人教版数学八年级竞赛教程之运用公式法进行因式分解附答案
八年数学公式法分解因式的解题方法与技巧

八年数学公式法分解因式的解题方法与技巧数学公式法分解因式是一种常用且重要的解题方法。
以下是八年级数学公式法分解因式的解题方法与技巧:1. 常见因式分解公式:① (a+b)^2=a^2+2ab+b^2② (a-b)^2=a^2-2ab+b^2③ a^2-b^2=(a+b)(a-b)④ a^3+b^3=(a+b)(a^2-ab+b^2)⑤ a^3-b^3=(a-b)(a^2+ab+b^2)⑥ a^2+2ab+b^2=(a+b)^2⑦ a^2-2ab+b^2=(a-b)^2其中,(1)、(2)、(6)、(7) 属于平方公式,(3)、(4)、(5) 是关于立方的公式。
我们在解题时可以根据题目中的条件,选择合适的公式进行因式分解。
2. 把公因式提出来:对于如下式子:2a^2+4ab,我们可以先把公因式 2a 提出来,得到:2a^2+4ab=2a(a+2b)这样就完成了把公因式提出来的操作,接下来我们再根据不同的情况进行因式分解。
3. 进一步分解:有时候,我们需要进一步分解式子,来达到题目的要求。
例如,对于如下式子:9x^6-16y^4,我们可以根据公式 (5) 进行因式分解,得到:9x^6-16y^4=(3x^2)^3-(2y^2)^3=(3x^2-2y^2)(9x^4+6x^2y^2+4y^4)这个策略在解题时非常有用:先用一些基本公式进行初步因式分解,然后进一步分解,最后化简为一般式。
4. 通过多次转化得到结果:有时候,解题过程需要经过多次中间步骤,才能得出最终的结果。
这时候,我们需要耐心思考,灵活变通。
例如,对于如下式子:a^3+b^3+c^3-3abc,我们可以进行一下转化:a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)=(a+b+c)((a-b)^2+(b-c)^2+(c-a)^2)这两步转化虽然看上去有些麻烦,但是却是得到正确答案所必需的。
5. 注意符号:在进行因式分解时,特别要注意符号的处理。
八年级数学竞赛题:因式分解及应用

(2)证明:数 对于任何自然数视都能被20整除.
20.设a、b、c均是不为0的数,且满足
证明:
21.当我们看到下面这个数学算式 时,大概会觉得算题的人错用了运算法则吧,因为我们知道 ,但是,如果你动手计算一下,就会发现上式并没有错,不仅如此,我们还可以写出任意多个这种等式:
19.分解因式:
(1) ;
(2) ;
(3) ;
(4) ;
(5) .
20.已知在△ABC中,三边长a、b、c满足等式
求证:
21.下金蛋的鸡 法国数学家费马(1601—1665)一生中提出了不少猜想,最著名的是“费马大定理”:关于x,y,z的方程xn+yn=zn(n为大于2的整数)没有正整数解.直到350年之后,这个猜想才由英国数学家怀尔斯于1994年证明.德国数学家希尔伯特(1862—1943)将费马大定理称为“一只会下金蛋的鸡”,因为在攻克它的漫漫征程中,不但引出了许多数学概念和方法,而且促进了一些新的分支的创立和发展.这些远比证明定理本身更重要!
16.已知a、b、c正可负 D.非负
17.设a是正数,且 ,那么 等于( ).
A.3 B.1 C.3 D.5
18.设n为某一正整数,代入代数式 计算其值时,四个学生算出了下列四个结果,其中仅有一个是正确的,则这个正确的结果是( )。
A.7770 B.7775 C.7776 D.7779 。
A. B.
C. D.
6.将多项式 分解因式的结果是( ).
A. B.
C. D.
7.把多项式 因式分解之后,正确的结果是( ).
A. B.
C. D.
8.已知 能分解成两个整系数的一次因式的乘积,则符合条件的整数a的个数是( ).
人教版八年级数学上册 14.3.2 用公式法进行因式分解 同步练习(含答案)

用公式法进行因式分解一、填空题(本大题共20小题,共60.0分)1.分解因式:xy2+8xy+16x= ______ .2.因式分解:4m2-36= ______ .3.因式分解:2a3-8ab2= ______ .4.将多项式mn2+2mn+m因式分解的结果是______ .5.把多项式4ax2-9ay2分解因式的结果是______ .6.因式分解:2x2-32x4= ______ .7.因式分解:a2b-4ab+4b= ______ .8.分解因式:mx2-4m= ______ .9.分解因式a2b-a的结果为______ .10.分解因式:2ax2-8a= ______ .11.分解因式:2m2-8= ______ .12.分解因式:ma2+2mab+mb2= ______ .13.分解因式:a2b-b3= ______ .14.分解因式:x(x-1)-y(y-1)= ______ .15.分解因式:ax3y-1axy= ______ .416.因式分解:3y2-12= ______ .17.因式分解:m2n-6mn+9n= ______ .18.因式分解:a2b-ab+1b= ______ .419.分解因式-a3+2a2b-ab2= ______ .20.分解因式:a2b+4ab+4b= ______ .二、计算题(本大题共30小题,共180.0分)21.分解因式(1)a2(a-b)+4b2(b-a)(2)m4-1(3)-3a+12a2-12a3.22.把下列多项式分解因式:(1)6x2y-9xy;(2)4a2-1;(3)n2(n-6)+9n.23.把下列各式因式分解(1)ap-aq+am(2)a2-4(3)a2-2a+1(4)ax2+2axy+ay2.24.分解因式:x+xy+xy2(1)14(2)(m+n)3-4(m+n)25.因式分解:(1)x(x-2)-3(2-x)(2)x2-10x+25.26.把下列各式进行因式分解:(1)a3-6a2+5a;(2)(x2+x)2-(x+1)2;(3)4x2-16xy+16y2.27.因式分解:(1)x2-y2(2)-4a2b+4ab2-b3.28.分解因式(1)x3-16x(2)8a2-8a+2.(2)b4-4ab3+4ab2.30.分解因式:(1)2x2-4x(2)a2(x-y)-9b2(x-y)(3)4ab2-4a2b-b3(4)(y2-1)2+6(1-y2)+9.31.分解因式:(1)3a2+6ab+3b2(2)9(m+n)2-(m-n)2.32.因式分解:(1)a(x-y)-b(y-x)(2)3ax2-12ay2(3)(x+y)2+4(x+y+1)33.分解因式:(1)a(x-y)-b(y-x);(2)16x2-64;(3)(x2+y2)2-4x2y2.34.分解因式(1)4x3y-xy3(2)-x2+4xy-4y2.35.分解下列因式:(1)9a2-1(2)p3-16p2+64p.36.因式分解:(1)x2-10xy+25y2(2)3a2-12ab+12b2(3)(x2+y2)2-4x2y2(4)9x4-81y4.37.将下列各式分解因式(1)16a2b2-1(2)12ab-6(a2+b2)38.把下列各式因式分解(1)4a2-16(2)(x2+4)2-16x2.39.把下列多项式因式分解:(1)x3y-2x2y+xy;(2)9a2(x-y)+4b2(y-x).40.分解因式(1)x3-xy2(2)(x+2)(x+4)+1.41.因式分解:-3a3b+6a2b2-3ab3.42.把下列各式分解因式:①4m(x-y)-n(x-y);②2t2-50;③(x2+y2)2-4x2y2.43.因式分解(1)x2-5x-6(2)2ma2-8mb2(3)a3-6a2b+9ab2.44.分解因式:2x2-12x+18.45.分解因式:(1)x3+2x2+x(2)x3y3-xy.46.因式分解:(1)ax2-2ax+a(2)24(a-b)2-8(b-a)47.因式分解:(1)4x2-16y2(2)x2-10x+25.48.分解因式(1)m(a-3)+2(3-a)(2)x2-6x+9.49.因式分解:6xy2-9x2y-y2.50.分解因式(1)x2(a+b)-a-b(2)a3b-2a2b2+ab3(3)y4-3y3-4y2(4)-(a2+2)2+6(a2+2)-9.用公式法进行因式分解答案和解析【答案】1.x(y+4)22.4(m+3)(m-3)5.a (2x +3y )(2x -3y )6.2x 2(1+4x )(1-4x )7.b (a -2)28.m (x +2)(x -2)9.a (ab -1)10.2a (x +2)(x -2)11.2(m +2)(m -2)12.m (a +b )213.b (a +b )(a -b )14.(x -y )(x +y -1)15.axy (x +12)(x -12)16.3(y +2)(y -2)17.n (m -3)218.b (a -12)219.-a (a -b )220.b (a +2)221.解:(1)原式=a 2(a -b )-4b 2(a -b )=(a -b )(a 2-4b 2)=(a -b )(a +2b )(a -2b );(2)原式=(m 2+1)(m 2-1)=(m 2+1)(m +1)(m -1);(3)原式=-3a (4a 2-4a +1)=-3a (2a -1)2.22.解:(1)原式=3xy (2x -3);(2)原式=(2a +1)(2a -1);(3)原式=n (n 2-6n +9)=n (n -3)2.23.解:(1)原式=a (p -q +m );(2)原式=(a +2)(a -2);(3)原式=(a -1)2;(4)原式=a (x 2+2xy +y 2)=a (x +y )2.24.解:(1)原式=14x (1+4y +4y 2)=14x (1+2y )2;(2)原式=(m +n )[(m +n )2-4]=(m +n )(m +n +2)(m +n -2).25.解:(1)原式=x (x -2)+3(x -2)=(x -2)(x +3);(2)原式=(x -5)2.26.解:(1)原式=a (a 2-6a +5)=a (a -1)(a -5);(2)原式=(x 2+x +x +1)(x 2+x -x -1)=(x +1)2(x +1)(x -1);(3)原式=4(x 2-4xy +4y 2)=4(x -2y )2.27.解:(1)原式=(x +y )(x -y );(2)原式=-b (4a 2-4ab +b 2)=-b (2a -b )2.28.解:(1)原式=x (x 2-16)=x (x +4)(x -4);(2)原式=2(4a 2-4a +1)=2(2a -1)2.29.解:(1)原式=3(m 4-16)=3(m 2+4)(m +2)(m -2);30.解:(1)原式=2x(x-2);(2)原式=(x-y)(a2-9b2)=(x-y)(a+3b)(a-3b);(3)原式=-b(b2-4ab+4a2)=-b(2a-b)2;(4)原式=(y2-1)2-6(y2-1)+9=(y2-4)2=(y+2)2(y-2)2.31.解:(1)原式=3(a2+2ab+b2)=3(a+b)2;(2)原式=[3(m+n)+m-n][3(m+n)-(m-n)]=(4m+2n)(2m+4n)=4(2m+n)(m+2n).32.解:(1)原式=a(x-y)+b(x-y)=(x-y)(a+b);(2)原式=3a(x2-4y2)=3a(x+2y)(x-2y);(3)原式=(x+y)2+4(x+y)+4=(x+y+2)2.33.解:(1)原式=a(x-y)+b(x-y)=(x-y)(a+b);(2)原式=16(x2-4)=16(x+2)(x-2);(3)原式=(x2+y2+2xy)(x2+y2-2xy)=(x+y)2(x-y)2.34.解:(1)原式=4xy(x2-y2)=4xy(x+y)(x-y);(2)原式=-(x2-4xy+4y2)=-(x-2y)2.35.解:(1)原式=(3a+1)(3a-1);(2)原式=p(p2-16p+64)=p(p-8)2.36.解:(1)原式=(x-5y)2;(2)原式=3(a2-4ab+4b2)=3(a-2b)2;(3)原式=(x2+y2+2xy)(x2+y2-2xy)=(x+y)2(x-y)2;(4)原式=9(a2+3y2)(x2-3y2).37.解:(1)原式=(4ab+1)(4ab-1);(2)原式=-6(a2-2ab+b2)=-6(a-b)2.38.解:(1)原式=4(a2-4)=4(a+2)(a-2);(2)原式=(x2+4+4x)(x2+4-4x)=(x-2)2(x+2)2.39.解:(1)原式=xy(x2-2x+1)=xy(x-1)2;(2)原式=9a2(x-y)-4b2(x-y)=(x-y)(3a+2b)(3a-2b).40.解:(1)原式=x(x2-y2)=x(x+y)(x-y);(2)原式=(x+3)2.41.解:原式=-3ab(a2-2ab+b2)=-3ab(a-b)2.42.解:①4m(x-y)-n(x-y)=(x-y)(4m-n);②2t2-50=2(t2-25)=2(t+5)(t-5);③(x2+y2)2-4x2y2=(x2+y2+2xy)(x2+y2-2xy)=(x+y)2(x-y)2.43.解:(1)原式=(x-6)(x+1);(2)原式=2m(a2-4b2)=2m(a+2b)(a-2b);(3)原式=a(a2-6ab+9b2)=a(a-3b)2.44.解:原式=2(x2-6x+9)=2(x-3)2.45.解:(1)原式=x(x2+2x+1)=x(x+1)2;(2)原式=xy(x2y2-1)=xy(xy+1)(xy-1).(2)原式=24(a-b)2+8(a-b)=8(a-b)[3(a-b)+1]=8(a-b)(3a-3b+1).47.解:(1)原式=(2x+4y)(2x-4y);(2)原式=(x-5)2.48.解:(1)原式=m(a-3)-2(a-3)=(a-3)(m-2);(2)原式=(x-3)2.49.解:原式=-y(9x2-6xy+y).50.解:(1)原式=x2(a+b)-(a+b)=(a+b)(x2-1)=(a+b)(x+1)(x-1);(2)原式=ab(a2-2ab+b2)=ab(a-b)2;(3)原式=y2(y2-3y-4)=y2(y-4)(y+1);(4)原式=-[(a2+2)-3]2=-(a-1)2(a+1)2.。
八年级数学竞赛专题复习 因式分解的常用方法(无答案)

因式分解的常用方法把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解。
因式分解的方法多种多样,现将初中阶段因式分解的常用方法总结如下: 一、提公因式法.如多项式),(c b a m cm bm am ++=++其中m 叫做这个多项式各项的公因式, m 既可以是一个单项式,也可以是一个多项式.【例1】分解因式322x x x -- 解:原式()221x x x =--二、运用公式法.运用公式法,即用))((,)(2),)((223322222b ab a b a b a b a b ab a b a b a b a +±=±±=+±-+=- 写出结果.【例2】分解因式2244a ab b ++ 解:原式()22a b =+三、分组分解法.(一)分组后能直接提公因式 【例3】分解因式:bn bm an am +++分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a ,后两项都含有b ,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系。
解:原式=)()(bn bm an am +++=)()(n m b n m a +++ 每组之间还有公因式! =))((b a n m ++思考:此题还可以怎样分组?此类型分组的关键:分组后,每组内可以提公因式,且各组分解后,组与组之间又有公因式可以提。
【例4】分解因式:bx by ay ax -+-5102解法一:第一、二项为一组 解法二:第一、四项为一组;第三、四项为一组。
第二、三项为一组。
解:原式=)5()102(bx by ay ax -+- 原式=)510()2(by ay bx ax +-+- =)5()5(2y x b y x a --- =)2(5)2(b a y b a x --- =)2)(5(b a y x -- =)5)(2(y x b a --练习1:分解因式255m n mn m +--解:原式()()()()255555m m mn n m m n m m n m =--+=---=--(二)分组后能直接运用公式 【例5】分解因式:ay ax y x ++-22分析:若将第一、三项分为一组,第二、四项分为一组,虽然可以提公因式,但提完后就能继续分解,所以只能另外分组。
人教版八年级因式分解经典例题详解

初中因式分解的(例题详解)一、提公因式法.如多项式),(c b a m cm bm am ++=++其中m 叫做这个多项式各项的公因式, m 既可以是一个单项式,也可以是一个多项式.二、运用公式法.运用公式法,即用))((,)(2),)((223322222b ab a b a b a b a b ab a b a b a b a +±=±±=+±-+=-写出结果.三、分组分解法.(一)分组后能直接提公因式例1、分解因式:bn bm an am +++例2、分解因式:bx by ay ax -+-5102练习:分解因式1、bc ac ab a -+-2 2、1+--y x xy(二)分组后能直接运用公式例3、分解因式:ay ax y x ++-22例4、分解因式:2222c b ab a -+-练习:分解因式3、y y x x 3922--- 4、yz z y x 2222---综合练习:(1)3223y xy y x x --+ (2)b a ax bx bx ax -+-+-22(3)181696222-+-++a a y xy x (4)a b b ab a 4912622-++-(5)92234-+-a a a (6)y b x b y a x a 222244+--(7)222y yz xz xy x ++-- (8)122222++-+-ab b b a a(9))1)(1()2(+---m m y y (10))2())((a b b c a c a -+-+(11)abc b a c c a b c b a 2)()()(222++++++(12)abcc b a 3333-++四、十字相乘法.(一)二次项系数为1的二次三项式直接利用公式——))(()(2q x p x pq x q p x ++=+++进行分解。
特点:(1)二次项系数是1;(2)常数项是两个数的乘积;(3)一次项系数是常数项的两因数的和。
八年级数学(竞赛)因式分解

第一讲 分解方法的延拓——换元法与主元法因式分解是针对多项式的一种恒等变形,提公因式法、公式法,分组分解法是因式分解的基本方法,通常根据多项式的项数来选择分解的方法.一些复杂的因式分解问题.常用到换元法和主元法.所谓换元,即对结构比较复杂的多项式,若把其中某些部分看成一个整体,用新字母代替(即换元),则能使复杂的问题简单化、明朗化,在减少多项式项数,降低多项式结构复杂程度等方面有独到作用.所谓主元,即在解多变元问题时,选择其中某个变元为主要元素,视其他变元为常量,将原式重新整理成关于这个字母的按降幂排列的多项式,则能排除字母间的干扰,简化问题的结构.例题求解【例1】分解因式:10)3)(4(2424+++-+x x x x = .(第12届“五羊杯”竞赛题)思路点拨 视24x x +为一个整体.用一个新字母代替,从而能简化式子的结构.【例2】 多项式xyz y z x y z x x z z y y x 2222222-++-+-因式分解后的结果是( ).A .(y -z)(x+y)(x -z)B .(y -z)(x -y)(x +z)C . (y+z)(x 一y)(x+z)D .(y 十z)(x+y)(x 一z) (上海市竞赛题)思路点拨 原式是一个复杂的三元三次多项式,直接分解有一定困难,把原式整理成关于某个字母按降幂排列的多项式,改变其结构,寻找分解的突破口.【例3】把下列各式分解因式:(1)(x+1)(x +2)(x+3)(x+6)+ x 2; (天津市竞赛题)(2)1999x 2一(19992一1)x 一1999; (重庆市竞赛题)(3)(x+y -2xy)(x+y -2)+(xy -1)2; (“希望杯”邀请赛试题)(4)(2x -3y)3十(3x -2y)3-125(x -y)3. (第13届“五羊杯”竞赛题)思路点拔 (1)是形如abcd+e 型的多项式,分解这类多项式时,可适当把4个因式两两分组,使得分组相乘后所得的有相同的部分;(2)式中系数较大,不妨把数用字母表示;(3)式中x+y ;xy 多次出现,可引入两个新字母,突出式子特点;(4)式前两项与后一项有密切联系.【例4】把下列各式分解因式:(1)a 2(b 一c)+b 2(c -a)+c 2 (a 一b); (2)x 2+xy -2y 2-x+7y -6.思路点拨 (1)式字母多次数高,可尝试用主元法;(2)式是形如ax 2+bxy+cy 2+dx+ey+f 的二元二次多项式,解题思路宽,用主元法或分组分解法或用待定系数法分解.【例5】证明:对任何整数 x 和y ,下式的值都不会等于33.x 5+3x 4y -5x 3y 2一15x 2y 3+4xy 4+12y 5.(莫斯科奥林匹克八年级试题)思路点拨 33不可能分解为四个以上不同因数的积,于是将问题转化为只需证明原式可分解为四个以上因式的乘积即可.注:分组分解法是因式分解的量本方法,体现了化整体为局部、又统揽全局的思想.如何恰当分组是解题的关键,常见的分组方法有:(1)按字母分组;(2)按次数分组; (3)按系数分组.为了能迅速解决一些与代教式恒等变形相关的问题,读者因熟悉如下多项式分解因式后的结果:(1)))((2233b ab a b a b a +±=± ;(2)))((3222333ac bc ab c b a c b a abc c b a ---++++=-++学历训练1.分解因式:(x 2+3x)2-2(x 2+3x)-8= .2.分解因式:(x 2+x+1)(x 2+x+2)-12= .3.分解因式:x 2-xy -2y 2-x -y= .4.已知二次三项式82--mx x 在整数范围内可以分解为两个一次因式的积,则整数m 的可能取值为 .5.下列各式分解因式后,可表示为一次因式乘积的是( ).A .2727923-+-x x xB .272723-+-x x xC .272734-+-x x xD .279323-+-x x x (第13届“希望杯”邀请赛试题)6.若51-=+b a ,13=+b a ,则53912322+++b ab a 的值为( ). A .92 B .32 C .54 D .0 7.分解因式:(1)(x 2+4x+8)2+3x(x 2+4x+8)+2x 2; (2)(2x 2-3x+1)2一22x 2+33x -1;(3)x 4+2001x 2+2000x+2001; (4)(6x -1)(2 x -1)(3 x -1)( x -1)+x 2;(5)bc ac ab c b a 54332222+++++; (6)613622-++-+y x y xy x .8.分解因式:22635y y x xy x ++++= .9.分解因式:333)()2()2(y x y x -----= .10.613223+-+x x x 的因式是( )A .12-xB .2+xC .3-xD .12+xE .12+x11.已知c b a >>,M=a c c b b a 222++,N=222ca bc ab ++,则M 与N 的大小关系是( )A .M<NB .M> NC .M =ND .不能确定12.把下列各式分解因式:(1)22212)16)(1(a a a a a ++-++; (2)91)72)(9)(52(2---+a a a ; (黄冈市竞赛题)(3)2)1()21(2)3()1(-+-++-+++y x y x xy xy xy ; (天津市竞赛题)(4)4242410)13)(14(x x x x x ++++-;(第13届“五羊杯”竞赛题)(5)z y xy xyz y x z x x 222232242-++--. (天津市竞赛题)17.已知乘法公式:))((43223455b ab b a b a a b a b a +-+-+=+; ))((43223455b ab b a b a a b a b a ++++-=-. 利用或者不利用上述公式,分解因式:12468++++x x x x (“祖冲之杯”邀请赛试题)18.已知在ΔABC 中,010616222=++--bc ab c b a (a 、b 、c 是三角形三边的长).求证:b c a 2=+第二讲 分解方法的延拓——配方法与待定系数法在数学课外活动中,配方法与待定系数法也是分解因式的重要方法。
人教版八年级上册公式法因式分解经典讲解培优含答案

人教版八年级上册公式法因式分解经典讲解含答案平方差公式法:a2-b2=(a+b)(a-b)完全平方和公式法:a2+2ab+b2=(a+b)2完全平方差公式法:a2-2ab+b2=(a-b)2【示例1】4x2-9把各项写成平方形式(2x)2 —(3)2运用平方差公式分解因式(2x+3)(2x-3)【示例2】a4-1 把各项写成平方形式(a2)2-12运用平方差公式分解因式(a2+1)(a2-1)因式分解要彻底(a2+1)(a+1)(a-1)【示例3】12ax2-27a 先提取公因式3a(4x2-9)把各项写成平方形式3a[(2x)2-(3)2]运用平方差公式分解因式3a(2x+3)(2x-3)【示例4】4x2-4x+1 把其变成完全平方差的形式(2x)2-2 .2x .1 +12 运用完全平方差公式分解因式(2x-1)2【示例5】X4-2x2+1 把其变成完全平方差的形式(x2)2-2 .x2 .1 +12 运用完全平方差公式分解因式(x2-1)2因式分解要彻底[(x+1)(x-1)] 2 =(x+1)2(x-1)2【示例6】2mx2+4mx+2m 先提取公因式2m(x2+2x+1)运用完全平方和公式分解因式2m(x+1)2【小练笔】(1)分解因式:a2-4b2= 答案:(a+2b)(a-2b)(2)分解因式:16-a4= 答案:(4+a2)(2+a)(2-a)(3)分解因式:(x-1)2-9= 答案:(x+2)(x-4)(4)分解因式:2(a+2)2 - 8a2= 答案:2(3a+2)(2-a)(5)分解因式:2x2-8 = 答案:2(x+2)(x-2)(6)分解因式:-81x4+16= 答案:(4+9x2)(2+3x)(2-3x)【示例7】(1)分解因式:(2x+3y)2-(2x-y)2 =解析:(2x+3y)2-(2x-y)2 =(2x+3y+2x-y)[2x+3y-(2x-y)]= (2x+3y+2x-y)(2x+3y-2x+y)= (4x+2y)4y= 8y(2x+y)(2)分解因式:a2(x-y)-b2(x-y)=解析:a2(x-y)-b2(x-y)= (x-y)(a2-b2)= (x-y)(a+b)(a-b)【示例8】(1)分解因式:2m2-8m+8 =解析:2m2-8m+8 = 2(m2-4m+4)= 2(m2-2 m 2+22)=2(m-2)2(2)分解因式:(x-1)2- 2(x-1)+1=解析:(x-1)2- 2(x-1)+1= [(x-1)-1]2= (x-2)2(3)分解因式:16m4-8m2n2+n4=解析:16m4-8m2n2+n4 = (4m2)2-2 (4m2) n2 + (n2)2=( 4m2-n2 )2=[(2m)2-n2]2=[(2m+n)(2m-n)]2=(2m+n)2(2m-n)2【小练笔】(1)分解因式:32(x+1)2-16(x+1)y+2y2 =答案:2(4x+4-y)2(2)分解因式:a3-2a2-a =答案:a(a-1)2(3)分解因式:4+12(x-y)+9(x-y)2= 答案:(3x-3y+2)2(4)分解因式:x4-6x3+9x2=答案:x2(x-3)2。
人教版数学八年级竞赛教程之因式分解小结附答案

因式分解小结【知识精读】因式分解是把一个多项式分解成几个整式乘积的形式,它和整式乘法互为逆运算,在初中代数中占有重要的地位和作用,在其它学科中也有广泛应用,学习本章知识时,应注意以下几点。
1. 因式分解的对象是多项式;2. 因式分解的结果一定是整式乘积的形式;3. 分解因式,必须进行到每一个因式都不能再分解为止;4. 公式中的字母可以表示单项式,也可以表示多项式;5. 结果如有相同因式,应写成幂的形式;6. 题目中没有指定数的范围,一般指在有理数范围内分解;7. 因式分解的一般步骤是:(1)通常采用一“提”、二“公”、三“分”、四“变”的步骤。
即首先看有无公因式可提,其次看能否直接利用乘法公式;如前两个步骤都不能实施,可用分组分解法,分组的目的是使得分组后有公因式可提或可利用公式法继续分解;(2)若上述方法都行不通,可以尝试用配方法、换元法、待定系数法、试除法、拆项(添项)等方法;下面我们一起来回顾本章所学的内容。
【分类解析】1. 通过基本思路达到分解多项式的目的 例1. 分解因式x x x x x 54321-+-+-分析:这是一个六项式,很显然要先进行分组,此题可把x x x x x 54321-+-+-和分别看成一组,此时六项式变成二项式,提取公因式后,再进一步分解;也可把x x 54-,x x 32-,x -1分别看成一组,此时的六项式变成三项式,提取公因式后再进行分解。
解一:原式=-+--+()()x x x x x 54321=-+--+=--+=--+++x x x x x x x x x x x x x 32232221111111()()()()()()()解二:原式=()()()x x x x x 54321-+-+-=-+-+-=-++=-++-=--+++2x x x x x x x x x x x x x x x x x 4244222211111121111()()()()()()[()]()()()2. 通过变形达到分解的目的 例1. 分解因式x x 3234+- 解一:将32x 拆成222x x +,则有原式=++-=+++-=++-=-+x x x x x x x x x x x x 322222242222212()()()()()()()()解二:将常数-4拆成--13,则有原式=-+-=-+++-+=-++=-+x x x x x x x x x x x x 322221331113314412()()()()()()()()()3. 在证明题中的应用例:求证:多项式()()x x x 2241021100--++的值一定是非负数分析:现阶段我们学习了两个非负数,它们是完全平方数、绝对值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
运用公式法进行因式分解【知识精读】把乘法公式反过来,就可以得到因式分解的公式。
主要有:平方差公式 a b a b a b 22-=+-()()完全平方公式a ab b a b 2222±+=±()立方和、立方差公式 a b a b a ab b 3322±=±⋅+()() 补充:欧拉公式:a b c abc a b c a b c ab bc ca 3332223++-=++++---()() =++-+-+-12222()[()()()]a b c a b b c c a 特别地:(1)当a b c ++=0时,有a b c abc 3333++=(2)当c =0时,欧拉公式变为两数立方和公式。
运用公式法分解因式的关键是要弄清各个公式的形式和特点,熟练地掌握公式。
但有时需要经过适当的组合、变形后,方可使用公式。
用公式法因式分解在求代数式的值,解方程、几何综合题中也有广泛的应用。
因此,正确掌握公式法因式分解,熟练灵活地运用它,对今后的学习很有帮助。
下面我们就来学习用公式法进行因式分解 【分类解析】1. 把a a b b 2222+--分解因式的结果是( ) A. ()()()a b a b -++22 B. ()()a b a b -++2 C. ()()a b a b -++2D. ()()a b b a 2222--分析:a a b b a a b b a b 22222222212111+--=++---=+-+()()。
再利用平方差公式进行分解,最后得到()()a b a b -++2,故选择B 。
说明:解这类题目时,一般先观察现有项的特征,通过添加项凑成符合公式的形式。
同时要注意分解一定要彻底。
2. 在简便计算、求代数式的值、解方程、判断多项式的整除等方面的应用 例:已知多项式232x x m -+有一个因式是21x +,求m 的值。
分析:由整式的乘法与因式分解互为逆运算,可假设另一个因式,再用待定系数法即可求出m 的值。
解:根据已知条件,设221322x x m x x ax b -+=+++()()则222123232x x m x a x a b x b -+=+++++()()由此可得21112023a a b m b+=-+==⎧⎨⎪⎪⎩⎪⎪()()()由(1)得a =-1把a =-1代入(2),得b =12把b =12代入(3),得m =123. 在几何题中的应用。
例:已知a b c 、、是∆ABC 的三条边,且满足a b c ab bc ac 2220++---=,试判断∆ABC 的形状。
分析:因为题中有a b ab 22、、-,考虑到要用完全平方公式,首先要把-ab 转成-2ab 。
所以两边同乘以2,然后拆开搭配得完全平方公式之和为0,从而得解。
解: a b c ab bc ac 2220++---= ∴++---=2222220222a b c ab bc ac∴-++-++-+=()()()a ab b b bc c c ac a 2222222220 ∴-+-+-=()()()a b b c c a 2220 ()()()a b b c c a -≥-≥-≥222000,, ∴-=-=-=a b b c c a 000,,∴==a b c∴∆ABC 为等边三角形。
4. 在代数证明题中应用例:两个连续奇数的平方差一定是8的倍数。
分析:先根据已知条件把奇数表示出来,然后进行变形和讨论。
解:设这两个连续奇数分别为2123n n ++,(n 为整数) 则()()232122n n +-+=++++--=+=+()()()()2321232124481n n n n n n由此可见,()()232122n n +-+一定是8的倍数。
5、中考点拨:例1:因式分解:x xy 324-=________。
解:x xy x x y x x y x y 32224422-=-=+-()()()说明:因式分解时,先看有没有公因式。
此题应先提取公因式,再用平方差公式分解彻底。
例2:分解因式:2883223x y x y xy ++=_________。
解:288244322322x y x y xy xy x xy y ++=++()=+222xy x y () 说明:先提取公因式,再用完全平方公式分解彻底。
题型展示: 例1. 已知:a m b m c m =+=+=+121122123,,, 求a ab b ac c bc 222222++-+-的值。
解:a ab b ac c bc 222222++-+- =+-++()()a b c a b c 222 =+-()a b c 2 a m b m c m =+=+=+121122123,, ∴原式=+-()a b c 2=+++-+⎡⎣⎢⎤⎦⎥=()()()1211221231422m m m m说明:本题属于条件求值问题,解题时没有把条件直接代入代数式求值,而是把代数式因式分解,变形后再把条件带入,从而简化计算过程。
例2. 已知a b c a b c ++=++=00333,, 求证:a b c 5550++=证明: a b c abc a b c a b c ab bc ca 3332223++-=++++---()() ∴把a b c a b c ++=++=00333,代入上式, 可得abc =0,即a =0或b =0或c =0 若a =0,则b c =-, ∴++=a b c 5550若b =0或c =0,同理也有a b c 5550++= 说明:利用补充公式确定a b c ,,的值,命题得证。
例3. 若x y x xy y 3322279+=-+=,,求x y 22+的值。
解: x y x y x xy y 332227+=+-+=()() 且x xy y 229-+=)1(92322=++=+∴y xy x y x , 又x xy y 2292-+=()两式相减得xy =0 所以x y 229+=说明:按常规需求出x y ,的值,此路行不通。
用因式分解变形已知条件,简化计算过程。
【实战模拟】 1. 分解因式:(1)()()a a +--23122(2)x x y x y x 5222()()-+-(3)a x y a x y x y 22342()()()-+-+- 2. 已知:x x +=-13,求x x441+的值。
3. 若a b c ,,是三角形的三条边,求证:a b c bc 22220---<4. 已知:ωω210++=,求ω2001的值。
5. 已知a b c ,,是不全相等的实数,且abc a b c abc ≠++=03333,,试求 (1)a b c ++的值;(2)a b c b c a c a b()()()111111+++++的值。
【试题答案】1. (1)解:原式=++-+--[()()][()()]a a a a 231231 =+-+()()4123a a =-+-()()4123a a说明:把a a +-231,看成整体,利用平方差公式分解。
(2)解:原式=---x x y x x y 5222()() =--x x y x 2321()()=--++x x y x x x 22211()()()(3)解:原式=-+-+-()[()()]x y a a x y x y 2222 =-+-()()x y a x y 222. 解: ()x x x x +=++121222 ∴+=+-=--=x xx x 2222112327()()∴+=∴++=()x x x x 222441491249, ∴+=x x441473. 分析与解答:由于对三角形而言,需满足两边之差小于第三边,因此要证明结论就需要把问题转化为两边差小于第三边求得证明。
证明: a b c bc 2222---=-++=-+=++--a b bc c a b c a b c a b c 222222()()()()a b c ,,是三角形三边 ∴++>a b c 0且a b c <+ ∴++--<()()a b c a b c 0 即a b c bc 22220---< 4. 解 ωω210++=∴+++=()()ωωω1102,即ω310-= ∴=∴==ωωω32001366711()5. 分析与解答:(1)由因式分解可知a b c abc a b c 3333++-=++()⋅++---()a b c ab bc ca 222故需考虑a b c ab bc ca 222++---值的情况,(2)所求代数式较复杂,考虑恒等变形。
解:(1) a b c abc 3333++= ∴++-=a b c abc 33330 又 a b c abc 3333++-=++++---()()a b c a b c ab bc ca 222∴++++---=()()a b c a b c ab bc ca 2220 而a b c ab bc ca a b b c c a 22222212++---=-+-+-[()()()] a b c ,,不全相等∴++--->a b c ab bc ca 2220 ∴++=a b c 0 (2) abc ≠0 ∴原式=+++++1222abca b c b c a c a b [()()()] 而a b c ++=0,即a b c =-+()∴原式=+--1333abc b c b c [()] =+13abcbc b c [()]=-=-133abc abc ()说明:因式分解与配方法是在代数式的化简与求值中常用的方法。