag, ... );参数解释:pathname:文件路径名,串口在linux中被看做是一个文件oflag:一些文件模式选择,有如下几个参数可以设置•O_RDONLY只读模式•O_WRONLY只写模式•O_RDWR读写模式上面三个参数在设置的时候必须选择其中一个下面的是可选的•O_APPEND每次写操作都写入文件的末尾•O_CREAT如果指定文件不存在,则创建这个文件•O_EXCL如果要创建的文件已存在,则返回 -1,并且修改 errno 的值•O_TRUNC如果文件存在,并且以只写/读写方式打开,则清空文件全部内容•O_NOCTTY如果路径名指向终端设备,不要把这个设备用作控制终端。
linux下的串口通信原理及编程实例

linux下的串⼝通信原理及编程实例linux下的串⼝通信原理及编程实例⼀、串⼝的基本原理1 串⼝通讯串⼝通讯(Serial Communication),是指外设和计算机间,通过数据信号线、地线等,按位进⾏传输数据的⼀种通讯⽅式。
串⼝是⼀种接⼝标准,它规定了接⼝的电⽓标准,没有规定接⼝插件电缆以及使⽤的协议。
2 串⼝通讯的数据格式 ⼀个字符⼀个字符地传输,每个字符⼀位⼀位地传输,并且传输⼀个字符时,总是以“起始位”开始,以“停⽌位”结束,字符之间没有固定的时间间隔要求。
每⼀个字符的前⾯都有⼀位起始位(低电平),字符本⾝由7位数据位组成,接着字符后⾯是⼀位校验位(检验位可以是奇校验、偶校验或⽆校验位),最后是⼀位或⼀位半或⼆位停⽌位,停⽌位后⾯是不定长的空闲位,停⽌位和空闲位都规定为⾼电平。
实际传输时每⼀位的信号宽度与波特率有关,波特率越⾼,宽度越⼩,在进⾏传输之前,双⽅⼀定要使⽤同⼀个波特率设置。
3 通讯⽅式单⼯模式(Simplex Communication)的数据传输是单向的。
通信双⽅中,⼀⽅固定为发送端,⼀⽅则固定为接收端。
信息只能沿⼀个⽅向传输,使⽤⼀根传输线。
半双⼯模式(Half Duplex)通信使⽤同⼀根传输线,既可以发送数据⼜可以接收数据,但不能同时进⾏发送和接收。
数据传输允许数据在两个⽅向上传输,但是,在任何时刻只能由其中的⼀⽅发送数据,另⼀⽅接收数据。
因此半双⼯模式既可以使⽤⼀条数据线,也可以使⽤两条数据线。
半双⼯通信中每端需有⼀个收发切换电⼦开关,通过切换来决定数据向哪个⽅向传输。
因为有切换,所以会产⽣时间延迟,信息传输效率低些。
全双⼯模式(Full Duplex)通信允许数据同时在两个⽅向上传输。
因此,全双⼯通信是两个单⼯通信⽅式的结合,它要求发送设备和接收设备都有独⽴的接收和发送能⼒。
在全双⼯模式中,每⼀端都有发送器和接收器,有两条传输线,信息传输效率⾼。
显然,在其它参数都⼀样的情况下,全双⼯⽐半双⼯传输速度要快,效率要⾼。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Linux下的串口编程(二)分类:Linux S3C24402012-03-21 15:52 5557人阅读评论(1) 收藏举报linux编程终端terminalstruct测试Linxu下的串口编程(二)/************声明:本人只是见到这篇文章对我帮助很大才转载的,但是这个完整的程序里面本来有语法错误的,现在让我改过来了************/---------------------------------------------------------Author :tiger-johnWebSite :/tigerjbEmail :jibo.tiger@Update-Time : 2011年2月14日星期一Tiger声明:本人鄙视直接复制本人文章而不加出处的个人或团体,但不排斥别人转载tiger-john的文章,只是请您注明出处并和本人联系或留言给我。
3Q---------------------------------------------------------前面已经提到过Linux下皆为文件,这当然也包括我们今天的主角àUART0串口。
因此对他的一切操作都和文件的操作一样(涉及到了open,read,write,close等文件的基本操作)。
一.Linux下的串口编程又那几部分组成1. 打开串口2. 串口初始化3. 读串口或写串口4. 关闭串口二.串口的打开既然串口在linux中被看作了文件,那么在对文件进行操作前先要对其进行打开操作。
1.在Linxu中,串口设备是通过串口终端设备文件来访问的,即通过访问/dev/ttyS0,/dev/ttyS1,/dev/ttyS2这些设备文件实现对串口的访问。
2.调用open()函数来代开串口设备,对于串口的打开操作,必须使用O_NOCTTY参数。
l O_NOCTTY:表示打开的是一个终端设备,程序不会成为该端口的控制终端。
如果不使用此标志,任务一个输入(eg:键盘中止信号等)都将影响进程。
l O_NDELAY:表示不关心DCD信号线所处的状态(端口的另一端是否激活或者停止)。
3.打开串口模块有那及部分组成1>调用open()函数打开串口,获取串口设备文件描述符2>获取串口状态,判断是否阻塞3>测试打开的文件描述符是否为终端设备4程序:/***************************************************************** * 名称: UART0_Open* 功能:打开串口并返回串口设备文件描述* 入口参数: fd :文件描述符 port :串口号(ttyS0,ttyS1,ttyS2)* 出口参数:正确返回为1,错误返回为0*****************************************************************/ int UART0_Open(int fd,char* port){fd = open( port, O_RDWR|O_NOCTTY|O_NDELAY); if (FALSE == fd){perror("Can't Open Serial Port");return(FASLE);}//判断串口的状态是否为阻塞状态if(fcntl(fd, F_SETFL, 0) < 0){printf("fcntl failed!/n");return(FALSE);}else{printf("fcntl=%d/n",fcntl(fd, F_SETFL,0));}//测试是否为终端设备if(0 == isatty(STDIN_FILENO)){printf("standard input is not a terminal device/n"); return(FALSE);}else{printf("isatty success!/n");}printf("fd->open=%d/n",fd);return fd;}三.串口的初始化1. 在linux中的串口初始化和前面的串口初始化一样。
需要设置串口波特率,数据流控制,帧的格式(即数据位个数,停止位,校验位,数据流控制)2. 串口初始化模块有那几部分组成:1>.设置波特率2>设置数据流控制2>设置帧的格式(即数据位个数,停止位,校验位)John哥说明:1>设置串口参数时要用到termios结构体,因此先要通过函数tcgettattr(fd,&options)获得串口指向termios结构的指针。
2>通过cfsetispeed函数和cfsetospeed函数用来设置串口的输入/输出波特率。
一般情况下,输入和输出波特率相等的。
3>设置数据位可以通过修改termios机构体中c_flag来实现。
其中CS5,CS6,CS7,CS8对应数据位的5,6,7,8。
在设置数据位时,必须要用CSIZE做位屏蔽。
4>数据流控制是使用何种方法来标志数据传输的开始和结束。
5>在设置完波特率,数据流控制,数据位,校验位,停止位,停止位后,还要设置最小等待时间和最小接收字符。
6>在完成配置后要通过tcsetattr()函数来激活配置。
3.程序:/******************************************************************** 名称: UART0_Set* 功能:设置串口数据位,停止位和效验位* 入口参数: fd 串口文件描述符* speed 串口速度* flow_ctrl 数据流控制* databits 数据位取值为 7 或者8* stopbits 停止位取值为 1 或者2* parity 效验类型取值为N,E,O,,S*出口参数:正确返回为1,错误返回为0*******************************************************************/int UART0_Set(int fd,int speed,int flow_ctrl,int databits,int stopbits,int parity){int i;int status;int speed_arr[] = { B38400, B19200, B9600, B4800,B2400, B1200, B300,B38400, B19200, B9600, B4800, B2400, B1200, B300 }; int name_arr[] ={38400, 19200, 9600, 4800, 2400, 1200, 300, 38400, 192 00, 9600, 4800, 2400, 1200, 300 };struct termios options;/*tcgetattr(fd,&options)得到与fd指向对象的相关参数,并将它们保存于options,该函数,还可以测试配置是否正确,该串口是否可用等。
若调用成功,函数返回值为0,若调用失败,函数返回值为1.*/if ( tcgetattr( fd,&options) != 0){perror("SetupSerial 1");return(FALSE);}//设置串口输入波特率和输出波特率for ( i= 0; i < sizeof(speed_arr) / sizeof(int); i++){if (speed == name_arr[i]){cfsetispeed(&Options, speed_arr[i]); cfsetospeed(&Options, speed_arr[i]); }}//修改控制模式,保证程序不会占用串口options.c_cflag |= CLOCAL;//修改控制模式,使得能够从串口中读取输入数据options.c_cflag |= CREAD;//设置数据流控制switch(flow_ctrl){case 0 ://不使用流控制options.c_cflag &= ~CRTSCTS;break;case 1 ://使用硬件流控制options.c_cflag |= CRTSCTS;break;case 2 ://使用软件流控制options.c_cflag |= IXON | IXOFF | IXANY; break;}//设置数据位options.c_cflag &= ~CSIZE; //屏蔽其他标志位 switch (databits){case 5 :options.c_cflag |= CS5;break;case 6 :options.c_cflag |= CS6;break;case 7 :options.c_cflag |= CS7;break;case 8:options.c_cflag |= CS8;break;default:fprintf(stderr,"Unsupported data size/n"); return (FALSE);}//设置校验位switch (parity){case 'n':case 'N': //无奇偶校验位。
options.c_cflag &= ~PARENB;options.c_iflag &= ~INPCK;break;case 'o':case 'O'://设置为奇校验options.c_cflag |= (PARODD | PARENB); options.c_iflag |= INPCK;break;case 'e':case 'E'://设置为偶校验options.c_cflag |= PARENB;options.c_cflag &= ~PARODD;options.c_iflag |= INPCK;break;case 's':case 'S': //设置为空格options.c_cflag &= ~PARENB;options.c_cflag &= ~CSTOPB;break;default:fprintf(stderr,"Unsupported parity/n"); return (FALSE);}// 设置停止位switch (stopbits){case 1:options.c_cflag &= ~CSTOPB;break;case 2:options.c_cflag |= CSTOPB;break;default:fprintf(stderr,"Unsupported stop bits/n");return (FALSE);}//修改输出模式,原始数据输出options.c_oflag &= ~OPOST;//设置等待时间和最小接收字符options.c_cc[VTIME] = 1; /* 读取一个字符等待1*(1/10)s */ options.c_cc[VMIN] = 1; /* 读取字符的最少个数为1 *///如果发生数据溢出,接收数据,但是不再读取tcflush(fd,TCIFLUSH);//激活配置 (将修改后的termios数据设置到串口中)if (tcsetattr(fd,TCSANOW,&options) != 0){perror("com set error!/n");}return (TRUE);}/******************************************************************** 名称: UART0_Init()* 功能:串口初始化* 入口参数: fd 文件描述符* speed 串口速度* flow_ctrl 数据流控制* databits 数据位取值为 7 或者8* stopbits 停止位取值为 1 或者2* parity 效验类型取值为N,E,O,,S * 出口参数:正确返回为1,错误返回为0*******************************************************************/int UART0_Init(int fd, int speed,int flow_ctrlint databits,int stopbits,int parity){int err;//设置串口数据帧格式if (UART0_Set(fd,115200,0,8,1,'N') == FALSE){}else{return TRUE;}}注:如果不是开发终端之类的,只是串口传输数据,而不需要串口来处理,那么使用原始模式(Raw Mode)方式来通讯,设置方式如下:options.c_lflag &= ~(ICANON | ECHO | ECHOE |ISIG); /*Input*/options.c_oflag &= ~OPOST; /*Output*/四.串口的读写函数:1. 读写串口是通过使用read函数和write函数来实现的。