人教版 高中数学必修5 余弦定理教案

合集下载

高中数学余弦定理教案5篇

高中数学余弦定理教案5篇

高中数学余弦定理教案5篇作为一位杰出的老师,时常要开展教案准备工作,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。

如何把教案做到重点突出呢?这里给大家分享一些关于高中数学余弦定理教案,方便大家学习。

高中数学余弦定理教案篇1一、教材分析《余弦定理》选自人教A版高中数学必修五第一章第一节第一课时。

本节课的主要教学内容是余弦定理的内容及证明,以及运用余弦定理解决“两边一夹角”“三边”的解三角形问题。

余弦定理的学习有充分的基础,初中的勾股定理、必修一中的向量知识、上一课时的正弦定理都是本节课内容学习的知识基础,同时又对本节课的学习提供了一定的方法指导。

其次,余弦定理在高中解三角形问题中有着重要的地位,是解决各种解三角形问题的常用方法,余弦定理也经常运用于空间几何中,所以余弦定理是高中数学学习的一个十分重要的内容。

二、教学目标知识与技能:1、理解并掌握余弦定理和余弦定理的推论。

2、掌握余弦定理的推导、证明过程。

3、能运用余弦定理及其推论解决“两边一夹角”“三边”问题。

过程与方法:1、通过从实际问题中抽象出数学问题,培养学生知识的迁移能力。

2、通过直角三角形到一般三角形的过渡,培养学生归纳总结能力。

3、通过余弦定理推导证明的过程,培养学生运用所学知识解决实际问题的能力。

情感态度与价值观:1、在交流合作的过程中增强合作探究、团结协作精神,体验解决问题的成功喜悦。

2、感受数学一般规律的美感,培养数学学习的兴趣。

三、教学重难点重点:余弦定理及其推论和余弦定理的运用。

难点:余弦定理的发现和推导过程以及多解情况的判断。

四、教学用具普通教学工具、多媒体工具 (以上均为命题教学的准备)高中数学余弦定理教案篇2一、教学内容分析人教版《普通高中课程标准实验教科书·必修(五)》(第2版)第一章《解三角形》第一单元第二课《余弦定理》。

通过利用向量的数量积方法推导余弦定理,正确理解其结构特征和表现形式,解决“边、角、边”和“边、边、边”问题,初步体会余弦定理解决“边、边、角”,体会方程思想,激发学生探究数学,应用数学的潜能。

最新人教版高中数学必修5第一章“余弦定理”教案3

最新人教版高中数学必修5第一章“余弦定理”教案3

1.1.2余弦定理教学目的1.使学生掌握余弦定理及其证明方法.2.使学生初步掌握余弦定理的应用.教学重点与难点教学重点是余弦定理及其应用;教学难点是用解析法证明余弦定理.教学过程设计一、复习师:直角△ABC中有如下的边角关系(设∠C=90°):(1)角的关系A+B+C=180°.A+B=90°.(2)边的关系c2=a2+b2.二、引入师:在△ABC中,当∠C=90°时,有c2=a2+b2.若a,b边的长短不变,变换∠C的大小时,c2与a2+b2有什么关系呢?请同学们思考.如图1,若∠C<90°时,由于AC与BC的长度不变,所以AB的长度变短,即c2<a2+b2.如图2,若∠C>90°时,由于AC与BC的长度不变,所以AB的长度变长,即c2>a2+b2.经过议论学生已得到当∠C≠90°时,c2≠a2+b2,那么c2与a2+b2到底相差多少呢?请同学们继续思考.如图3,当∠C为锐角时,作BD⊥AC于D,BD把△ABC分成两个直角三角形:在Rt△ABD中,AB2=AD2+BD2;在Rt△BDC中,BD=BC·sinC=asinC,DC=BC·cosC=acosC.所以,AB2=AD2+BD2化为c2=(b-acosC)2+(asinC)2,c2=b2-2abcosC+a2cos2C+a2sin2C,c2=a2+b2-2abcosC.我们可以看出∠C为锐角时,△ABC的三边a,b,c具有c2=a2+b2-2abcosC 的关系.从以上分析过程,我们对∠C是锐角的情况有了清楚认识.我们不仅要认识到,∠C为锐角时有c2=a2+b2-2abcosC,还要体会出怎样把一个斜三角形转化成两个直角三角形的.这种未知向已知的转化在数学中经常碰到.下面请同学们自己动手推导结论.如图4,当∠C为钝角时,作BD⊥AC,交AC的延长线于D.△ACB是两个直角三角形之差.在Rt△ABD中,AB2=AD2+BD2.在Rt△BCD中,∠BCD=π-C.BD=BC·sin(π-C),CD=BC· cos(π-C).所以AB2=AD2+BD2化为c2=(AC+CD)2+BD2=[b+acos(π-C)]2+[asin(π-C)]2=b2+2abcos(π-C)+a2cos2(π-C)+a2sin2(π-C)=b2+2abcos(π-C)+a2.因为cos(π-C)=-cosC,所以c2=b2+a2-2abcosC.这里∠C为钝角,cosC为负值,-2abcosC为正值,所以b2+a2-2abcosC >a2+b2,即c2>a2+b2.从以上我们可以看出,无论∠C是锐角还是钝角,△ABC的三边都满足c2=a2+b2-2abcosC.这就是余弦定理.我们轮换∠A,∠B,∠C的位置可以得到a2=b2+c2-2bccosA.b2=c2+a2-2accosB.三、证明余弦定理师:在引入过程中,我们不仅找到了斜三角形的边角关系,而且还给出了证明,这个证明是依据分类讨论的方法,把斜三角形化归为两个直角三角形的和或差,再利用勾股定理和锐角三角函数证明的.这是证明余弦定理的一个好方法,但比较麻烦.现在我们已学完了三角函数,无论∠α是锐角、直角或钝角,我们都有统一的定义,借用三角函数和两定点间的距离来证明余弦定理,我们就可避开分类讨论.我们仍就以∠C为主进行证明.如图5,我们把顶点C置于原点,CA落在x轴的正半轴上,由于△ABC 的AC=b,CB=a,AB=c,则A,B,C点的坐标分别为A(b,0),B(acosC,asinC),C(0,0).请同学们分析B点坐标是怎样得来的.生:∠ACB=∠C,CB为∠ACB的终边,B为CB上一点,设B的坐标为(x,师:回答很准确,A,B两点间的距离如何求?生:|AB|2=(acosC-b)2+(asinC-0)2=a2cos2C-2abcosC+b2+a2sin2C=a2+b2-2abcosC,即c2=a2+b2-2abcosC.师:大家请看,我们这里也导出了余弦定理,这个证明方法是解析法.这种方法以后还要详细学习.余弦定理用语言可以这样叙述,三角形一边的平方等于另两边的平方和再减去这两边与夹角余弦的乘积的2倍.即:a2=b2+c2-2bccosA.c2=a2+b2-2abcosC.b2=a2+c2-2accosB.若用三边表示角,余弦定理可以写为四、余弦定理的作用(1)已知三角形的三条边长,可求出三个内角;(2)已知三角形的两边及夹角,可求出第三边.解由余弦定理可知Bc2=Ab2+Ac2-2AB×AC·cosA所以BC=7.以上两个小例子简单说明了余弦定理的作用.五、余弦定理与勾股定理的关系、余弦定理与锐角三角函数的关系在△ABC中,c2=a2+b2-2abcosC.若∠C=90°,则cosC=0,于是c2=a2+b2-2ab·0=a2+b2.说明勾股定理是余弦定理的特例,余弦定理是勾股定理的推广.这与Rt△ABC中,∠C=90°的锐角三角函数一致,即直角三角形中的锐角三角函数是余弦定理的特例.六、应用举例例1在△ABC中,求证c=bcosA+acosB.师:请同学们先做几分钟.生甲:如图6,作CD⊥AB于D.在Rt△ACD中,AD=b·cosA;在Rt△CBD中,D B=a·cosB.而c=AD+DB,所以c=bcosA+acosB.师:这位学生的证法是否完备,请大家讨论.生乙:他的证法有问题,因为作CD⊥AB时垂足D不一定落在AB上.若落在AB的延长线上时,c≠AD+DB,而c=AD-DB.师:学生乙的问题提得好,我们如果把学生乙所说的情况补充上是否就完备了呢?生丙:还不够.因为作CD⊥AB时,垂足D还可以落在B处.师:其实垂足D有五种落法,如落在AB上;AB的延长线上;BA的延长线上;A点或B点处.我们要分这么多种情况证明未免有些太麻烦了.请大家借用余弦定理证明.生:因为 acosB+bcosA所以 c=acosB+bcosA.师:这种证法显然简单,它避开了分类讨论.你们知道为什么这种证法不用分类讨论吗?生:因为余弦定理本身适用于各种三角形.例2三角形ABC中,AB=2,AC=3,BC=4,求△AB C的面积.师:我们通常求三角形的面积要用公式这个题目,我们应该如何下手呢?生:可以用余弦定理由三边求出一个内角的余弦值,再用同角公式导出这个角的正弦后,最后代入三角形面积公式.解因为a=4,b=3,c=2,所以由sin2A+cos2A=1,且A为△ABC内角,得例3在三角形ABC中,若CB=7,AC=8,AB=9,求AB边的中线长.请同学们先设计解题方案.生甲:我想在△ABC中,已知三边的长可求出cosB.在△BCD中,由BC=7,BD=4.5及cosB的值,再用一次余弦定理便可求出CD.师:这个方案很好.请同学很快计算出结果.解设D为AB中点,连CD.在△ACB中,由AC=8,BC=7,AB=9,得生乙:我们在初中碰到中线时,经常延长中线,所以我想延长中线CD 到E,使DE=CD,想在△BCE中解决.已知BC=7,BE=AC=8,若再知道cos∠CBE,便可解决,但我不知怎样求cos∠CBE.师:这个问题提得很有价值,请大家一起帮助学生乙解决这个难点.(学生开始议论.)生丙:连接AE,由于AD=DB,CD=DE,所以四边形ACBE为平行四边形,可得AC∥BE,∠CBE与∠ACB互补.我能利用余弦定理求出cos∠BCA,再利用互补关系解出cos∠CBE.师:大家看看他讲得好不好.请大家用第二套方案解题.解延长CD至E,使DE=CD.因为CD=DE,AD=DB,所以四边形ACBE是平行四边形.所以BE=AC=8,∠ACB+∠CBE=180°.在△ACB中,CB=7,AC=8,AB=9,由余弦定理可得在△CBE中,这两种解法都是两次用到余弦定理,可见掌握余弦定理是十分必要的.七、总结本节课我们研究了三角形的一种边角关系,即余弦定理,它的证明我们可以用解析法.它的形式有两种,一种是用两边及夹角的余弦表示第三边,另一种是三边表示角.余弦定理适用于各种三角形,当一个三角形的一个内角为90°时,余弦定理就自然化为勾股定理或锐角三角函数.余弦定理的作用如同它的两种形式,一是已知两边及夹角解决第三边问题;另一个是已知三边解决三内角问题.注意在(0,π)范围内余弦值和角的一一对应性.若cos A>0,则A为锐角;若cosA=0,则A为直角;若cosA <0,则A为钝角.另外本节课我们所涉及的内容有两处用到分类讨论的思想方法.请大家解决问题时要考虑全面.如果能回避分类讨论的,应尽可能回避,如用解析法证明余弦定理、用余弦定理证明例1等等.八、作业5.已知△ABC中,acosB=bcos A,请判断三角形的形状.课堂教学设计说明1.余弦定理是解三角形的重要依据,要给予足够重视.本内容安排两节课适宜.第一节,余弦定理的引出、证明和简单应用;第二节复习定理内容,加强定理的应用.2.当已知两边及一边对角需要求第三边时,可利用方程的思想,引出含第三边为未知量的方程,间接利用余弦定理解决问题,此时应注意解的不唯一性.。

余弦定理的教案(通用3篇)

余弦定理的教案(通用3篇)

余弦定理的教案(通用3篇)余弦定理的篇1一、单元教学内容运算定律P——P二、单元教学目标1、探索和理解加法交换律、结合律,乘法交换律、结合律和分配律,能运用运算定律进行一些简便计算。

2、理解和掌握减法和除法的运算性质,并能应用这些运算性质进行简便计算。

3、会应用运算律进行一些简便运算,掌握运算技巧,提高计算能力。

4、在经历运算定律和运算性质的发现过程中,体验归纳、总结和抽象的数学思维方法。

5、在经历运算定律的字母公式形成过程中,能进行有条理地思考,并表达自己的思考结果。

6、经历简便计算过程,感受数的运算与日常生活的密切联系,并在活动中学会与他人合作。

7、在经历解决问题的过程中,体验运算律的价值,增强应用数学的意识。

三、单元教学重、难点1、理解加法交换律、结合律,乘法交换律、结合律和分配律,能运用运算定律进行一些简便计算。

2、理解和掌握减法和除法的运算性质,并能应用这些运算性质进行简便计算。

四、单元教学安排运算定律10课时第1课时加法交换律和结合律一、教学内容:加法交换律和结合律P17——P18二、教学目标:1、在解决实际问题的过程中,发现并掌握加法交换律和结合律,学会用字母表示加法交换律和结合律。

2、在探索运算律的过程中,发展分析、比较、抽象、概括能力,培养学生的符号感。

3、培养学生的观察能力和概括能力。

三、教学重难点重点:发现并掌握加法交换律、结合律。

难点:由具体上升到抽象,概括出加法交换律和加法结合律。

四、教学准备多媒体五、教学过程(一)导入新授1、出示教材第17页情境图。

师:在我们班里,有多少同学会骑自行车?你最远骑到什么地方?师生交流后,课件出示李叔叔骑车旅行的场景:骑车是一项有益健康的运动,你看,这位李叔叔正在骑车旅行呢!2、获取信息。

师:从中你知道了哪些数学信息?(学生回答)3、师小结信息,引出课题:加法交换律和结合律。

(二)探索发现第一环节探索加法交换律1、课件继续出示:“李叔叔今天上午骑了40km,下午骑了56km,一共骑了多少千米?”学生口头列式,教师板书出示: 40+56=96(千米) 56+40=96(千米)你能用等号把这两道算式写成一个等式吗? 40+56=56+40 你还能再写出几个这样的等式吗?学生独自写出几个这样的等式,并在小组内交流各自写出的等式,互相检验写出的等式是否符合要求。

人教高中数学必修五余弦定理教案

人教高中数学必修五余弦定理教案

人教高中数学必修五余弦定理教案一、传授内容:余弦定理。

二、传授目标:1、知识与技术:掌握余弦定理的两种表示形式及证明余弦定理的向量要领,并会运用余弦定理办理两类基本的解三角形标题。

培育数学语言的表达能力以及转化能力。

2、历程与要领:议决设疑、探究、讨论的历程中,在老师的引导下,办理利用余弦定理求解三角形的历程与要领。

培育利用知识办理生活标题的能力、总结概括能力。

3、情绪与态度:在学习历程中,表现“方程的思想”以及“数形连合”的思想,感受余弦定理在生活的应用的意义。

同时,培育学生合作交流、联合的物质,激发学习兴趣。

三、传授重难点:1.传授重点:余弦定理的推导历程及其基本应用;2.传授难点:理解余弦定理的基本应用。

四、传授要领:引导法、演示法。

五、传授历程:余弦定理的推导如图,设c AB b CA a CB ===,,,那么b a c -=,则c ⋅= b A=⋅-⋅+⋅2 C a B从而 2222cos c a b ab C =+-同理可证 2222cos a b c bc A =+- 2222cos b a c ac B =+-余弦定理:三角形中任何一边的平方即是其他双方的平方的和减去这双方与它们的夹角的余弦的积的两倍。

即:2222cos a b c bc A =+-; (注:让学生查看公式特点并总结求谁后面没谁,只有对边的余弦值,帮助学生记 忆)余弦定理的变式(余弦定理推论)学生类比正弦定理鉴别余弦定理的基本应用:1)已知三角形的恣意双方及其夹角可以求第三边2)已知三角形的三条边可以求出三角3.例题讲解例1.在∆ABC 中,.60,4,20===A c b 求a ?解:∵2222cos a b c bc A =+-=1260cos 42242022=⨯⨯-+练习:在∆ABC 中,.60,4,20===A c b 解三角形。

解: ∵2222cos a b c bc A =+-=1260cos 42242022=⨯⨯-+∵ 060=A ,030=B ∴所以三角形ABC 为直角三角形,090=C稳固练习:在ABC ∆ 中,已知030,33,3===B c b ,解三角形。

高中数学必修5第一章《余弦定理》教案

高中数学必修5第一章《余弦定理》教案

课题: §1.1.2余弦定理(第1课时)授课教师:惠来第二中学陈金利教材:人教A版必修5第一章第一节一、教学目标1.知识与技能(1)能选用适当的方法证明余弦定理(主要是向量法);(2)能从余弦定理得到它的推论;(3)能利用余弦定理及推论解三角形(两类).2.过程与方法(1)经历利用向量的方法证明余弦定理的过程,体会向量与三角之间的关系;(2)培养学生在方程思想指导下处理解三角形问题的运算能力.3.情感态度与价值观(1)通过余弦定理与勾股定理的对比,体会特殊与一般的关系.(2)通过三角函数、余弦定理、向量的数量积等知识间的关系,理解事物之间的普遍联系与辩证统一.二、教学重点、难点重点:余弦定理及推论证明和其基本应用;难点:余弦定理证明的方法的选用以及必要性的体会.三、教学方法和手段教学方法:启发式教学(讲练相结合)教学手段:运用多媒体进行教学四、教学过程1.情景设置:隧道工程设计,经常要测算山脚的长度,工程技术人员先在地面上选一适当的位置A,量出A到山脚B、C的距离,再利用经纬仪测出A对山脚BC(即线段BC)的张角,最后通过计算求出山脚的长度BC.2.讲授新课[探索研究]联系已经学过的知识和方法,可用什么途径来解决这个问题?用正弦定理试求,发现因∠C 、∠B 均未知,所以较难求边a .提问:我们可以从哪些角度来研究这个问题,得到一个关系式或计算公式?(老师引导学生从向量法及三角法得出关系式)引导学生用向量方法来研究这个问题,由于涉及边长问题,从而可以考虑用向量来研究这个问题.如图1.1-3,设=,=,=,那么-=,则)()(b a b a c c -⋅-=⋅= ⋅-⋅+⋅=2C ab b a cos 222-+=从而 C ab b a c cos 2222-+= (图1.1-3)同理可证 A bc c b acos 2222-+= B ac c a b cos 2222-+= 于是得到以下定理余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍.即A bc c b acos 2222-+= B ac c a bcos 2222-+= C ab b a c cos 2222-+= 引导学生解决情景问题:若测得:AB =1千米,AC = 千米,∠060=A ,求山脚BC 的长度 .解: 思考:这个式子中有几个量?从方程的角度看已知其中三个量,可以求出第四个量,能否由三边求出一角?(由学生推出)从余弦定理,又可得到以下推论:23A AC AB AC AB BC cos |||2||||222⋅⋅-+=47212312)23(122=⨯⨯⨯-+=27=∴BC222cos 2+-=b c a A bc222cos 2+-=a c b B ac 222cos 2+-=b a c C ba[理解定理] 从而知余弦定理及其推论的基本作用为:①已知三角形的任意两边及它们的夹角就可以求出第三边;②已知三角形的三条边就可以求出其它角.思考:勾股定理指出了直角三角形中三边平方之间的关系,余弦定理则指出了一般三角形中三边平方之间的关系,如何看这两个定理之间的关系?(由学生总结)若ABC ∆中,090=c ,则0cos =c ,这时222b a c +=由此可知余弦定理是勾股定理的推广,勾股定理是余弦定理的特例.[例题分析]例1.在△ABC 中,已知 ,求角A 、B 、C.例2.在△ABC 中,已知 ,求b 及A.例3.在△ABC 中, ,那么A 是( )A 、钝角B 、直角C 、锐角D 、不能确定提出问题:若222c b a +<呢?由学生回答,老师再进行总结.总结:设a 是最长的边,则 △ ABC 是钝角三角形 △ABC 是锐角三角形 △ABC 是直角角三角形例4.在三角形ABC 中,已知1413cos ,8,7===c b a ,求最大角的余弦值. [课堂练习](1)在ABC ∆中,已知4:3:2sin :sin :sin=C B A求 C cos 的值.13,2,6+===c b a OB c a 45,26,32=+==222cb a +>222c b a +>⇔222c b a +<⇔222c b a +=⇔(2)已知13,34,7===c b a ,求最小的内角.(3)在ABC ∆中,若bc c b a++=222,求角A3.课堂小结: (1)余弦定理适用于任何三角形(2)余弦定理的作用:a 、已知三边,求三个角b 、已知两边及这两边的夹角,求第三边,进而可求出其它两个角c 、判断三角形的形状(3)由余弦定理可知:4.课后作业(1)课后阅读:课本第8页[探究与发现](2)课时作业:第10页[习题1.1]A 组第3(1),4(1)题。

“余弦定理”教学设计

“余弦定理”教学设计

“余弦定理”教学设计作为一位不辞辛劳的人民教师,可能需要进行教学设计编写工作,教学设计是把教学原理转化为教学材料和教学活动的计划。

那么应当如何写教学设计呢?下面是作者整理的“余弦定理”教学设计,欢迎大家借鉴与参考,希望对大家有所帮助。

“余弦定理”教学设计1教材分析这是高三一轮复习,内容是必修5第一章解三角形。

本章内容准备复习两课时。

本节课是第一课时。

标要求本章的中心内容是如何解三角形,正弦定理和余弦定理是解三角形的工具,最后应落实在解三角形的应用上。

通过本节学习,学生应当达到以下学习目标:(1)通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理解三角形。

(2)能够运用正弦定理、余弦定理等知识和方法判断三角形形状的问题。

本章内容与三角函数、向量联系密切。

作为复习课一方面将本章知识作一个梳理,另一方面通过整理归纳帮助学生进一步达到相应的学习目标。

学情分析学生通过必修5的学习,对正弦定理、余弦定理的内容已经了解,但对于如何灵活运用定理解决实际问题,怎样合理选择定理进行边角关系转化从而解决三角形综合问题,学生还需通过复习提点有待进一步理解和掌握。

教学目标知识目标:(1)学生通过对任意三角形边长和角度关系的探索,掌握正弦、余弦定理的内容及其证明方法;会运用正、余弦定理与三角形内角和定理,面积公式解斜三角形的两类基本问题。

(2)学生学会分析问题,合理选用定理解决三角形综合问题。

能力目标:培养学生提出问题、正确分析问题、独立解决问题的能力,培养学生在方程思想指导下处理解三角形问题的运算能力,培养学生合情推理探索数学规律的数学思维能力。

情感目标:通过生活实例探究回顾三角函数、正余弦定理,体现数学来源于生活,并应用于生活,激发学生学习数学的兴趣,并体会数学的应用价值,在教学过程中激发学生的探索精神。

教学方法探究式教学、讲练结合重点难点1、正、余弦定理的对于解解三角形的合理选择;2、正、余弦定理与三角形的有关性质的综合运用。

最新人教版高中数学必修5第一章“余弦定理”教案2

最新人教版高中数学必修5第一章“余弦定理”教案2

1.1.2余弦定理教学目标1.掌握余弦定理,熟记定理的结论,会利用向量的数量积证明余弦定理.2.理解余弦定理与勾股定理的关系.教学重点和难点重点:利用向量的数量积证明余弦定理;理解掌握余弦定理的内容;初步对余弦定理进行应用.难点:利用向量的数量积证余弦定理的思路,及对余弦定理的熟练记忆.教学过程设计(一)师生共同复习正弦定理.正弦定理准确地反映了三角形中边与角之间的关系,即在一个三角形中,各边和它所对角的正弦成正比.请同学们回忆一下正弦定理的证明过程.(二)教师讲述新课.前面我们学习正弦定理时同学们已知道(1)如果已知三角形的两个角和任一边,我们用正弦定理可求出其它两边和一角.(2)如果已知三角形的两边和其中一边的对角,我们用正弦定理可求出另一边的对角,再进一步求出其他的边和角.现在我们来研究,如果已知三角形的一个角和夹此角的两边,能否求出此角的对边呢?如图,在△ABC中,AB、BC、CA的长分别为c、a、b.∴b2=a2+c2+2accos(180°-B),b2=a2+c2-2accosB.这个式子就表达了第三边b与另两边a和c及他们夹角之间的关系.b2=a2+c2-2accosB,同理可证出,a2=b2+c2-2bccosA,c2=a2+b2-2abcosC.我们得到余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍.教师引导学生观察余弦定理公式的特征和规律帮助记忆公式,同时要求学生用语言叙述余弦定理,促进对公式的记忆.教师引导学生注意以下问题.(1)如三角形中有一个角是直角,三角形是直角三角形.如∠C=90°,则cosC=0.这时余弦定理为,c2=a2+b2-2abcos90°=a2+b2.这就是勾股定理.因之,勾股定理是余弦定理的特例,而余弦定理是勾股定理的推广.(2)我们用余弦定理求角时,有时为了方便,余弦定理变形为如下形状.(师生共同完成以下例题)解:这个问题是已知三角形的两边a、c,及其夹角B,直接用余弦定理,求第三边,即∠B的对边.由余弦定理,b2=a2+c2-2accosB.∴b=7.解:已知三角形的三边,可用余弦定理确定角.∴A=45°.例3.如图,在△ABC中,应用勾股定理证明余弦定理.解:设AB=c,AC=b,BC=a,过顶点C作AB边上的高CD.则CD=bsinA,AD=bcosA,DB=C-bcosA,在Rt△CDB中,BC2=CD2+DB2.a2=b2sin2A+(c-bcosA)2=b2sin2A+c2-2bccosA+b2cos2A=b2(sin2A+cos2A)-2bccosA+c2=b2+c2-2bccosA∴a2=b2+c2-2bccosA.(三)学生练习.1.课本练习3(1),a=7.2.课本练习3(2),B=90°.(四)教师小结.总结余弦定理的内容,余弦定理公式记忆的特征.余弦定理公式的两种形式.(1)求边形式:a2=b2+c2-2bccosA,b2=a2+c2-2accosB,c2=a2+b2-2abcosC.。

高中数学《余弦定理》教案

高中数学《余弦定理》教案

高中数学《余弦定理》教案一、教学目标1. 让学生理解余弦定理的定义和意义,掌握余弦定理的表达式。

2. 培养学生运用余弦定理解决三角形问题的能力。

3. 培养学生的逻辑思维能力和数学素养。

二、教学重点与难点1. 教学重点:余弦定理的定义和表达式,运用余弦定理解决三角形问题。

2. 教学难点:余弦定理的推导过程,运用余弦定理解决复杂三角形问题。

三、教学方法1. 采用问题驱动法,引导学生主动探究余弦定理。

2. 利用几何画板或实物模型,直观展示三角形中余弦定理的应用。

3. 开展小组讨论,培养学生的合作能力和解决问题的能力。

四、教学准备1. 教师准备PPT,内容包括余弦定理的定义、表达式和应用实例。

2. 准备几何画板或实物模型,用于展示三角形中余弦定理的应用。

3. 准备相关练习题,用于巩固所学知识。

五、教学过程1. 导入:通过一个实际问题,引发学生对余弦定理的思考,激发学生的学习兴趣。

2. 新课讲解:讲解余弦定理的定义和表达式,引导学生理解余弦定理的意义。

3. 实例演示:利用几何画板或实物模型,展示三角形中余弦定理的应用。

4. 小组讨论:让学生分组讨论如何运用余弦定理解决实际问题,培养学生的合作能力和解决问题的能力。

5. 练习巩固:让学生解答相关练习题,巩固所学知识。

6. 总结:对本节课的内容进行总结,强调余弦定理的重要性。

7. 作业布置:布置适量作业,让学生进一步巩固余弦定理的应用。

六、教学延伸1. 引导学生思考余弦定理在实际生活中的应用,例如测量三角形的角度、计算三角形的面积等。

2. 介绍余弦定理在其他领域的应用,如物理学、工程学等。

七、课堂小结1. 让学生回顾本节课所学内容,总结余弦定理的定义、表达式和应用。

2. 强调余弦定理在解决三角形问题中的重要性。

八、课后作业1. 完成教材上的相关练习题,巩固余弦定理的知识点。

九、教学反馈1. 在下一节课开始时,检查学生的作业完成情况,了解学生对余弦定理的掌握程度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、设计思想
新课程的数学提倡学生动手实践,自主探索,合作交流,深刻地理解基本结论的本质, 体验数学发现和创造的历程,力求对现实世界蕴涵的一些数学模式进行思考,作出判断; 同时要求教师从知识的传授者向课堂的设计者、组织者、引导者、合作者转化,从课堂的 执行者向实施者、探究开发者转化。本课尽力追求新课程要求,利用师生的互动合作,提 高学生的数学思维能力,发展学生的数学应用意识和创新意识,深刻地体会数学思想方法 及数学的应用,激发学生探究数学、应用数学知识的潜能。
四、教学目标
继续探索三角形的边长与角度间的具体量化关系、掌握余弦定理的两种表现形式,体 会向量方法推导余弦定理的思想;通过实践演算运用余弦定理解决“边、角、边”及“边、 边、边”问题;深化与细化方程思想,理解余弦定理的本质。通过相关教学知识的联系性, 理解事物间的普遍联系性。
五、教学重点与难点
教学重点是余弦定理的发现过程及定理的应用;教学难点是用向量的数量积推导余弦
余弦定理
一、教学内容分析
人教版《普通高中课程标准实验教科书·必修(五)》(第 2 版)第一章《解三角形》 第一单元第二课《余弦定理》。通过利用向量的数量积方法推导余弦定理,正确理解其结 构特征和表现形式,解决“边、角、边”和“边、边、边”问题,初步体会余弦定理解决 “边、边、角”,体会方程思想,激发学生探究数学,应用数学的潜能。
二、学生学习情况分析
本课之前,学生已经学习了三角函数、向量基本知识和正弦定理有关内容,对于三角 形中的边角关系有了较进一步的认识。在此基础上利用向量方法探求余弦定理,学生已有 一定的学习基础和学习兴趣。总体上学生应用数学知识的意识不强,创造力较弱,看待与 分析问题不深入,知识的系统性不完善,使得学生在余弦定理推导方法的探求上有一定的 难度,在发掘出余弦定理的结构特征、表现形式的数学美时,能够激发学生热爱数学的思 想感情;从具体问题中抽象出数学的本质,应用方程的思想去审视,解决问题是学生学习 的一大难点。
Hale Waihona Puke 2.社会主义本质理论对探索怎样建设3.社19会57主年义2月具,有毛重在要《的关实于践正意确义处。理社人会民主内义2.社部本科会矛质学主盾理的义的论1本本问的.邓质质题提小是的》出平创科讲,提新学话为出,内中我“创涵提们社邓新。出寻始会小的邓(找终主平关小1一代义)坚键平种表的我2持在对能.1中本国把科人社9够国质社5发学才会从4先,会展社年,主更进是主作会,人义深生解义为主毛才本层产放制执义在的质次1力生度政理《成所.认社1的产还兴论论长作.识会 发发力刚国和十靠的社主 展展,刚的实大教概会义 才要发建第践关坚育括主本 是求展立一的系2持。,义质 硬、,生,要基》以人一,理 道发大产还务本重发才方从论 理展力力没是成要展资面而把 ,才促,有由果讲社的源强为我 把是进消完中,话会办是调中四们 发(硬先灭全国抓中主法第必国、对 展2道进剥建共住提三义解一)须的科社 生理生削立产“出、经决资采解社学会 产,产,党什(代济前源取放会技主 力是力消还的么1表基进。从和主术义 作)对的除不执是中础科低发义是1的 为吧社3发两完政社9国基的学级展.建第发认 社二国5会展极全地会先本问技到6生设一展识 会、内主,年分巩位主进建题术高产在生才提 主发外义是底化固所义生立,实级力改产是高 义1展一时中我,的决邓产的是力9,革力硬到 建是切间5国最思定怎小力同实和国另3开道了 设党积经共对终想年的样平的时行国家一放理一 的执极验产农达。1,建一发,改民资方中2,个 根政因教党业到(是设月再展我革教本面探是新 本兴素训站、共2对社,强要国开育主指索)适的 任国都的在手一同执会毛调求的放水义出出第创应科 务在的调深时工、富1政主泽,政以平的4了一三造.时学 ,社第动刻坚代.业发裕规义东中一治来,过2解条节性代水 符会一起总持前.和展。律”关社 国个领我始度放发、地主平 合阶要来结社列资才”认这于会 社公域们终形和展社提题。 马级务为。会,本是1识个总主 会有也党是式发更会9出变社 克二关中主保硬的根8路义 主制发的衡。展快主了化会 思6、系国义持道3深本线基 义占生一年量所生、义社.的主社发解用工现理化问的本 基主了条,综谓产人的会需义会生决和业金商,题1完制 本体重主邓合国力民根主要本 基.主变事所平化向业1也,整度 制,大要小国家的享本9义。质 本义化业有方建的是深5的度一变经平力资手受社任理 原6本的服问法设根社对刻表确 的个化验年提和本段到会 1务论 理第质同务题进与本会一党揭.述立 确共,。出社主社和社主基的 ,二理时的行社体主、实示:, 立同确苏“会义会目会3义本提 是节论,基关改会现义社现了.从为 ,富立共社文,社主的主一改矛出 巩、的我本键造主和改会其社中当 使裕了二会明就会义。义、造盾, 固对重国方是。义根造之所会华代 占,中十主程是主基建中的和为 和第社要针这改本基一承主人中 世这国大义度在义本设国基两进 发一会意。靠不造要本本担义民国 界是共以财的国基制内成特本类一 展节主义的(自仅同求完质的本共一 人我产后富重家本度涵果色完矛步 社、义主2己保时。成理历质和切 口们党毛属要直)制的包最伴社成盾推 会中本要的证并,论史,国发 四必领泽于标接正度确括大随会,的进 主国质矛发了举标第的这成展 分须导东人志控确的立(,着主是学改 义特理盾展2社。志五提需是立进 之坚的提民。制处确是1.能社义我说采革 制色论也。会实着章)出要对,步 一持人出,和理立中够会建国,取开 度社的发的践中把。马到奠 的民要社支经,国社充经设强积放 的会提生稳证国解克社定 东民“会配济是历会分济道调极和 必主出了定明历放思会了 方主以下建4广史主体制路要引社 然义变,.史和主主把制 大专苏义的设大上义现度初严导会 要二建化而党上发义义对度 国政为的资和劳最的出和步经格、主 求设。且坚长展的改企基 进党的鉴致本社动深本对社探济区逐义 。确道人极持达生重造业础 入在根社”富主会人刻质资会索结分步现立路民大社数产大基的。 了过本会,是义发民最和本经的构过代社的对的会千力逐发本改社渡原主探全经展真伟根主济理发正渡化会初于促主年概步展完造会时则义索民济中正大本义结论生确的建新主步经进义的括实,成和主期。基自共的成任优构成了处方设中义探济了改阶为现对,对义总本己同国一为社务越的果根理式提国基索文社造级国于这人制 社路政的致家系国会性根本两。供的本化会与剥家建是的度 会线治道富资列家变的一本变类中了成制迅主社削的设一改的 ,第制路。本重的革道、变化不国强立度速义会制社中个造建 这三主度。社大主,路社化,同这大,的发事主度的会国过结立 是节要。会义关人也,1会社性场的标重展业义的本主特.渡合极 世、内人主有系解和是奠主我会质巨思志大的的工结(质义色时起大 界社容民义初。决社2定义国主的大想着意需发业束30。工社期来地 社(会被民原级了会)世了基社义矛而武我义要展化,(业会。,提 会2主概则和3在生把纪理本会经盾深器国同),同实2化主党把高 主对义括专,高一产资中)论制的济,刻。新经遵改总时现新是义在对了 义手制为政第级个资本国强基度阶成在特的通民济循革之并了民党具这资工 运二七度“实一形以料主又调础的级分新别社过主文自4过,举由主在有个本人 动、届 业在一质是式农的.(义一消,初关已民是它会(没主化愿于和的新主过重过主阶 史新社二 的中化上发之民主1工次灭开步系占主要是变4收义不互集平方民()义渡大渡义级 上民会中 社国三已展)分为人商划剥阔确也绝主正中革官能利中改针主3用社时的时工和 又主全 会的改成生坚。主)业时削了立发对义确国,僚命满、的造,主和会期理期商广 一主义会确”为产持初题正者代,广2生优革处革不资阶足典计解对义平的论.的业大 个义改提立。无,积级资的确改的消阔了势命理命仅√本段人型划决于向赎五总和总搞劳 历革造出 改“产第极形本、分造历除前根,理人的没中而民示体了在社3买种路实路糟动 史命的使 造一阶二领式主落(.析成史两景本社论民具有国形基需党范制诸深会的经线践线成人 性理历中 ,化级是导的义后1农为巨极。√的会内体对革成本要的和如刻主)方济的意和为民 的论史国 党”专共、工的村自变分邓中主指部实生命的结建国初实的义积法成主义总自的 伟是经“ 和即政同稳家商半的食。化小国义导矛际产在走社束状设家步现社的极改分体。任食积 大以验��
相关文档
最新文档