《公式法因式分解》课件

合集下载

《公式法》因式分解PPT(第2课时)-北师大版八年级数学下册

《公式法》因式分解PPT(第2课时)-北师大版八年级数学下册

课堂小结
1.要想运用完全平方公式分解因式, 必须紧扣完全平方公式的特点. (1)左边是三项式, 其中首末两项分别是两个数(或两个式子)的完全平方. 这两个项的 符号相同, 中间一项是这两个数(或两个式子)的积的2倍, 符号正负均可. (2)右边是两个数(或两个式子)的和(或者差)的平方.当中间的乘积项与首末两项符号相 同时, 是和的平方; 反之, 则是差的平方. 2. 因式分解的一般步骤: (1)“提”, 先看多项式各项, 有就提出来; (2)“套”, 尝试用乘法公式来分解; (3)“查”, 因式分解必须进行到不能再分解为止.
(1)这种方法的关键是 凑成完全平方式 ;
(2)用上述方法把a ²-8a+15因式分解.
合作探究
问题:阅读材料 我们知道对于二次三项式x²+2ax+a²这样的完全平方式, 可以用公式将它分解成(x+a)² 的形式, 但是对于二次三项式x²+2ax-3a²就不能直接应用完全平方公式了, 我们可以采用如下 的办法: x²+2ax-3a²=x²+2ax+a²-a²-3a² =(x+a)²-(2a)² =(x+3a)(x-a) (2)用上述方法把a ²-8a+15因式分解. 解:(2)a²-8a+15= a²-8a+16-16+15
=(a-4)²-1 =(a-3)(a-5)
举一反三
1. 若x ²+2(a+4)x+25是完全平方式, 求a的值. 解:∵x ²+2(a+4)x+25是完全平方式, ∴2(a+4)=±2×5, 解得a=1或a=-9. 故a的值是1或-9.
举一反三
2. 已知二次三项式x²﹣4x+m有一个因式是(x+3), 求另一个因式以及m的值. 解:设另一个因式为(x+n), 得 x2﹣4x+m=(x+3)(x+n) 则x ²﹣4x+m=x²+(n+3)x+3n ∴n+3=-4, m=3n. 解得:n=﹣7, m=﹣21 ∴另一个因式为(x﹣7), m的值为﹣21.

《公式法》因式分解PPT(第1课时)

《公式法》因式分解PPT(第1课时)

B.-m ²-n²的两平方项符号相同,不能用平方差公式进行因式分解;
C.-m ²+n ² 符合平方差公式的特点,能用平方差公式进行因式分解;
D. m ²-tn ²不符合平方差公式的特点,不能用平方差公式进行因式分解.
合作探究
探究点三 问题1:把下列各式分解因式: (1)9(m+n)²-(m-n)²; (2)2x³-8x. (3)x 4-1 解:(1)9(m+n)²-(m-n)²
4.3 公式法
第1课时
八年级下册
-.
学习目标 1 掌握用平方差公式分解因式的方法. 2 能综合运用提取公因式法、平方差公式法分解因式.
前置学习
1.填空
①25x²= (__5_x__)²
③0.49b²= (_0_._7_b_)²
⑤1
4
b²=
(__12_b__)²
②36a4 = (__6_a_²_)² ④64x²y²= (__8_x_y_)²
课堂小结
1.平方差公式运用的条件: (1)二项式 (2)两项的符号相反 (3)每项都能化成平方的形 式 2 .公式中的a和b可以是单项式,也可以是多项式 3.各项都有公因式,一般先提公因式,再进一步分解,直至不能再分解为止.
课后作业
1.对于任意整数n,多项式(n+7) ²-(n-3) ²的值都能( A )
随堂检测
1.判断正误 (1)x²+y²=(x+y)(x-y); (2)x²-y²= (x+y)(x-y); (3)-x²+y²=(-x+y)(-x-y); (4)-x²-y²=-(x+y)(x-y).
(✘) ( ✔) ( ✘) ( ✘)
随堂检测
2. 某同学粗心大意,分解因式时,把等式x4-■=(x ²+4)(x+2)(x-▲)中的

因式分解公式法ppt课件市公开课一等奖百校联赛特等奖课件

因式分解公式法ppt课件市公开课一等奖百校联赛特等奖课件

4x²- 9y²=(2x)²-(3y)²=(2x+3y)(2x-3y)
第4页
例1.把以下各式分解因式
(1)16a²- 1
解:1)16a²-1=(4a)²- 1
( 2 ) 4x²- m²n²
=(4a+1)(4a-1)
( 3 ) —9 x²- —1 y²
25
16
( 4 ) –9x²+ 4 解:2) 4x²- m²n²
以说明理由。
(2n+1)2-(2n-1)2=8n
第38页
16、(浙江省)在日常生活中如上网等都需要密码,有一个因 式分解法产生密码方便记忆又不易破译。 比如用多项式x4-y4因式分解结果 (x-y)(x+y)(x2+y2)来设置密码,当取x=9,y=9时,可得一个六 位数密码“018162”。你知道这是怎么来吗?
1x2 2xy y2 是 2A2 2AB B2 是 3甲2 2甲乙 乙2 是 42 2 2 是
第11页
a2 2abb2 a2 2abb2
完全平方式特点:
1、必须是三项式 2、有两个平方“项” 3、有这两平方“项”底数2倍或-2倍
首2 2首尾尾2
第12页
以下各式是不是完全平方式
第29页
10.(·眉山中考)把代数式
分解因式,以下结
果中正确是( )
mx2 6mx 9m
A.
B.
C.
D.
m(x 3)2 m(x 3)(x 3)
m( x 4)2
m(x 3)2
【解析】选D .mx2 6mx= 9mm (x2-6x+9)=m(x-3)2.
11.(·黄冈中考)分解因式:2a2–4a+2
=(2x)²- (mn)² =(2x+mn)(2x-mn)

人教版九年级数学上册《因式分解法》PPT

人教版九年级数学上册《因式分解法》PPT

(1) x2 9 0
(2) x2 2x 1 0
1.理解用因式分解法解一元二次方 程的基本思想,会用因式分解法解 一些一元二次方程; 2.灵活运用适当的方法解一元二次 方程,提高分析问题和解决问题的 能力.
因式分解法
当一元二次方程的一边是0,而另一边易于分解成两 个一次因式的乘积时,我们就可以用因式分解的方法 求解.这种用因式分解解一元二次方程的方法就叫因 式分解法.
温馨提示:
1.用因式分解法的条件是:方程左边易于分解,而右边等于零; 2. 关键是熟练掌握因式分解的知识 ; 3.理论依据是“两个因式的积等于零,至少有一个因式等于零.”
交流讨论
x2 x
解:方程的两边同时除以x,得 x 1.
原方程的解为x 1.
这样解是否正确呢?
感悟新知
快速回答下列各方程的根分别是多少?
(1)x(x 2) 0
(2)( y 2)( y 3) 0 (3)(3x 2)(2x 1) 0
(4)x2 2x
x1 0, x2 2
y1 2, y2 3
x1
2新知尝试
用因式分解法解下列方程
1.x2 36 0 2.x2 6x 9 3.3x(2x 1) (4x 2) 0 4.(x 4)2 (2x 5)2
一次方程. (4)两个一元一次方程的解 就是原方程的解.
2.解一元二次方程的方法: 直接开平方法 配方法 因式分解法
公式法
3.x1
1,
x2
2 3
4.x1
2,
x2
4 3
这节课,你收获了什么?
这节课上,我学会了…… 这节课上,我感到最困难的是…… 这节课上,我感受最深的是……
小结
1.用因式分解法解一元二次方程的步骤:

七年级数学下册 第3章 因式分解 3.3 公式法(第1课时)课件

七年级数学下册 第3章 因式分解 3.3 公式法(第1课时)课件

9
3
3
其中(qízhōng)正确的有
B(
)
A.1个
B.2个
C.3个
D.4个
第十八页,共四十一页。
★3.因式(yīnshì)分解:(2a+b)2-(a+2b)2=________3_(a_+_b_)_(a_-_b_). ★4.因式分解: 世纪金榜导学号 (1)(a+b)2-4a2. (2)25(m+n)2-(m-n)2.
决下面的问题,并归纳结论: 1.计算下列各题:
(1)(x+2)(x-2)=_______x_2.-4 (2)(1+3a)(1-3a)=_________1_-9a2.
第三页,共四十一页。
(3)x2-4= ________(_x_+_2_)_(x_-_2.)
(4)1-9a2= _________(1_+_3_a_)_(_1_-3_a. )
第三十三页,共四十一页。
【火眼金睛(huǒ yǎn jīn 】 jīng)
因式分解:(x-y+1)2-(x+y-3)2
第三十四页,共四十一页。
【正解】原式=(x-y+1+x+y-3)(x-y+1-x-y+3)= (2x-2)(4-2y) =4(x-1)(2-y).
第三十五页,共四十一页。
【一题多变】
已知x-y=3,y-z=3,x+z=14,求x2-z2的值.
第三十六页,共四十一页。
解:因为(yīn wèi)x-z=(x-y)+(y-z)=6,
所以x2-z2=(x+z)(x-z)=14×6=84.
第三十七页,共四十一页。

华东师大版八年级数学上册因式分解公式法课件

华东师大版八年级数学上册因式分解公式法课件

1002-2×100×99+99² 解:原式=(100-99)²
=1.
本题利用完全平方 公式分解因式的方 法,大大减少计算 量,结果准确.
当堂练习
1.把下列各式分解因式:
(1) 16a2-9b2
(4a+3b)(4a-3b)
(2) (a+b)2-(a-b)2
4ab
(3) 9xy3-36x3y
9xy(y+2x)(y-2x)
a2 ± 2 . a . b + b2
下列各式是不是完全平方式?
首2 2 首 尾 尾2
(1)a2-4a+4;
是 (2)1+4a²; 不是
(3)4b2+4b-1; (5)x2+x+0.25.
不是 (4)a2+ab+b2; 不是 是
分析: (2)因为它只有两项;
(3)4b²与-1的符号不统一; (4)因为ab不是a与b的积的2倍.
2、m²-6m+9=( m)²- 2·(m ) ·(3 )+( 3 )²=(m - 3 )² 3、a²+4ab+4b²=(a )²+2·( a ) ·(2b )+(2b )²=( a + 2b )²
a2 ± 2 . a . b + b2 = ( a ± b )²
首2 2 首 尾 尾2 (首 尾)2
三查(多项式的因式分解要分解到不能再分解为止) 分解因式的一般步骤
二 运用完全平方公式因式分解
完全平方公式: a2 2ab b2 =(a ± b)2 完全平方式的特点:
1.必须是三项式(或可以看成三项的); 2.有两个同号的数或式的平方; 3.中间有两底数之积的±2倍. 简记口诀:首平方,尾平方,首尾两倍在中央. 凡具备这些特点的三项式,就是完全平方式,将它写成 完全平方形式,便实现了因式分解.

14因式分解-公式法课件人教版数学八年级上册

14因式分解-公式法课件人教版数学八年级上册

(4)ax2 2a 2 x a3 ;
(5) 3x2 6xy 3y 2.
初中数学
知识拓展
1.若x,y为任意实数,且m x2 y 2 , n 2xy, 则m,n的 大小关系是___m___n_____;
解: m n (x2 y 2 ) 2xy
(x y)2,
x, y 为任意实数, (x y)2 0.
初中数学
例 分解因式:
(1)16 x2 24 x 9;
分析:
16 x 2 (4x)2,9 32,
24x 2 4x 3,
16x2 24x 9 (4x)2 2 4x 3 32
a2 2ab b2.
所以16x2+24x+9是一个完全平方式,即
初中数学
例 分解因式:
解:(1)16 x2 24 x 9 (4x)2 24x 32 (4x)2 + 2 4x 3 32
请你根据所学知识将下面的多项式分解因式: (1)若多项式x2+mx+9为完全平方式,则m=_______;
完全平方公式: 有公因式先提公因式,再检查是否可用平方差公式.
4(m+2)(m-2)
例 利用简便方法计算.
在括号中填入适当的式子,使等式成立:
若x,y为任意实数,且
则m,n的
Hale Waihona Puke 即:两个数的平方和加上(或减去)这两个数的积的2倍,
[x2 − 2 x 2y (2 y)2 ]
在括号中填入适当的式子,使等式成立:
在括号中填入适当的式子,使等式成立: 例 利用简便方法计算. 有两项是两数的平方和,
(x 2 y)2 ;
问题:因式分解的一般步骤是什么?
初中数学
例 分解因式:

《公式法因式分解》课件

《公式法因式分解》课件

因式分解的基本思想?
因式分解的基本思想是将多 项式中的公因式提出来,然 后对剩余部分进行因式分解。
公式法因式分解
1
什么是公式法因式分解?
公式法因式分解是指通过特定的公式,将多项式分解成几个单项式的积。
2
列举公式法因式分解的几个公及其应用
例如: ①平方差公式分解:$a^2-b^2=(a-b)(a+b)$ ②三项完全平方公式分解:$a^2+2ab+b^2=(a+b)^2$ ③一次多项式因式公式分解:$ax^2+bx+c=a(x-x_1)(x-x_2)$
总结与思考
总结公式法因式分解方法 的优缺点
总结公式法因式分解方法的优 点和不足之处,引导学生思考 这一方法的适用范围和限制条 件。
思考其他因式分解方法的 应用场景
向学生介绍不同的因式分解方 法,让他们了解不同的思路和 技巧,开拓视野、拓宽思路。
强调学生掌握因式分解方 法的重要性和未来发展前 景
通过对因式分解实际应用的案 例介绍,并引领学生关注相关 前沿科技和产业,激发他们学 习的兴趣和动力。
公式法因式分解PPT课件
这份PPT课件将带你深入了解因式分解中最常用的公式法,并向你展示这一简 单易学却极其实用的技巧。
பைடு நூலகம்
背景介绍
什么是因式分解?
因式分解即将多项式写成几 个单项式的积的形式。
因式分解的意义和应用?
因式分解可以帮助我们更简 洁、准确地表达多项式,同 时在化简代数式、解方程、 求极值、证明等方面具有广 泛的应用。
3
详细步骤介绍
详细介绍公式法因式分解的每一个步骤,包括提取公因式、使用公式、检验结果等。
实例演练
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020/3/23
判别下列各式是不是 完全平方式
(1x 2 + 2 xy + y 2 是 (2A2 - 2 AB + B 2 是 (3甲2 + 2 甲 乙 + 乙 2 是 (42 - 2 + 2 是
2020/3/23
a2+2ab+b2 a2-2ab+b2
完全平方式的特点:
1、必须是三项式 2、有两个平方的“项” 3、有这两平方“项”底数的2倍或-2
2020/3/23
在横线内填上适当的式子,使等式成立:
(1)(x+5)(x-5)=
x2-25 ;
(2)(a+b)(a-b)=
a2-b2 ;
(3) x2-25 = (x+5)( x-5 );
(4) a2-b2 = (a+b)( a-b )。
2020/3/23
知识探索
平方差公式:
(a+b)(a-b)=a2-b2
=(2x)²- (mn)²
=(2x+mn)(2x-mn)
2020/3/23
例2.把下列各式因解式: 分解
1)( x + z )²- ( y + 4z.原)²式=[(x+y+z)+(x-y-z)]
×[(x+y+z)- (x-y-z)]
2)4解(:a + b)²- 25(a - c)=²2 x ( 2 y + 2 z) 3解):41.a原³式-==4([x(a+xy++z)2+z()y(x+-zy))][(x+z)=-(4yx+z()y] + z ) 42解.)原(:x式=+[2y(a++b)z]²)-²[5-(a(-xc)]–² y – z )² 53).原—12式==a([²=72(a4-a+a+22(bba)-²+5-1c5))((=a-3-4caa)+]([2a2b+(+a1+5)cb()a)--15()a-c)]
把下列各式分解因式:
看(1)a2-82 = (a+8) (a -8) 谁 快(22)16x2 -y2 =(4x+y) (4x -y)
又 对
(33)

1 9
y2
+
4x2=(2x +
1 3
y) (2x -
1 3
y)
(44) 4k2 -25m2n2=(2k+5mn) (2k -5mn)
2020/3/23
a 2 - b 2 = ( a + b )( a - b )
2020/3/23
巩固练习:
1.选择题:
1)下列各式能用平方差公式分解因式的是( D )
A. 4X²+y² B. 4 x- (-y)² C. -4 X²-y³ D. - X²+ y²
2) -4a²+1分解因式的结果应是 ( D )
A. -(4a+1)(4a-1)
B. -( 2a –1)(2a –1)
A. -(4a+1)(4a-1)
B. -( 2a –1)(2a –1)
C. -(2a +1)(2a+1)
D. -(2a+1) (2a-1)
D. 2. 把下列各式分解因式:
E. 1)18-2b² 2) x4 –1 1)原式=2(3+b)(3-b)
2)原式=(x²+1)(x+1)(x-1)
2020/3/23
3.当要分解的多项式是两个多项式的平方时,分 解成的两个因式要进行去括号化简,若有同类项, 要进行合并,直至分解到不能再分解为止。
试一试
1.运用公式法分解因式:
(1) -9x2+4y2
(2) 64x2-y2z2
(3) a2(a+2b)2-4(x+y)2 (4) (a+bx)2-1
(5) (x-y+z)2-(2x-3y+4z)2
2020/3/23
根据因式分解的概念,判断下列由左边到右 边的变形,哪些是因式分解,哪些不是,为 什么?
1.(2x-1)2=4x2-4x+1
2. 3x2+9xy-3x=3x(x+3y-1)
2.4x2-1-4xy+y2=(2x+1)(2x-1)-y(4x-y)
4.
a2 + a - 2 = a ( a +1-
4x²- 9y²=(2x)²-(3y)²=(2x+3y)(2x-3y)
2020/3/23
例1.把下列各式分解因式
(1)16a²- 1
解:1)16a²-1=(4a)²- 1
( 2 ) 4x²- m²n²
=(4a+1)(4a-1)
( 3 ) —9 x²- —1 y²
25
16
( 4 ) –9x²+ 4 解:2) 4x²- m²n²
(6)
1 16
(x+y)2=[
14(x+y) ]2。
2020/3/23
首页 上页 下页
做一做
你能试着把下列各式分解因式吗?
(1)a2-16 =a2-( 4)2 =(a+4)(a-4) (2)64-b2 =( 8 ) 2-b2=(8+b)(8-b)
2020/3/23
a2 - b2= (a + b) (a - b)
2020/3/23
考考你
你知道992-1能否被100整除吗? 说说你是怎么想的?
2020/3/23
2020/3/23
课前小测:
1.选择题:
1)下列各式能用平方差公式分解因式的是( D )
A. 4X²+y² B. 4 x- (-y)² C. -4 X²-y³ D. - X²+ y²
2) -4a²+1分解因式的结果应是 ( D )
2020/3/23
学习目标
• 1 知识与技能:掌握使用公式法进行因式分 解的方法,并能熟练使用公式法进行因式分 解;
• 2 过程与方法:通过知识的迁移经历运用平 方差公式和完全平方公式分解因式的过程;
• 3 情感态度与价值观:在应用公来自法分解因 式的过程中让学生体验换元思想,同时增强 学生的观察能力和归纳总结的能力。
(5) -x2 - 不能转化为平方差形
(265)y2-x2+25y2 = 式25y2-x2 =(5y)2 -
2020/3/23
x2
铺路之石
填空:
(1) 1 =(
36
1 6
)2 ;
(3)9m2 = ( 3m )2;
(2) 0.81=( 0.9 )2; (4) 25a2b2=( 5ab )2;
(5) 4(a-b)2=[ 2(a-b) ]2;
2020/3/23
a2 - b2= (a + b) (a - b)
下列多项式能转化成( )2-( )2的形式吗? 如果能,请将其转化成( )2-( )2的形式。
(1) m2 -1 = m2 -12 (2)4m2 -9 = (2m)2 -32
(3)4m2+9 不能转化为平方差形式
(4)x2 -25y 2 = x2 -(5y)2
2
)
a
2020/3/23
把下列各式进行因式分解 1. a3b3-a2b-ab ab(a2b2-a-1) 2. -9x2y+3xy2-6xy -3xy(3x-y+2)
2020/3/23
比一比
• 和老师比一比,看谁算的又快又准确!
322-312
682-672
(
8 15
2
)
-
(
7 15
2
)
5.52-4.52
倍首 22首 尾 +尾 2
2020/3/23
下列各式是不是完全平方式
( 1 a 2 + b 2 + 2 a b 是
(2 - 2 xy + x 2+ y 2 是 (3 x 2+ 4 xy + 4 y 2 是 (4 a 2- 6 a b + b 2 否
(5 x 2+ x + 1 是
4
( 6 a 2 + 2 a b + 4 b 2 否
( 5 x 4 + 2 x 2 y 2 + _ _ _ _y_ 4_
2020/3/23
因式分解的基本方法2
运用公式法
把乘法公式反过来用,可以把符合公式 特点的多项式因式分解,这种方法叫公式法.
(1) 平方差公式: a2-b2=(a+b)(a-b) (2) 完全平方公式:a2+2ab+b2=(a+b)2
a2-2ab+b2=(a-b)2
2020/3/23
平方差公式:
(a+b)(a-b) = a²- b²
2020/3/23
分解因式:
1. 4x3 - 4x
2. x4-y4
解:1. 4x3-4x=4x(x2-1)=x(x+1)(x-1)
2.x4-y4=(x2+y2) (x2-y2)=(x2+y2)(x+y)(x-y)
结论: 分解因式的一般步骤:一提、二套 多项式的因式分解要分解到不能再分解为止。
2020/3/23
2020/3/23
请补上一项,使下列多项
式成为完全平方式
( 1 x 2 + _ _2_ x_ _y _ _ + y 2
( 2 4 a 2 + 9 b 2 + _ _ _1_2_a_b_ ( 3 x 2 - _4_ _x _y_ _ + 4 y 2
相关文档
最新文档