因式分解之套公式法

合集下载

公式法因式分解

公式法因式分解

公式法因式分解公式法因式分解是一种有效的数学方法,它可以帮助我们快速找出复杂的表达式的因式分解结果。

它的基本原理是,通过运用因式的定义和性质,将一个复杂的表达式分解成若干个简单的因式,从而得到它的因式分解式。

因式分解是一个十分复杂的概念,它涉及到多个关键概念,如因式、因数、展开式、积式、系数、系数和系数等。

因式分解的过程可以概括为:①将一个表达式分为因式;②将这些因式各自因数分解;③用展开式、积式等简单形式重新构造出因式分解式。

公式法因式分解的基本思想是,将一个复杂的多项式以特定的形式分解成若干个因式,从而使其因式分解式更加清晰明了。

例如,将多项式2x2+7x+6分解成因式,可以先将其分解成展开式2x2+7x+3x+3,再进行因式分解:2x2+3x+3=(2x+3)(x+1),再重新构造出它的因式分解式:2x2+7x+6=(2x+3)(x+2),这样就得到了它的因式分解式了。

公式法因式分解的步骤如下:①根据多项式的式子把它分解成若干个简单的因式;②把每个因式因数分解;③用展开式、积式等形式重新构造出因式分解式。

本文将从实例出发,重点介绍公式法因式分解的实践方法。

首先,根据多项式的式子把它分解成若干个简单的因式。

需要特别注意的是,分解时一定要满足因式分解的特殊性质,即每个因式至少有一个非零系数。

例如:将多项式2x2+7x+6分解成展开式2x2+7x+3x+3,再进行因式分解:2x2+3x+3=(2x+3)(x+1),即可满足因式分解的特殊性质。

其次,要把每个因式的因数分解出来,以便重新构造出因式分解式。

这一部分最重要的是,要能够分解出每一组因式的因数,具体的方法是,把因式的项的系数分别乘起来,得到它的常数项,再根据它的单项式把它分解出对应的因数,就可以得到完整的因式分解式了。

最后,要把因式按照正确的形式重新构造出因式分解式。

首先,要根据因式分解的特殊性质重新排列因式,使每个因式的非零系数在因式分解式的头部;其次,要把多项式的最高次数项保留,其他项按降幂排序;最后,要对除系数外的各项因数进行乘积运算,把它们组合成因式分解式。

因式分解的公式大全,因式分解万能公式法的应用

因式分解的公式大全,因式分解万能公式法的应用

因式分解的公式大全,因式分解万能公式法的应用因式分解的公式大全?因式分解公式:平方差公式:(a+b)(a-b)=a²-b²完全平方公式:(a±b)²=a²±2ab+b²把式子倒过来: (a+b)(a-b)=a²-b² a²±2ab+b²= (a±b)²就变成了因式分解,因为这个原因,我们把用利用平方差公式和完全平方公式进行因式分解的方式称之为公式法。

例子:1、25-16x²=5²-(4x)²=(5+4x)(5-4x)2、p4-1 =(p²+1)(p²-1) =(p²+1)(p+1)(p-1)3、x²+14x+49 =x²+2·7·x+7² =(x+7)²4、(m-2n)²-2(2n-m)(m+n)+(m+n)² =(m-2n)²+2(m-2n)²(m+n)+(m+n)² =[(m-2n)+(m+n)]² =(2m-n)²因式分解万能公式法?1、平方差公式:a²-b²=(a+b)(a-b)。

2、完全平方公式:a²+2ab+b²=(a+b)²。

3、立方和公式:a³+b³=(a+b)(a²-ab+b²)。

4、立方差公式:a³-b³=(a-b)(a²+ab+b²)。

5、完全立方和公式:a³+3a²b+3ab²+b³=(a+b)³。

6、完全立方差公式:a³-3a²b+3ab²-b³=(a-b)³。

因式分解之提取公因式法和运用公式法(教师版)

因式分解之提取公因式法和运用公式法(教师版)

课题:因式分解之提取公因式法和公式法知识精要:一、因式分解的概念1、定义:把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.2、因式分解和整式乘法正好是互逆变换,可通过如下图示加以理解因式分解多项式(和差形式) 整式的积(积的形式)整式乘法二、提取公因式法1、定义:一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法.即()ma mb mc m a b c ++=++(1)公因式的系数应取各项系数的最大公约数;(2)字母取各项的相同字母,而且各字母的指数取最低次数.2、步骤:(1)观察;(2)确定公因式;(3)将公因式提到括号外;(4)将多项式写成因式乘积的形式.3、提公因式法的关键是如何正确地寻找公因式.让学生观察公因式的特点,找出确定公因式的方法:(1)公因式应是各项系数的最大公因数与各项都含有的相同字母的最低次幂的积.(2)公因式不仅可以是单项式,也可以是多项式.4、提取公因式法应注意的事项:(1)提取的公因式应为最大公因式;(2)当某一项被完全提取,该项要用“1”来代替;(3)要使得括号内第一项的系数为正数;(4)要使得括号内每一项的系数为整数;(5)注意符号变换问题.二、公式法1、平方差公式: 22()()a b a b a b -=+-2、完全平方公式:2222()a ab b a b ±+=±3、注意事项:(1)注意公式的结构特点;(2)注意符号;(3)首先想到提取公因式法;(4)注意分解一定要彻底. 精解名题:例1、下列从左到右的变形哪个是分解因式( C )A .223(2)3x x x x +-=+-; B .()()ma mb na nb m a b n a b +++=+++;C .221236(6)x x x -+=-;D .22()22m m n m mn -+=--.例2、多项式3222315520x y x y x y +-的最大公因式是( C )A .5xy ;B .225x y ;C .25x y ;D .235x y . 例3、把多项式2(2)(2)m a m a -+-分解因式正确的是( C )A .2(2)()a m m -+;B .(2)(1)m a m -+;C .(2)(1)m a m --;D .2(2)()a m m -+. 例4、下列各式中,能用平方差公式分解因式的是( A )A .22a b -+;B .22a b --;C .22a b +;D .33a b -.例5、若2(3)4x m x +-+是完全平方式,则实数m 的值是( D )A .5-;B .3;C .7 ;D .7或1-.例6、若二项式24x +加上一个单项式后成为一个完全平方式,则这样的单项式共有( C )A .1个;B .2个;C .3个;D .4个.例7、无论x 、y 为任何实数,多项式22428x y x y +--+的值一定是( A )A .正数;B .负数;C .零;D .不确定.例8、下列多项式能用完全平方公式分解因式的是( B )A .22m mn n -+;B .2()4a b ab +-;C .2124x x -+; D .221x x +-. 例9、若3a b +=,则222426a ab b ++-的值为( A )A .12;B .6;C .3;D .0. 例10、已知221x y -=-,12x y +=,则x y -= .(2-) 例11、已知3x y +=,则221122x xy y ++=__________.(92) 例12、已知2226100x y x y +-++=,则x y +=________.(2-)例13、因式分解:(第(1)-(6)用提取公因式法;第(7)-(22)用公式法)(1)-+-41222332m n m n mn ; (2) 3423424281535a b a b a b -+;解:原式222(261)mn mn m n =--+ 解:原式22222(2512)15a b ab b a =-+ (3)322x x x ()()---; (4)412132q p p ()()-+-;解:原式(2)(31)x x =-+ 解:原式22(1)(221)p q pq =--+(5)3122+++--+-m m m m ax acx abx x a ;(6)3225(2)(2)3(2)(2)n n x y x y ----- 解:原式23()m ax ax bx c x =--++ 解:原式2(2)(2)[5103(2)]n nx y x y =-----(7)2249x y -; (8)3282(1)a a a -+;解:原式(23)(23)x y x y =+- 解:原式2(31)(1)a a a =+-(9)44116a b -; (10)224()25()x y x y --+; 解:原式22(14)(12)(12)a b ab ab =++- 解:原式(73)(37)x y x y =-++ (11)42241128a b a b -; (12)2233(27)4x x --; 解:原式221(2)(2)8a b a b a b =+- 解:原式9(6)(6)4x x =+- (13)31()7()7x y x y ---; (14)222(4)16x x +-; 解:原式1()(7)(7)7x y x y x y =--+--解:原式22(2)(2)x x =+- (15)29124a a ++; (16)229312554a ab b -+; 解:原式2(32)a =+ 解:原式231()52a b =-(17)2244ab a b --; (18)2318248a a a -+;解:原式2(2)a b =-- 解:原式22(23)a a =-(19)42816x x -+; (20)(6)9a a ++;解:原式22(2)(2)x x =+- 解:原式2(3)a =+(21)2()10()25m n m n ++++;(22)2222()6()9()a b a b a b ++-+-;解:原式2(5)m n =++ 解:原式24(2)a b =-例14、已知12a b -=,18ab =,求22332a b ab a b -++的值. 解:∵12a b -=,18ab =, ∴2233221112()()8232a b ab a b ab a b -++=-=⨯=例15、应用简便方法计算。

数学人教版八年级上册14.3因式分解----提公因式法、公式法的综合运用

数学人教版八年级上册14.3因式分解----提公因式法、公式法的综合运用

3
课后巩固
m m 2 ( 1 )p p
3 2 2 x 6 x 9 x
2 ( 3 ) 4 x 3 y 25 y 2
2 ( 4 ) x 4 16 x 2


2
4 2 ( 5 ) x 2 x 1
( 6 ) 4 a b a b
22 2

2 2

归纳总结
先提取公因式再平方差公式
例1.因式分解
(1) 4 -16a2
变式: 4 -64a4
(2) m3 (m-2)-4m(m-2)
变式: m ² (a-b)+4n2(b-a)
先提取公因式再完全平方公式
例2.因式分解:
1 3 变式: 1 a a a 4
5 4
1 2x 2x 2
2
2 7 x 14 x 7 x
因式分解的方法
(三)完全平方公式法:
x2+2xy+y2=(x+y)2 x2–2xy+y2=(x–y)2
一个多项式能用完全平方公式因式分解具备的特征: (1)有三项; (2)其中有两个平方项且符号相同 (3)有乘积的2倍;
下列多项式能否用完全平方公式因式分解?
(1) – x2 +2xy – y2 (2)x2+x+1 (3) – a2 –2a+1
(3)m(a – 2) –平方差公式法:
x2 – y2=(x+y)(x – y)
一个多项式能用平方差公式因式分解具备的特征: 有两个平方项,且符号相反。
下列多项式能否用平方差公式因式分解?
(1) – m2 – n2 (2) – m2n2 +1

用公式法进行因式分解“五技巧”

用公式法进行因式分解“五技巧”

用公式法进行因式分解“五技巧”运用公式法分解因式是一种重要的方法,为帮助大家尽快掌握该方法,下面以基本习题为例,分类说明使用公式法分解因式的几点技巧.一、直接运用公式例1 分解因式:(1)()224n m m +-;(2)4)(4)(2++++y x y x . 分析:把m 2、)(n m +、()y x +作为一个整体处理,直接运用公式分解. 解:(1)原式=()[]()[]n m m n m m +-++22=()()n m n m -+3(2)原式=()22++y x 二、排序后用公式例2 分解因式:(1)2216y x +-; (2)222y x xy ---.分析:初看这二个多项式都不符合公式的特征,但只要重新排序后,就可以直接运用公式分解.解:(1)原式=2216x y -=()()x y x y 44-+(2)原式=222)()2(y x y xy x +-=++-三、指数变换后用公式例3 分解因式:(1)14-x ;(2)4241a a ++. 分析:表面上看不是平方差公式、完全平方公式的形式,但对指数变形后就可以转化为公式形式,进而应用公式直接分解.解:(1)原式=)1)(1)(1()1)(1(1)(22222-++=-+=-x x x x x x(2)原式=()222221212⎪⎭⎫ ⎝⎛+⨯⨯+a a =2221⎪⎭⎫ ⎝⎛+a 四、系数变换后用公式例4 分解因式:(1)224169y x -; (2)2)(9)(124y x y x -+--.分析:将系数写成平方的形式,使之符合公式的特征,为运用公式创造条件. 解:(1)原式=)213)(213()2()13(22y x y x y x -+=-;(2)原式=2222)332()](32[)](3[)(3222y x y x y x y x +-=--=-+-⨯⨯-.五、去括号后用公式例5 分解因式: 1)3)(1(+++x x .分析:显然题目既没有公因式可提,也不能运用公式分解,可先把)3)(1(++x x 展开后再解题.解:原式=222)2(44134+=++=+++x x x x x .。

因式分解公式法

因式分解公式法

因式分解公式法
公式法定义:如果把乘法公式的等号两边反过来,就可以得到一些特殊形式的多项式的因式分解公式。

这种分解因子的方法叫做公式法。

分解公式:
1.平方差公式:
即两个数的平方差等于这两个数之和与这两个数之差的乘积。

2.完全平方公式:
也就是说,两个数的平方和加上(或减去)这两个数的乘积的两倍,等于这两个数的和(或差)的平方。

注:可以用完全平方公式分解因子的多项式一定是三项式,其中两个可以写成两个数(或公式)的平方和,另一个是这两个数(或公式)的乘积的两倍。

公式:第一个正方形,最后一个正方形,两个乘积放在中间。

相同的符号相加,不同的符号相减,符号加在不同的符号之前。

通过例2我们可以总结出以下几点:
1、如果多项式的首项为负,应先提取负号;
这里的“负”,指“负号”。

如果多项式的第一项是负的,一般要提出负号,使括号内第一项系数是正的。

2、如果多项式的各项含有公因式,那么先提取这个公因式,再进一步分解因式;
需要注意的是,当一个多项式的整项都是公因式时,先提出这个公因式,然后不要遗漏括号中的1;公因数要一次性清理干净,每个括号内的多项式不能再分解。

3、如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解;
4.如果以上方法无法分解,可以尝试分组、拆分、补充的方式进行分解。

公式:先提第一个负号,再看有没有公因数,然后看能不能设个公式,试试十字乘法,适当分组。

简便计算:229²-171²
解:229²-171²
=(229+171)(229-171)
=400×58
=23200。

因式分解——运用公式法

因式分解——运用公式法因式分解是将一个多项式化简成一系列乘积的过程。

通常有两种方法用于进行因式分解:公式法和分组法。

公式法可以概括为以下几种常用的因式分解公式:1.a²-b²=(a+b)(a-b)这是平方差公式,用于因式分解差的平方。

例如,我们可以将x²-4分解为(x+2)(x-2)。

2. a³ + b³ = (a + b)(a² - ab + b²)这是立方和公式,用于因式分解和的立方。

例如,我们可以将x³+8分解为(x+2)(x²-2x+4)。

3. a³ - b³ = (a - b)(a² + ab + b²)这是立方差公式,用于因式分解差的立方。

例如,我们可以将x³-8分解为(x-2)(x²+2x+4)。

4. a⁴ + b⁴ = (a² + √2ab + b²)(a² - √2ab + b²)这是四次和公式,用于因式分解和的四次方。

例如,我们可以将x⁴+16分解为(x²+4√2x+4)(x²-4√2x+4)。

5. a⁴ - b⁴ = (a² - √2ab + b²)(a² + √2ab + b²)这是四次差公式,用于因式分解差的四次方。

例如,我们可以将x⁴-16分解为(x²-4√2x+4)(x²+4√2x+4)。

除了以上这些常用的因式分解公式外,还有一些其他形式的因式分解公式,以及一些特殊的因式分解技巧。

例如,对于一个二次方程式ax² + bx + c,我们可以使用求根公式x = (-b ± √(b² - 4ac)) / 2a 来因式分解。

根据求根公式,我们可以将二次方程ax² + bx + c 分解为两个因式的乘积 (x - x₁)(x - x₂),其中 x₁和 x₂是由求根公式得到的两个根。

因式分解的七种常见方法

因式分解的七种常见方法因式分解是代数学中非常重要的一个基本概念,可以帮我们优化计算过程,得到简化的式子。

在因式分解的过程中,需要运用不同的方法来将一个给定的式子分解为若干个简单的乘积,本文将会介绍七种常见的因式分解方法。

1. 公式法公式法是一种较为常见的因式分解方法,它可以应用于一些特定的式子。

公式法常用的公式有两个:(1)$a^2-b^2=(a+b)(a-b)$该公式被称为"a二次减b二次"公式。

它告诉我们,一个平方数减另一个平方数的结果可以表示为两个因子的乘积,并分别是它们的和与差。

例如:$16-9=7\times5=(4+3)\times(4-3)$(2)$a^3+b^3=(a+b)(a^2-ab+b^2)$该公式被称为"a立方加b立方"公式。

它告诉我们一个立方数加另一个立方数的结果可以表示为两个因子的乘积,并分别是它们的和与差减去它们的积。

例如:$8^3+1^3=513=(8+1)\times(8^2-8+1)$2. 提公因式法提公因式法是一种常用的因式分解方法。

它的主要思想是将式子中的公因式先提出来,再对剩下的部分进行因式分解。

例如:$ax^2+bx=a(x^2+\frac{b}{a}x)$在上述式子中,$a$是公因式,$(x^2+\frac{b}{a}x)$是剩余部分的因式分解。

这样我们就把原始式子分解成了两个因子的乘积。

3. 十字相乘法十字相乘法主要用于二次三项式的因式分解。

该方法基于以下思想:将二次三项式分解为两个一次三项式的乘积,其中每个一次三项式的首项系数积等于原始式子的二次项系数,常数项积等于原始式子的常数项。

例如:$ax^2+bx+c$,首先将它分解为两个一次三项式$(px+q)(rx+s)$,然后进行十字相乘运算$(px+q)(rx+s)=px\times rx+px\times s+qrx+qs$,其中最后两项括号里的$c$是常数项。

因式分解——公式法(2) 优秀教学设计

公式法2
【课题】:公式法2
【教学目标】:
(一)教学知识点
用完全平方公式分解因式
(二)能力训练要求
1.理解完全平方公式的特点.
2.能较熟悉地运用完全平方公式分解因式.
3.会用提公因式、完全平方公式分解因式,•并能说出提公因式在这类因式分解中的作用.4.能灵活应用提公因式法、公式法分解因式.
(三)情感与价值观要求
通过综合运用提公因式法,完全平方公式分解因式,进一步培养学生的观察和联想能力.通过知识结构图培养学生归纳总结的能力.
【教学重点】:用完全平方公式分解因式.
【教学难点】:根据多项式的特点选用适当的方法进行因式分解。

【教学突破点】:观察理解分解因式与整式乘法的关系,让学生了解事物间的因果联系.
【教法、学法设计】:探究式分层次教学,讲授、练习相结合。

【课前准备】:课件。

3.3因式分解--公式法


1.下列运用平方差公式分解因式中,正确的是( A.x2+y2=(x+y)(x-y) B.x2-y2=(x+y)(x-y) C.-x2+y2=(-x+y)(-x-y)
B )
D.-x2-y2=-(x+y)(x-y)
2.下列代数式中,是完全平方式的有( A ) ①a2-4a+4; ④6x2+3x+1; A.①③ ②9a2+16b2-20ab; ⑤x2+4xy+2y2. C.③④ D.①⑤ ③4y2-4y+1;
(2)36m2a-9m2a2-36m2=-9m2(a2-4a+4)=-9m2(a-2)2.
【规律总结】因式分解一般按下列步骤进行:
(1)一提.若有公因式,应先提取公因式. (2)二套.即套用公式,如果各项没有公因式,那么可以尝 试运用公式法来分解.若为二项式,考虑用平方差公式;若为
三项式,考虑用完全平方公式.
B.②④
3.把代数式 ax2-4ax+4a 分解因式,下列结果中正确的是 ( A ) A.a(x-2)2 C.a(x-4)2 B.a(x+2)2 D.a(x+2)(x-2)
4 . 把 多 项 式 2mx2 - 4mxy + 2my2分 解 因 式 的 结 果 是 2m(x-y)2 . ____________
因式分解的一般步骤
例 3:分解因式: (1)x3-4x;
(2)36m2a-9m2a2-36m2. 思路导引:(1)中有公因式 x,先提公因式,剩下 x2-4 可用
平方差公式分解.(2)中有公因式-9m2,提出后剩下 a2-4a+4, 可用完全平方公式进行分解.
解:(1)x3-4x=x(x2-4)=x(x+2)(x-2).
1. 计算:(1)
(x-1) 2
(2) (2y+3)2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

因式分解之套公式法【知识精读】1.把乘法公式反过来,就可以得到因式分解的公式。

常用公式有:平方差公式 a b a b a b 22-=+-()() 完全平方公式 a ab b a b 2222±+=±()立方和、立方差公式 a b a b a ab b 3322±=±⋅+()()μ 2. 补充:欧拉公式:a b c abc a b c a b c ab bc ca 3332223++-=++++---()() =++-+-+-12222()[()()()]a b c a b b c c a 特别地:(1)当a b c ++=0时,有a b c abc 3333++= (2)当c =0时,欧拉公式变为两数立方和公式。

【典例精析】(一)运用公式分解因式1. 把a a b b 2222+--分解因式的结果是( ) A. ()()()a b a b -++22 B. ()()a b a b -++2 C. ()()a b a b -++2D. ()()a b b a 2222--分析:a a b b a a b b a b 22222222212111+--=++---=+-+()()。

再利用平方差公式进行分解,最后得到()()a b a b -++2,故选择B 。

说明:解这类题目时,一般先观察现有项的特征,通过添加项凑成符合公式的形式。

同时要注意分解一定要彻底。

2.因式分解:x xy 324-=________。

解:x xy x x y x x y x y 32224422-=-=+-()()()说明:因式分解时,先看有没有公因式。

此题应先提取公因式,再用平方差公式分解彻底。

3.分解因式:2883223x y x y xy ++=_________。

解:288244322322x y x y xy xy x xy y ++=++()=+222xy x y () 说明:先提取公因式,再用完全平方公式分解彻底。

4.分解因式:x 3-9x+8. 将常数项8拆成-1+9. 原式=x 3-9x-1+9 =(x 3-1)-9x+9=(x-1)(x 2+x+1)-9(x-1) =(x-1)(x 2+x-8). 5.分解因式:-2x5n-1y n +4x3n-1y n+2-2x n-1y n+4;解 (1)原式=-2x n-1y n(x 4n-2x 2ny 2+y 4) =-2x n-1y n[(x 2n)2-2x 2ny 2+(y 2)2] =-2x n-1y n(x 2n-y 2)2=-2x n-1y n(x n-y)2(x n+y)26.将下列式子因式分解222x y z - 2422a xb y - 224x xy y ++229()4()x y x y --+ 22()()a b c a b c ++-+-2()6()9x y x y ++++ 224()a b c -+53x x - 22344xy x y y --(二).在简便计算、求代数式的值、解方程、判断多项式的整除等方面的应用7. 已知多项式232x x m -+有一个因式是21x +,求m 的值。

分析:由整式的乘法与因式分解互为逆运算,可假设另一个因式,再用待定系数法即可求出m 的值。

解:根据已知条件,设221322x x m x x ax b -+=+++()() 则222123232x x m x a x a b x b -+=+++++()()由此可得21112023a a b m b+=-+==⎧⎨⎪⎪⎩⎪⎪()()()由(1)得a =-1把a =-1代入(2),得b =12把b =12代入(3),得m =128. 已知:a m b m c m =+=+=+121122123,,,求a ab b ac c bc 222222++-+-的值。

解:a ab b ac c bc 222222++-+-=+-++()()a b c a b c 222 =+-()a b c 2Θa m b m c m =+=+=+121122123,, ∴原式=+-()a b c 2=+++-+⎡⎣⎢⎤⎦⎥=()()()1211221231422m m m m说明:本题属于条件求值问题,解题时没有把条件直接代入代数式求值,而是把代数式因式分解,变形后再把条件带入,从而简化计算过程。

9. 已知a b c a b c ++=++=00333,, 求证:a b c 5550++=证明:Θa b c abc a b c a b c ab bc ca 3332223++-=++++---()() ∴把a b c a b c ++=++=00333,代入上式, 可得abc =0,即a =0或b =0或c =0 若a =0,则b c =-, ∴++=a b c 555若b =0或c =0,同理也有a b c 5550++= 说明:利用补充公式确定a b c ,,的值,命题得证。

10. 若x y x xy y 3322279+=-+=,,求x y 22+的值。

解:Θx y x y x xy y 332227+=+-+=()() 且x xy y 229-+=)1(92322=++=+∴y xy x y x , 又x xy y 2292-+=()两式相减得xy =0 所以x y 229+=说明:按常规需求出x y ,的值,此路行不通。

用因式分解变形已知条件,简化计算过程。

11.已知:2211128,22x y x xy y ==++,求代数式的值。

12.3322322a b ab +==已知,,求代数式a b+ab -2a b 的值。

(三). 在几何题中的应用13.已知a b c 、、是∆ABC 的三条边,且满足a b c ab bc ac 2220++---=,试判断∆ABC 的形状。

分析:因为题中有a b ab 22、、-,考虑到要用完全平方公式,首先要把-ab 转成-2ab 。

所以两边同乘以2,然后拆开搭配得完全平方公式之和为0,从而得解。

解:Θa b c ab bc ac 2220++---= ∴++---=2222220222a b c ab bc ac∴-++-++-+=()()()a ab b b bc c c ac a 2222222220 ∴-+-+-=()()()a b b c c a 2220 Θ()()()a b b c c a -≥-≥-≥222000,, ∴-=-=-=a b b c c a 000,, ∴==a b c∴∆ABC 为等边三角形。

14.已知:a 、b 、c 为△ABC 的三边,且22223=+b+c a b c a ++()(),判断三角形的形状,并说明理由。

15.已知a 、b 是一个等腰三角形的两边长,且满足22a +b -4a-6b+13=0 ,求此等腰三角形周长。

(四). 在代数证明题中应用 16.两个连续奇数的平方差一定是8的倍数。

分析:先根据已知条件把奇数表示出来,然后进行变形和讨论。

解:设这两个连续奇数分别为2123n n ++,(n 为整数) 则()()232122n n +-+=++++--=+=+()()()()2321232124481n n n n n n由此可见,()()232122n n +-+一定是8的倍数。

17.证明:两个连续偶数的平方差是4的倍数。

课后作业1. 分解因式:(1)()()a a +--23122解:原式=++-+--[()()][()()]a a a a 231231=+-+()()4123a a =-+-()()4123a a说明:把a a +-231,看成整体,利用平方差公式分解。

(2)x x y x y x 5222()()-+- 解:原式=---x x y x x y 5222()() =--x x y x 2321()()=--++x x y x x x 22211()()()(3)a x y a x y x y 22342()()()-+-+-解:原式=-+-+-()[()()]x y a a x y x y 2222 =-+-()()x y a x y 222. 已知:x x +=-13,求x x 441+的值。

解:Θ()x x x x +=++121222∴+=+-=--=x xx x 2222112327()()∴+=∴++=()x x x x 222441491249, ∴+=x x441473. 若a b c ,,是三角形的三条边,求证:a b c bc 22220---<分析与解答:由于对三角形而言,需满足两边之差小于第三边,因此要证明结论就需要把问题转化为两边差小于第三边求得证明。

证明:Θa b c bc 2222---=-++=-+=++--a b bc c a b c a b c a b c 222222()()()()Θa b c ,,是三角形三边 ∴++>a b c 0且a b c <+ ∴++--<()()a b c a b c 0 即a b c bc 22220---<4. 已知:ωω210++=,求ω2001的值。

解Θωω210++=∴+++=()()ωωω1102,即ω310-= ∴=∴==ωωω32001366711()5. 已知a b c ,,是不全相等的实数,且abc a b c abc ≠++=03333,,试求 (1)a b c ++的值;(2)a b c b c a c a b()()()111111+++++的值。

分析与解答:(1)由因式分解可知a b c abc a b c 3333++-=++()⋅++---()a b c ab bc ca 222故需考虑a b c ab bc ca 222++---值的情况, (2)所求代数式较复杂,考虑恒等变形。

解:(1)Θa b c abc 3333++= ∴++-=a b c abc 33330 又Θa b c abc 3333++-=++++---()()a b c a b c ab bc ca 222∴++++---=()()a b c a b c ab bc ca 2220 而a b c ab bc ca a b b c c a 22222212++---=-+-+-[()()()] Θa b c ,,不全相等∴++--->a b c ab bc ca 2220 ∴++=a b c 0(2)Θabc ≠0 ∴原式=+++++1222abca b c b c a c a b [()()()] 而a b c ++=0,即a b c =-+()∴原式=+--1333abc b c b c [()] =+13abcbc b c [()]=-=-133abc abc ()说明:因式分解与配方法是在代数式的化简与求值中常用的方法。

相关文档
最新文档