公式法因式分解练习
初三因式分解练习题公式法

初三因式分解练习题公式法(文章正文,确认字数为1500字,题目:初三因式分解练习题公式法)在初三数学学习中,因式分解是一个重要的知识点。
因式分解是指将一个多项式拆解成两个或多个因式的乘积的过程。
在因式分解中,公式法是常用的一种方法。
本文将通过提供一些初三因式分解练习题,以公式法的解题思路来巩固和加深我们对因式分解的理解。
【练习题一】将多项式 x^2 + 5x + 6 进行因式分解。
解:首先,我们观察多项式的三个系数,得知 b = 5,c = 6。
然后,我们需要找到两个数的和为 5,乘积为 6 的数对。
很明显,这个数对是2 和 3,因为 2+3=5,2x3=6。
所以我们可以将多项式进行因式分解:x^2 + 5x + 6 = (x + 2)(x + 3)【练习题二】将多项式 x^2 - 3x - 10 进行因式分解。
解:同样地,我们观察多项式的三个系数,得知 b = -3,c = -10。
我们需要找到两个数的和为 -3,乘积为 -10 的数对。
很明显,这个数对是 -5 和 2,因为 -5+2=-3,-5x2=-10。
所以我们可以将多项式进行因式分解:x^2 - 3x - 10 = (x - 5)(x + 2)通过以上两个例子,我们可以总结出一般情况下应用公式法进行因式分解的步骤:步骤一:观察多项式的三个系数,得到 b 和 c 的值。
步骤二:找到两个数的和为 b,乘积为 c 的数对。
步骤三:将多项式进行因式分解,将找到的数对分别代入公式 (x + m)(x + n) 中,其中 m 和 n 分别对应两个数。
需要注意的是,这种公式法只适用于特定的情况,即当多项式的二次项系数为 1 时。
如果二次项系数不为 1,我们需要借助其他的方法,如配方法或因式分解公式等。
【练习题三】将多项式 3x^2 + 11x + 10 进行因式分解。
解:在这个例子中,我们观察到二次项系数为 3,不是 1。
因此,我们不能直接应用公式法。
因式分解公式法例题

因式分解公式法例题因式分解公式法可是咱们数学学习中的一个重要“武器”!今天咱就来好好聊聊这其中的门道。
先给大家讲讲平方差公式,就是 a² - b² = (a + b)(a - b) 。
比如说,咱们有个式子 9x² - 25 ,这就可以用平方差公式来分解。
9x²可以写成(3x)²,25 就是 5²,所以 9x² - 25 就等于 (3x + 5)(3x - 5) 。
再来说说完全平方公式,a² + 2ab + b² = (a + b)²,a² - 2ab + b² = (a - b)²。
就像 4x² + 12x + 9 ,这里 4x²是 (2x)²,9 是 3²,12x 正好是2×2x×3 ,所以 4x² + 12x + 9 就等于 (2x + 3)²。
我记得有一次给学生们讲这部分内容的时候,有个同学特别有意思。
那是个阳光明媚的上午,教室里的气氛也很活跃。
我出了一道因式分解的题目:x² - 16 。
大家都开始埋头思考,这时候有个平时挺调皮的男生,没一会儿就高高举起了手,自信满满地说:“老师,我会!这等于 (x + 4)(x - 4) 。
”我让他给大家讲讲思路,他站起来挠挠头说:“您刚讲的平方差公式嘛,x²是 x 的平方,16 是 4 的平方,这不就用公式一下子就出来啦!”大家都被他那副得意的样子逗笑了。
咱们继续看例题。
比如 16y² - 8y + 1 ,这个式子呢, 16y²是 (4y)²,1 是 1²,8y 是 2×4y×1 ,所以它就可以分解为 (4y - 1)²。
再看 25m² - 40mn + 16n²,25m²是 (5m)²,16n²是 (4n)²,40mn 是2×5m×4n ,那它就等于 (5m - 4n)²。
因式分解专项练习50道(公式法)

1. 因式分解:21001m -2. 因式分解:23625x -3. 因式分解: ()22a b c +-4. 因式分解:()249a b c --5. 因式分解:()()221x y x y ---+6. 因式分解:2122412x x ++7. 因式分解:2219ax ab -8. 因式分解:2341227x y x y-9. 因式分解:()()22ax y b y x -+-10. 因式分解:2296x xy y-+11. 因式分解:214p p -+12. 因式分解:214a a++13. 因式分解:222510a b ab+-14. 因式分解:322363ax y ax y ax++15. 因式分解:4224816a a b b -+16. 因式分解:22193m m++17. 因式分解:222244x x y x y-+18. 因式分解:2230225a ab b -+-19. 因式分解:221222x xy y ++20. 因式分解:224912m n mn --+21. 因式分解:221025x y xy -+22. 因式分解:228x -23. 因式分解:22ab ab a-+24. 因式分解:3222x x y xy-+25. 因式分解:()()2294a x y b y x -+-26. 因式分解:()()223227x x --+27. 因式分解:22344xy x y y--28. 因式分解:()()134a a -++29. 因式分解:2231827x xy y-+30. 因式分解: ()24343a b a b --31. 因式分解:()222224m nm n+-32. 因式分解:()()2244m n m m n m+-++33. 因式分解:2425x -34. 因式分解: 22363mx mxy my-+35. 因式分解:23a b b -36. 因式分解:()()2222629x x-+++-37. 因式分解:()()224a b a b --+38. 因式分解:()()2233x y x y +--39. 因式分解: 2269a b ab -+40. 因式分解:()()216249a b a b +-+-41. 因式分解:()()242520x y x y ++-+42. 因式分解: ()()221a b a b ++++43. 因式分解:()()2244222x y x y +-44. 因式分解:()2222224a b a b c-+-45. 因式分解:()()2249x y z x y z ++---46. 因式分解:()()2221768a b x b a ---47. 因式分解:88x y-+48. 因式分解:()2242y z x --49. 因式分解:()()242327x x y y x ---50. 因式分解:()()75a b b a -+-51. 因式分解:()222224x yxy +-52. 因式分解:()222224a b a b-+53. 因式分解:()244224p qp q+-54. 因式分解:()()245201x y x y ++-+-\。
14.3.2 公式法因式分解限时训练题

14.3.2 公式法因式分解限时训练题一、选择题(共5小题)1. 下列多项式中,能用平方差公式进行因式分解的是 A. a2−b2B. −a2−b2C. a2+b2D. a2+2a2. 因式分解x2−9y2的正确结果是 A. x+9yx−9yB. x+3yx−3yC. x−3y2D. x−9y23. 计算752−252等于 A. 50B. 500C. 5000D. 71004. 分解因式2x+32−x2的结果是 A. 3x2+4x+3B. 3x2+2x+3C. 3x+3x+3D. 3x+1x+35. 若a+b=2,则a2−b2+4b的值为 A. 4B. 3C. 2D. 0二、填空题(共7小题)6. 两个数的平方差,等于这两个数的与这两个数的的乘积,用式子表示为.7. 分解因式:(1)9−x2=;(2)x2−4y2=.8. 分解因式:(1)x2−9=;(2)a2−4b2=.9. 若x+y=−4,x−y=2,则x2−y2的值是.10. 分解因式:(1)xy2−4x=;(2)ab2−a=.11. 一个长方形的面积是x2−4m2,其长为x+2m,则其宽为m.12. 将边长分别为a+b和a−b的两个正方形摆放成如图所示的位置,则阴影部分的面积化简后的结果是.三、解答题(共7小题)13. 分解因式:2a+b2−a+2b2.14. 因式分解:(1)25−a2;(2)x2y2−9;(3)a2−14b2.(4)4x2−y2;(5)49m2−125n2;(6)−9x2+y2.15. 因式分解:(1)2a2−18;(2)x4−x2.16. 把下列各式分解因式:(1)x3−16x;(2)x−12−4;(3)2a+12−a2;(4)x4−a4;(5)16a+b2−9a−b2;(6)x2a−b+b−a.17. 已知4m+n=40,2m−3n=5,求m+2n2−3m−n2的值.18. 求证:不论n取何正整数,n+52−n−12一定是12的倍数.19. 如图,在一个边长为a的正方形木板上,锯掉边长为b的四个小正方形,当a=18分米,b=6分米时,求剩余部分的面积.。
[小学]14.3.2公式法因式分解练习题
![[小学]14.3.2公式法因式分解练习题](https://img.taocdn.com/s3/m/21d8a4010a4e767f5acfa1c7aa00b52acfc79cfc.png)
14.3.2公式法因式分解练习题思维导航:运用公式法是分解因式的常用方法,运用公式法分解因式的思路主要有以下几种情况:一、直接用公式:当所给的多项式是平方差或完全平方式时,可以直接利用公式法分解因式。
例1、分解因式:(1)x2-9 (2)9x2-6x+1二、提公因式后用公式:当所给的多项式中有公因式时,一般要先提公因式,然后再看是否能利用公式法。
例2、分解因式:(1)x5y3-x3y5(2)4x3y+4x2y2+xy3三、系数变换后用公式:当所给的多项式不能直接利用公式法分解因式,往往需要调整系数,转换为符合公式的形式,然后再利用公式法分解.例3、分解因式:(1)4x2-25y2 (2)4x2-12xy2+9y4四、指数变换后用公式:通过指数的变换将多项式转换为平方差或完全平方式的形式,然后利公式法分解因式,应注意分解到每个因式都不能再分解为止.例4、分解因式:(1)x4-81y4 (2)16x4-72x2y2+81y4五、重新排列后用公式:当所给的多项式不能直接看出是否可用公式法分解时,可以将所给多项式交换位置,重新排列,然后再利用公式。
例5、分解因式:(1)-x2+(2x-3)2 (2)(x+y)2+4-4(x+y)六、整理后用公式:当所给的多项式不能直接利用公式法分解时,可以先将其中的项去括号整理,然后再利用公式法分解。
例6 、分解因式: (x-y)2-4(x-y-1)七、连续用公式:当一次利用公式分解后,还能利用公式再继续分解时,则需要用公式法再进行分解,到每个因式都不能再分解为止。
例7、分解因式:(x2+4)2-16x21、24x -2、29y -3、21a -4、224x y -5、2125b -6、222x y z -7、2240.019m b - 8、2219a x -9、2236m n - 10、2249x y - 11、220.8116a b - 12、222549p q -13、2422a x b y - 14、41x - 15、4416a b - 16、44411681a b m -题型(二):把下列各式分解因式1、22()()x p x q +-+2、 22(32)()m n m n +--3、2216()9()a b a b --+4、229()4()x y x y --+5、22()()a b c a b c ++-+-6、224()a b c -+题型(三):把下列各式分解因式1、53x x - 2、224ax ay - 3、322ab ab -4、316x x - 5、2433ax ay - 6、2(25)4(52)x x x -+-7、324x xy - 8、343322x y x - 9、4416ma mb -10、238(1)2a a a -++ 11、416ax a -+ 12、2216()9()mx a b mx a b --+题型(四):利用因式分解解答下列各题1、证明:两个连续奇数的平方差是8的倍数。
因式分解-运用公式法

因式分解-运用公式法精选题34道一.选择题(共14小题)1.下列多项式中能用平方差公式分解因式的是()A.a2+(﹣b)2B.5m2﹣20mn C.﹣x2﹣y2D.﹣x2+92.小明在抄分解因式的题目时,不小心漏抄了x的指数,他只知道该数为不大于10的正整数,并且能利用平方差公式分解因式,他抄在作业本上的式子是x□﹣4y2(“□”表示漏抄的指数),则这个指数可能的结果共有()A.2种B.3种C.4种D.5种3.下列因式分解中,正确的个数为()①x3+2xy+x=x(x2+2y);②x2+4x+4=(x+2)2;③﹣x2+y2=(x+y)(x﹣y)A.3个B.2个C.1个D.0个4.把多项式分解因式,正确的结果是()A.4a2+4a+1=(2a+1)2B.a2﹣4b2=(a﹣4b)(a+b)C.a2﹣2a﹣1=(a﹣1)2D.(a﹣b)(a+b)=a2﹣b25.已知x2+kx+4可以用完全平方公式进行因式分解,则k的值为()A.﹣4B.2C.4D.±46.把(a2+1)2﹣4a2分解因式得()A.(a2+1﹣4a)2B.(a2+1+2a)(a2+1﹣2a)C.(a+1)2(a﹣1)2D.(a2﹣1)27.下列因式分解正确的是()A.m2+n2=(m+n)(m﹣n)B.x2+2x﹣1=(x﹣1)2C.a2﹣a=a(a﹣1)D.a2+2a+1=a(a+2)+18.下列多项式不能使用平方差公式的分解因式是()A.﹣m2﹣n2B.﹣16x2+y2C.b2﹣a2D.4a2﹣49n29.下列多项式能直接用完全平方公式进行因式分解的是()A.x2+2x﹣1B.x2﹣x+14C.x2+xy+y2D.9+x2﹣3x10.分解因式4x2﹣y2的结果是()A.(4x+y)(4x﹣y)B.4(x+y)(x﹣y)C.(2x+y)(2x﹣y)D.2(x+y)(x﹣y)11.为了应用平方差公式计算(a﹣b+c)(a+b﹣c),必须先适当变形,下列各变形中,正确的是()A.[(a+c)﹣b][(a﹣c)+b]B.[(a﹣b)+c][(a+b)﹣c]C.[(b+c)﹣a][(b﹣c)+a]D.[a﹣(b﹣c)][a+(b﹣c)]12.下列多项式能用完全平方公式进行因式分解的是()A.a2﹣1B.a2+4C.a2+2a+1D.a2﹣4a﹣4 13.下列各式中,不能用平方差公式因式分解的是()A.﹣a2﹣4b2B.﹣1+25a2C.116−9a2D.1﹣a4 14.下列代数式中,能用完全平方公式进行因式分解的是()A.x2﹣1B.x2+xy+y2C.x2﹣2x+1D.x2+2x﹣1二.填空题(共10小题)15.若x2+2(3﹣m)x+25可以用完全平方式来分解因式,则m的值为.16.分解因式:x2﹣4=.17.分解因式:a2﹣4b2=.18.分解因式:x2﹣2x+1=.19.分解因式:a2﹣2a+1=.20.分解因式:4a2﹣4a+1=.21.因式分解:x2﹣1=.22.因式分解:x2﹣9=.23.因式分解:9x2﹣4=.24.因式分解:m2﹣4n2=.三.解答题(共10小题)25.下面是某同学对多项式(x2﹣4x+2)(x2﹣4x+6)+4进行因式分解的过程.解:设x2﹣4x=y,原式=(y+2)(y+6)+4 (第一步)=y2+8y+16 (第二步)=(y+4)2(第三步)=(x2﹣4x+4)2(第四步)(1)该同学第二步到第三步运用了因式分解的.A.提取公因式B.平方差公式C.两数和的完全平方公式D.两数差的完全平方公式(2)该同学因式分解的结果是否彻底?.(填“彻底”或“不彻底”)若不彻底,请直接写出因式分解的最后结果.(3)请你模仿以上方法尝试对多项式(x2﹣2x)(x2﹣2x+2)+1进行因式分解.26.请看下面的问题:把x4+4分解因式分析:这个二项式既无公因式可提,也不能直接利用公式,怎么办呢19世纪的法国数学家苏菲•热门抓住了该式只有两项,而且属于平方和(x2)2+22的形式,要使用公式就必须添一项4x2,随即将此项4x2减去,即可得x4+4=x4+4x2+4﹣4x2=(x2+2)2﹣4x2=(x2+2)2﹣(2x)2=(x2+2x+2)(x2﹣2x+2)人们为了纪念苏菲•热门给出这一解法,就把它叫做“热门定理”,请你依照苏菲•热门的做法,将下列各式因式分解.(1)x4+4y4;(2)x2﹣2ax﹣b2﹣2ab.27.分解因式(1)n2(m﹣2)﹣n(2﹣m)(2)(a2+4b2)2﹣16a2b2.28.下面是某同学对多项式(x2﹣4x+2)(x2﹣4x+6)+4进行因式分解的过程.解:设x2﹣4x=y原式=(y+2)(y+6)+4(第一步)=y2+8y+16(第二步)=(y+4)2(第三步)=(x2﹣4x+4)2(第四步)请问:(1)该同学第二步到第三步运用了因式分解的A.提取公因式法B.平方差公式C.两数和的完全平方公式D.两数差的完全平方公式(2)该同学因式分解的结果是否彻底?.(填“彻底”或“不彻底”)若不彻底,请直接写出因式分解的最后结果(2)请你模仿以上方法尝试对多项式(x 2﹣2x )(x 2﹣2x +2)+1进行因式分解. 29.分解因式 (1)12m 2−mn +12n 2;(2)9y 2﹣(2x +y )2. 30.(1)2x 2+2y 2﹣6xy (2)x 2﹣y 231.9(a ﹣b )2+36(b 2﹣ab )+36b 232.借助表格进行多项式乘多项式运算,可以方便合并同类项得出结果.下面尝试利用表格试一试.例题:(a +b )(a ﹣b ) 解填表a ba a 2 ab ﹣b﹣ab﹣b 2 则(a +b )(a ﹣b )=a 2﹣b 2. 根据所学完成下列问题.(1)如表,填表计算(x +2)(x 2﹣2x +4),(m +3)(m 2﹣3m +9),直接写出结果.x 2 ﹣2x 4 x x 3 ﹣2x 2 4x +2 2x 2﹣4x8m 2 ﹣3m 9 m m 3 ﹣3m 2 9m +33m 2﹣9m27结果为 ;结果为 . (2)根据以上获得的经验填表:△△3〇〇3结果为△3+〇3,根据以上探索,请用字母a、b来表示发现的公式为.(3)用公式计算:(2x+3y)(4x2﹣6xy+9y2)=;因式分解:27m3﹣8n3=.33.(﹣2x﹣1)2(2x﹣1)2﹣(4x2﹣2x﹣1)234.(2a+3b)2﹣2(2a+3b)(5b﹣4a)+(4a﹣5b)2.。
因式分解 公式法

初二数学因式分解——公式法一.选择题(共19小题)1.下列多项式中能用平方差公式分解因式的是()A.x2+y2B.﹣a2﹣b2C.x3﹣y2D.a2﹣b22.已知下列多项式:①x2+y+y2;②﹣x2+2xy﹣y2;③x2+6xy﹣9y2;④x2﹣x+.其中,能用完全平方公式进行因式分解的有()A.②③④B.①③④C.②④D.①②③3.已知9x2+mxy+16y2能运用完全平方公式因式分解,则m的值为()A.12B.±12C.24D.±244.下列多项式中不能用公式法分解因式的是()A.a2+a+B.﹣a2﹣b2﹣2ab C.﹣a2+25b2D.﹣4﹣b25.下列各式中,能用平方差公式分解因式的是()A.x2﹣x B.x2+x+1C.x2+y2D.x2﹣16.因式分解:x2﹣2x+1的结果是()A.x(x﹣2)+1B.(x﹣1)2C.(x+1)2D.(x﹣2)(x+1)7.下列多项式中,能运用平方差公式分解因式的是()A.a2+b2B.a2﹣4b2C.a2﹣2ab+b2D.﹣a2﹣b28.计算:652﹣352=()A.30B.300C.900D.30009.下列各式中,哪项可以使用平方差公式分解因式()A.﹣a2﹣b2B.﹣(a+2)2+9C.p2﹣(﹣q2)D.a2﹣b310.下列各式中,能用完全平方公式进行因式分解的是()A.x2+x+1B.x2+2x﹣1C.x2+2x+2D.x2﹣2x+1 11.下列因式分解正确的是()A.2a﹣2b=2(a+b)B.a2﹣4=(a﹣2)2C.x2﹣1=(x+1)(x﹣1)D.x2﹣6x﹣9=(x﹣3)212.已知x2﹣16=(x﹣a)(x+a),那么a等于()A.16B.±4C.4D.±213.下列多项式中,可以用平方差公式进行因式分解的是()A.x2+4y2B.﹣9x2﹣y2C.4x﹣y2D.﹣16x2+25y2 14.下列多项式能用完全平方公式进行因式分解的是()A.a2﹣2a+4B.a2+2a﹣1C.a2+a﹣1D.a2﹣4a+4 15.下列各式中,能用完全平方公式分解因式的是()A.4x2﹣1B.x2+2x﹣1C.x2+2x+1D.x2﹣xy+y2 16.把多项式9a2﹣1分解因式,结果正确的是()A.(3a﹣1)2B.(3a+1)2C.(9a+1)(9a﹣1)D.(3a+1)(3a﹣1)17.下列因式分解正确的是()A.x2﹣8=(x+4)(x﹣4)B.4a2﹣8a=a(4a﹣8)C.a2+2a+2=(a+1)2+1D.x2﹣2x+1=(x﹣1)218.多项式x2﹣9因式分解正确的是()A.(x+9)(x﹣9)B.(x﹣3)2C.(x+3)(x﹣3)D.(x+3)2 19.下面从左到右的变形,进行因式分解正确的是()A.﹣2x2+4xy=﹣2x(x﹣2y)B.(x+1)(x﹣1)=x2﹣1C.x2+4x﹣4=(x+2)2D.x2+16=(x+4)2二.填空题(共41小题)20.分解因式:x2﹣9y2=.21.分解因式:y2+6y+9=.22.计算:13.32﹣11.72=.23.分解因式:m2﹣9n2=.24.因式分解x4﹣81=.25.如果多项式x2﹣kx+9可直接用公式法因式分解,那么k的值为.26.因式分解a2﹣2a+1的结果是.27.因式分解:9y2﹣x2=.28.因式分解:x2﹣16x+64=.29.计算:20232﹣20222=.30.1022﹣982=.31.因式分解:m(m+8)+9﹣2m=.32.多项式x2﹣y2分解因式的结果是.33.分解因式:x2+4(x+2)﹣4=.34.因式分解:﹣a2﹣4b2+4ab=.35.因式分解:(m+n)2﹣6(m+n)+9=.36.因式分解:(a+b)2﹣9b2=.37.因式分解:b2﹣2b+1=.38.因式分解:2m2﹣8mn+8n2=.39.因式分解:x2﹣y(2x﹣y)=.40.因式分解:(x+2)(x﹣8)+6x=.41.分解因式(a+b)2﹣b2的结果是.42.因式分解:16(x+y)2﹣(x﹣y)2=.43.因式分解:9(x+y)2﹣(x﹣y)2=.44.因式分解:x4+4x2+4=.45.分解因式:﹣a2+9b2=.46.分解因式:(a+4)2﹣9b2=.47.多项式(3x+2y)2﹣(2x+3y)2分解因式的结果是.48.分解因式:a2﹣4ab+4b2=.49.因式分解:x2+4y2﹣4xy=.50.因式分解a2﹣8a+16=.51.因式分解:(a+b)2﹣4b2=.52.因式分解:x2﹣4xy+4y2=.53.分解因式:9x2﹣6x+1=.54.分解因式:(a+b)2﹣4ab=.55.分解因式:(a+1)2﹣4a=.56.因式分解:(2x+y)2﹣(x+2y)2=.57.分解因式:﹣x2+4x﹣4=.58.分解因式:﹣a2+2a﹣2=.59.因式分解:81﹣18a+a2=.60.分解因式:(y+2x)2﹣(x+2y)2=.初二数学因式分解——公式法参考答案与试题解析一.选择题(共19小题)1.下列多项式中能用平方差公式分解因式的是()A.x2+y2B.﹣a2﹣b2C.x3﹣y2D.a2﹣b2【解答】解:A.x2+y2不能使用平方差公式分解因式,不符合题意;B.﹣a2﹣b2=﹣(a2+b2)不能使用平方差公式分解因式,不符合题意;C.x3﹣y2不能使用平方差公式分解因式,不符合题意;D.a2﹣b2能使用平方差公式分解因式,符合题意;故选:D.2.已知下列多项式:①x2+y+y2;②﹣x2+2xy﹣y2;③x2+6xy﹣9y2;④x2﹣x+.其中,能用完全平方公式进行因式分解的有()A.②③④B.①③④C.②④D.①②③【解答】解:①x2+y+y2;无法运用完全平方公式分解因式,故此选项错误;②﹣x2+2xy﹣y2=﹣(x2﹣2xy+y2)=﹣(x﹣y)2,能运用完全平方公式分解因式,故此选项正确;③x2+6xy﹣9y2,无法运用完全平方公式分解因式,故此选项错误;④x2﹣x+=(x﹣)2,能运用完全平方公式分解因式,故此选项正确;故选:C.3.已知9x2+mxy+16y2能运用完全平方公式因式分解,则m的值为()A.12B.±12C.24D.±24【解答】解:∵(3x±4y)2=9x2±24xy+16y2,∴在9x2+mxy+16y2中,m=±24.故选:D.4.下列多项式中不能用公式法分解因式的是()A.a2+a+B.﹣a2﹣b2﹣2ab C.﹣a2+25b2D.﹣4﹣b2【解答】解:A.a2+a+=,那么可用公式法进行因式分解,那么A符合题意.B.﹣a2﹣b2﹣2ab=﹣(a2+b2+2ab)=﹣(a+b)2,故﹣a2﹣b2﹣2ab可用公式法进行因式分解,那么B不符合题意.C.﹣a2+25b2=﹣(a2﹣25b2)=﹣(a+5b)(a﹣5b),故﹣a2+25b2能用公式法进行因式分解,那么C不符合题意.D.﹣4﹣b2=﹣(4+b2),那么﹣4﹣b2不能用公式法进行因式分解,那么D符合题意.故选:D.5.下列各式中,能用平方差公式分解因式的是()A.x2﹣x B.x2+x+1C.x2+y2D.x2﹣1【解答】解:A、原式=x(x﹣1),不符合题意;B、原式不能分解,不符合题意;C、原式不能分解,不符合题意;D、原式=(x+1)(x﹣1),符合题意.故选:D.6.因式分解:x2﹣2x+1的结果是()A.x(x﹣2)+1B.(x﹣1)2C.(x+1)2D.(x﹣2)(x+1)【解答】解:x2﹣2x+1=(x﹣1)2.故选:B.7.下列多项式中,能运用平方差公式分解因式的是()A.a2+b2B.a2﹣4b2C.a2﹣2ab+b2D.﹣a2﹣b2【解答】解:a2﹣4b2=(a+2b)(a﹣2b).故选:B.8.计算:652﹣352=()A.30B.300C.900D.3000【解答】解:652﹣352=(65+35)(65﹣35)=100×30=3000,故选:D.9.下列各式中,哪项可以使用平方差公式分解因式()A.﹣a2﹣b2B.﹣(a+2)2+9C.p2﹣(﹣q2)D.a2﹣b3【解答】解:∵﹣a2﹣b2不能因式分解,故A选项不符合题意;∵﹣(a+2)2+9=(3+a+2)(3﹣a﹣2)=(a+5)(1﹣a),故B选项符合题意;∵p2﹣(﹣q2)=p2+q2,不能因式分解,故C选项不符合题意;∵a2﹣b3不能因式分解,故D选项不符合题意,故选:B.10.下列各式中,能用完全平方公式进行因式分解的是()A.x2+x+1B.x2+2x﹣1C.x2+2x+2D.x2﹣2x+1【解答】解:A.x2+x+1不能因式分解,故A选项不符合题意;B.x2+2x﹣1不能因式分解,故B选项不符合题意;C.x2+2x+2不能因式分解,故C选项不符合题意;D.x2﹣2x+1=(x﹣1)2,符合题意,故选:D.11.下列因式分解正确的是()A.2a﹣2b=2(a+b)B.a2﹣4=(a﹣2)2C.x2﹣1=(x+1)(x﹣1)D.x2﹣6x﹣9=(x﹣3)2【解答】解:A、原式=2(a﹣b),不符合题意;B、原式=(a+2)(a﹣2),不符合题意;C、原式=(x+1)(x﹣1),符合题意;D、原式=(x﹣3﹣3)(x﹣3+3),不符合题意.故选:C.12.已知x2﹣16=(x﹣a)(x+a),那么a等于()A.16B.±4C.4D.±2【解答】解:∵x2﹣16=(x﹣a)(x+a),∴x2﹣16=x2﹣a2,∴a2=16,∴a=±4,故选:B.13.下列多项式中,可以用平方差公式进行因式分解的是()A.x2+4y2B.﹣9x2﹣y2C.4x﹣y2D.﹣16x2+25y2【解答】解:A.根据平方差公式(a+b)(a﹣b)=a2﹣b2,那么x2+4y2不能用平方差公式进行因式分解,故A不符合题意.B.根据平方差公式(a+b)(a﹣b)=a2﹣b2,那么﹣9x2﹣y2不能用平方差公式进行因式分解,故B不符合题意.C.根据平方差公式(a+b)(a﹣b)=a2﹣b2,那么4x﹣y2不能用平方差公式进行因式分解,故C不符合题意.D.根据平方差公式(a+b)(a﹣b)=a2﹣b2,那么﹣16x2+25y2=(5y+4x)(5y﹣4x),即﹣16x2+25y2能用平方差公式进行因式分解,故D符合题意.故选:D.14.下列多项式能用完全平方公式进行因式分解的是()A.a2﹣2a+4B.a2+2a﹣1C.a2+a﹣1D.a2﹣4a+4【解答】解:A.根据完全平方公式(a±b)2=a2±2ab+b2,那么a2﹣2a+4不能用完全平方公式进行因式分解,故A不符合题意.B.根据完全平方公式(a±b)2=a2±2ab+b2,那么a2+2a﹣1不能用完全平方公式进行因式分解,故B不符合题意.C.根据完全平方公式(a±b)2=a2±2ab+b2,那么a2+a﹣1不能用完全平方公式进行因式分解,故C不符合题意.D.根据完全平方公式(a±b)2=a2±2ab+b2,那么a2﹣4a+4=(a﹣2)2,即a2﹣4a+4能用完全平方公式进行因式分解,故D符合题意.故选:D.15.下列各式中,能用完全平方公式分解因式的是()A.4x2﹣1B.x2+2x﹣1C.x2+2x+1D.x2﹣xy+y2【解答】解:A、4x2﹣1可以用平方差公式因式分解为(2x+1)(2x﹣1).故选项A不符合题意;B、x2+2x﹣1不能用完全平方公式进行因式分解,故选项B不符合题意;C、x2+2x+1=(x+1)2,故选项C符合题意;D、x2﹣xy+y2不能用完全平方公式进行因式分解,故选项D不符合题意.故选:C.16.把多项式9a2﹣1分解因式,结果正确的是()A.(3a﹣1)2B.(3a+1)2C.(9a+1)(9a﹣1)D.(3a+1)(3a﹣1)【解答】解:9a2﹣1=(3a)2﹣1=(3a﹣1)(3a+1).故选:D.17.下列因式分解正确的是()A.x2﹣8=(x+4)(x﹣4)B.4a2﹣8a=a(4a﹣8)C.a2+2a+2=(a+1)2+1D.x2﹣2x+1=(x﹣1)2【解答】解:A.由于x2﹣16=(x+4)(x﹣4),因此选项A不符合题意;B.4a2﹣8a=4a(a﹣2),因此选项B不符合题意;C.a2+2a+2=(a+1)2+1,不符合因式分解的定义,因此选项C不符合题意;D.x2﹣2x+1=(x﹣1)2,因此选项D符合题意;故选:D.18.多项式x2﹣9因式分解正确的是()A.(x+9)(x﹣9)B.(x﹣3)2C.(x+3)(x﹣3)D.(x+3)2【解答】解:x2﹣9=(x﹣3)(x+3).故选:C.19.下面从左到右的变形,进行因式分解正确的是()A.﹣2x2+4xy=﹣2x(x﹣2y)B.(x+1)(x﹣1)=x2﹣1C.x2+4x﹣4=(x+2)2D.x2+16=(x+4)2【解答】解:A、﹣2x2+4xy=﹣2x(x﹣2y),故A符合题意;B、(x+1)(x﹣1)=x2﹣1,是整式乘法,不是因式分解,故B不符合题意;C、x2+4x+4=(x+2)2,故C不符合题意;D、x2+8x+16=(x+4)2,故D不符合题意;故选:A.二.填空题(共41小题)20.分解因式:x2﹣9y2=(x﹣3y)(x+3y).【解答】解:原式=(x﹣3y)(x+3y).故答案为:(x﹣3y)(x+3y).21.分解因式:y2+6y+9=(y+3)2.【解答】解:y2+6y+9=(y+3)2,故答案为:(y+3)2.22.计算:13.32﹣11.72=40.【解答】解:原式=(13.3+11.7)×(13.3﹣11.7)=25×1.6=40.故答案为:40.23.分解因式:m2﹣9n2=(m+3n)(m﹣3n).【解答】解:原式=(m+3n)(m﹣3n).故答案为:(m+3n)(m﹣3n).24.因式分解x4﹣81=(x﹣3)(x+3)(x2+9).【解答】解:x4﹣81=(x2﹣9)(x2+9)=(x﹣3)(x+3)(x2+9),故答案为:(x﹣3)(x+3)(x2+9).25.如果多项式x2﹣kx+9可直接用公式法因式分解,那么k的值为±6.【解答】解:∵多项式x2﹣kx+9可直接用公式法因式分解,∴x2﹣kx+9=x2±6x+9=(x±3)2,则k的值为±6.故答案为:±6.26.因式分解a2﹣2a+1的结果是(a﹣1)2.【解答】解:原式=(a﹣1)2.故答案为:(a﹣1)2.27.因式分解:9y2﹣x2=(3y+x)(3y﹣x).【解答】解:原式=(3y+x)(3y﹣x).故答案为:(3y+x)(3y﹣x).28.因式分解:x2﹣16x+64=(x﹣8)2.【解答】解:原式=(x﹣8)2.故答案为:(x﹣8)2.29.计算:20232﹣20222=4045.【解答】解:原式=(2023+2022)×(2023﹣2022)=4045.故答案为:4045.30.1022﹣982=800.【解答】解:原式=(102+98)×(102﹣98)=200×4=800.故答案为:800.31.因式分解:m(m+8)+9﹣2m=(m+3)2.【解答】解:m(m+8)+9﹣2m=m2+8m+9﹣2m=m2+6m+9=(m+3)2.故答案为:(m+3)2.32.多项式x2﹣y2分解因式的结果是(x+y)(x﹣y).【解答】解:原式=(x+y)(x﹣y),故答案为:(x+y)(x﹣y).33.分解因式:x2+4(x+2)﹣4=(x+2)2.【解答】解:x2+4(x+2)﹣4=x2+4x+4=(x+2)2.故答案是:(x+2)2.34.因式分解:﹣a2﹣4b2+4ab=﹣(a﹣2b)2.【解答】解:原式=﹣(a2﹣4ab+4b2)=﹣(a﹣2b)2.故答案为:﹣(a﹣2b)2.35.因式分解:(m+n)2﹣6(m+n)+9=(m+n﹣3)2.【解答】解:原式=(m+n)2﹣2•(m+n)•3+32=(m+n﹣3)2.故答案为:(m+n﹣3)2.36.因式分解:(a+b)2﹣9b2=(a﹣2b)(a+4b).【解答】解:原式=(a+b﹣3b)(a+b+3b)=(a﹣2b)(a+4b).故答案为:(a﹣2b)(a+4b).37.因式分解:b2﹣2b+1=(b﹣1)2.【解答】解:b2﹣2b+1=(b﹣1)2.故答案为:(b﹣1)2.38.因式分解:2m2﹣8mn+8n2=2(m﹣2n)2.【解答】解:原式=2(m2﹣4mn+4n2)=2(m﹣2n)2.故答案为:2(m﹣2n)2.39.因式分解:x2﹣y(2x﹣y)=(x﹣y)2.【解答】解:x2﹣y(2x﹣y)=x2﹣2xy+y2=(x﹣y)2.故答案为:(x﹣y)2.40.因式分解:(x+2)(x﹣8)+6x=(x+4)(x﹣4).【解答】解:原式=x2+2x﹣8x﹣16+6x=x2﹣16=(x+4)(x﹣4),故答案为:(x+4)(x﹣4).41.分解因式(a+b)2﹣b2的结果是a(a+2b).【解答】解:原式=(a+b+b)(a+b﹣b)=a(a+2b).故答案为:a(a+2b).42.因式分解:16(x+y)2﹣(x﹣y)2=(5x+3y)(3x+5y).【解答】解:原式=[4(x+y)]2﹣(x﹣y)2=[4(x+y)+(x﹣y)][4(x+y)﹣(x﹣y)]=(5x+3y)(3x+5y).故答案为:(5x+3y)(3x+5y).43.因式分解:9(x+y)2﹣(x﹣y)2=4(2x+y)(x+2y).【解答】解:原式=[3(x+y)]2﹣(x﹣y)2=(3x+3y+x﹣y)(3x+3y﹣x+y)=(4x+2y)(2x+4y)=4(2x+y)(x+2y).故答案为:4(2x+y)(x+2y).44.因式分解:x4+4x2+4=(x2+2)2.【解答】解:原式=(x2)2+2•x2•2+22=(x2+2)2.故答案为:(x2+2)2.45.分解因式:﹣a2+9b2=(3b+a)(3b﹣a).【解答】解:原式=(3b)2﹣a2=(3b+a)(3b﹣a).故答案为:(3b+a)(3b﹣a).46.分解因式:(a+4)2﹣9b2=(a+4+3b)(a+4﹣3b).【解答】解:(a+4)2﹣9b2=(a+4+3b)(a+4﹣3b).故答案为:(a+4+3b)(a+4﹣3b).47.多项式(3x+2y)2﹣(2x+3y)2分解因式的结果是5(x+y)(x﹣y).【解答】解:原式=(3x+2y+2x+3y)(3x+2y﹣2x﹣3y)=(5x+5y)(x﹣y)=5(x+y)(x﹣y).故答案为:5(x+y)(x﹣y).48.分解因式:a2﹣4ab+4b2=(a﹣2b)2.【解答】解:原式=a2﹣2×a×2b+(2b)2=(a﹣2b)2,故答案为:(a﹣2b)2.49.因式分解:x2+4y2﹣4xy=(x﹣2y)2.【解答】解:原式=x2﹣4xy+4y2=(x﹣2y)2,故答案为:(x﹣2y)2.50.因式分解a2﹣8a+16=(a﹣4)2.【解答】解:原式=(a﹣4)2,故答案为:(a﹣4)2.51.因式分解:(a+b)2﹣4b2=(a+3b)(a﹣b).【解答】解:原式=(a+b+2b)(a+b﹣2b)=(a+3b)(a﹣b).故答案为:(a+3b)(a﹣b)52.因式分解:x2﹣4xy+4y2=(x﹣2y)2.【解答】解:x2﹣4xy+4y2=x2﹣4xy+(2y)2=(x﹣2y)2,故答案为:(x﹣2y)253.分解因式:9x2﹣6x+1=(3x﹣1)2.【解答】解:原式=(3x﹣1)2,故答案为:(3x﹣1)254.分解因式:(a+b)2﹣4ab=(a﹣b)2.【解答】解:(a+b)2﹣4ab=a2+2ab+b2﹣4ab=a2+b2﹣2ab=(a﹣b)2.故答案为:(a﹣b)2.55.分解因式:(a+1)2﹣4a=(a﹣1)2.【解答】解:(a+1)2﹣4a=a2+2a+1﹣4a=a2﹣2a+1=(a﹣1)2.故答案为:(a﹣1)2.56.因式分解:(2x+y)2﹣(x+2y)2=3(x+y)(x﹣y).【解答】解:原式=(2x+y+x+2y)(2x+y﹣x﹣2y)=(3x+3y)(x﹣y)=3(x+y)(x﹣y).故答案为:3(x+y)(x﹣y).57.分解因式:﹣x2+4x﹣4=﹣(x﹣2)2.【解答】解:﹣x2+4x﹣4=﹣(x2﹣4x+4)=﹣(x﹣2)2.故答案为:﹣(x﹣2)2.58.分解因式:﹣a2+2a﹣2=﹣(a﹣2)2.【解答】解:原式=﹣(a2﹣4a+4)=﹣(a﹣2)2,故答案为:﹣(a﹣2)259.因式分解:81﹣18a+a2=(9﹣a)2.【解答】解:原式=(9﹣a)2.故答案为:(9﹣a)260.分解因式:(y+2x)2﹣(x+2y)2=3(x+y)(x﹣y).【解答】解:原式=(y+2x+x+2y)(y+2x﹣x﹣2y)=3(x+y)(x﹣y),故答案为:3(x+y)(x﹣y)。
因式分解-提公因式和公式法专项练习(原卷版)

因式分解-提公因式和公式法专项练习(一)知识点1:因式分解1.定义:把一个多项式化成几个整式的乘积的形式,这种变形叫做把这个多项式因式分解.2.掌握其定义应注意以下几点:(1)分解对象是多项式,分解结果必须是积的形式,且积的因式必须是整式,这三个要素缺一不可;(2)因式分解必须是恒等变形;(3)因式分解必须分解到每个因式都不能分解为止.3.弄清因式分解与整式乘法的内在的关系.因式分解与整式乘法是互逆变形,因式分解是把和差化为积的形式,而整式乘法是把积化为和差的形式.【典例1】下列各式由左边到右边的变形中,是因式分解的是()A.a(x﹣y)=ax﹣ay B.a2﹣b2=(a+b)(a﹣b)C.x2﹣4x+3=x(x﹣4)+3D.a2+1=(a+1)(a﹣1)【变式1-1】下列各式从左到右不属于因式分解的是()A.x2﹣x=x(x﹣1)B.x2+2x+1=x(x+2)+1C.x2﹣6x+9=(x﹣3)2D.x2﹣1=(x+1)(x﹣1)【变式1-2】下列各式从左到右的变形是因式分解的是()A.a(a+b)=a2+ab B.a2+2a+1=a(a+2)+1C.(a+b)(a﹣b)=a2﹣b2D.2a2﹣6ab=2a(a﹣3b)知识点2:公因式的公因式是.【典例2-2】4x(m﹣n)+8y(n﹣m)2的公因式是.【变式2-1】多项式.4ab2+8a2b的公因式是.【变式2-2】多项式3x+3y与x2﹣y2的公因式是.【变式2-3】多项式4x(m﹣n)+2y(m﹣n)2的公因式是.知识点3:提公因式提公因式法的步骤:第一步是找出公因式;第二步是提取公因式并确定另一因式.需注意的是,提取完公因式后,另一个因式的项数与原多项式的项数一致,这一点可用来检验是否漏项.注意:①提取公因式后各因式应该是最简形式,即分解到“底”;②如果多项式的第一项的系数是负的,一般要提出“-”号,使括号内的第一项的系数是正的.【典例3】分解因式:(1)2y+3xy;(2)2(a+2)+3b(a+2).【变式3-1】因式分解(1)x2﹣4x;(2)8y3﹣2x2y.【变式2-2】因式分解:(1)8abc﹣2bc2;(2)2x(x+y)﹣6(x+y).【变式3-3】分解因式:x(m+n)﹣y(n+m)+(m+n).知识点4:公式法=.【变式4-1】因式分解:a2﹣169=.【变式4-2】因式分解:4a2﹣b2=.【变式4-3】把多项式a2﹣9b2分解因式结果是.【典例5】分解因式:a2+8a+16=.【变式5-1】因式分解x2﹣6ax+9a2=.【变式5-2】分解因式:a2﹣6a+9=.知识点5:提公因式与公式法综合1.提公因式:一般地,如果多项式的各项有公因式,可以把这个公因式提取出来,将多项式写成公因式与另一个因式的乘积的形式,这种分解因式的方法叫做提公因式法.2.公式法:①平方差公式:a2-b2=(a+b)(a-b)②完全平方公式:a2+2ab+b2=(a+b)2,a2-2ab+b2=(a-b)【典例6】分解因式(1)x2y﹣y;(2)ax2﹣6ax+9a.【变式6-1】因式分解:(1)x3y﹣xy3;(2)8a2﹣16ab+8b2.【变式6-2】因式分解:(1)2x3y﹣2xy3(2)﹣a3+2a2﹣a.【变式6-3】分解因式:(1)5x2﹣5y2;(2)2mx2+4mxy+2my2.【变式6-4】因式分解:9a2(x﹣y)+4b2(y﹣x)【达标测评】一.选择题(共8小题)1.(2023秋•泉港区期末)多项式12a3b﹣8ab2c的公因式是()A.4a2B.4abc C.2a2D.4ab 2.(2023秋•莱西市期末)多项式3m2+6mn的公因式是()A.3B.m C.3m D.3n 3.(2023秋•纳溪区期末)因式分解(x﹣1)2﹣9的结果是()A.(x﹣10)(x+8)B.(x+8)(x+1)C.(x﹣2)(x+4)D.(x+2)(x﹣4)4.(2023秋•泰山区期末)分解因式:64﹣x2正确的是()A.(8﹣x)2B.(8﹣x)(8+x)C.(x﹣8)(x+8)D.(32+x)(32﹣x)5.(2023秋•沙坪坝区校级期末)因式分解:mx2﹣4m=()A.m(x2﹣4)B.m(x+2)(x﹣2)C.mx(x﹣4)D.m(x+4)(x﹣4)6.(2023秋•哈密市期末)下面各式从左到右的变形,属于因式分解的是()A.x(x﹣1)=x2﹣x B.x2﹣1=(x﹣1)2C.x2﹣x﹣1=x(x﹣1)﹣1D.x2﹣x=x(x﹣1)7.(2024•裕华区校级开学)若a+b=3,a﹣b=,则a2﹣b2的值为()A.1B.C.D.98.(2023秋•南沙区期末)已知多项式x2+ax+16可以用完全平方公式进行因式分解,则a的值为()A.4B.8C.﹣8D.±8二.填空题(共5小题)9.(2023秋•临潼区期末)式子x(y﹣1)与﹣18(y﹣1)的公因式是.10.(2024•榆阳区校级一模)因式分解:2x2y+10xy=.11.(2024•西山区校级模拟)分解因式:m3+6m2+9m=.12.(2023秋•哈密市期末)已知x+y=10,xy=1,则代数式x2y+xy2的值为.13.(2024•临潼区一模)因式分解:3a2﹣12=.三.解答题(共3小题)14.(2023秋•海口期末)把下列多项式分解因式:(1)4a3﹣16ab2;(2)3(x﹣1)2+12x.15.(2023秋•洪山区期末)因式分解.(1)x3﹣2x2y+xy2(2)m2(a﹣b)+n2(b﹣a)16.(2023秋•寻乌县期末)因式分解:(1)﹣x3﹣2x2﹣x;(2)x2(a﹣1)+y2(1﹣a).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
运用公式法分解因式
思维导航:运用公式法是分解因式的常用方法,运用公式法分解因式的思路主要有以下几种情况:
一、直接用公式:当所给的多项式是平方差或完全平方式时,可以直接利用公式法分解因式。
例1、 分解因式:(1)x 2-9; (2)9x 2-6x+1。
二、提公因式后用公式:当所给的多项式中有公因式时,一般要先提公因式,然后再看是否能利用公式法。
例2、 分解因式:(1)x 5y 3-x 3y 5; (2)4x 3y+4x 2y 2+xy 3。
三、系数变换后用公式:当所给的多项式不能直接利用公式法分解因式,往往需要调整系数,转换为符合公式的形式,然后再利用公式法分解.
例3、 分解因式:(1)4x 2-25y 2; (2)4x 2-12xy 2+9y 4.
四、指数变换后用公式:通过指数的变换将多项式转换为平方差或完全平方式的形式,然后利公式法分解因式,应注意分解到每个因式都不能再分解为止.
例4、 分解因式:(1)x 4-81y 4; (2)16x 4-72x 2y 2+81y 4.
五、重新排列后用公式:当所给的多项式不能直接看出是否可用公式法分解时,可以将所给多项式交换位置,重新排列,然后再利用公式。
例5、 分解因式:(1)-x 2+(2x-3)2; (2)(x+y)2+4-4(x+y).
六、整理后用公式:当所给的多项式不能直接利用公式法分解时,可以先将其中的项去括号整理,然后再利用公式法分解。
例6 、分解因式: (x-y)2-4(x-y-1).
七、连续用公式:当一次利用公式分解后,还能利用公式再继续分解时,则需要用公式法再进行分解,到每个因式都不能再分解为止。
例7、 分解因式:(x 2+4)2-16x 2.
练习:
1、多项式2244x xy y -+-分解因式的结果是( )
(A)2(2)x y -
(B)2(2)x y -- (C)2(2)x y -- (D)2()x y + 2、 41x -的结果为( )
A.22(1)(1)x x -+
B.22(1)(1)x x +- C.2(1)(1)(1)x x x -++ D.3(1)(1)x x -+ 3、222516a kab a ++是一个完全平方式,那么k 值为( )
4、 分解因式:241x -= .分解因式:2
4a -= . 5、(1)运用公式法计算:22
2218161301181
--.(2)用简便方法计算:228001600798798-+×.
6、 分解因式:(1)221664a x ax ++
(2)216(23)a b -+
7、把下列各式分解因式.
(1)249x -; (2)224169x y -; (3)2125a -+; (4)220.01625m n -.
8、把下列各式分解因式.
(1)2816a a ++;
(2)2(2)6(2)9a b a b ++++;
(3)221222x xy y ++; (4)22
44mn m n ---.
9、把下列各式分解因式.
(1)269x x ++; (2)242025x x -+; (3)222816a b abc c -+;
(4)221424a ab b ++
; (5)2()4()4a b a b +-++ (6)(x +6)2(x -6)2
10、把(1)(3)1x x --+分解因式.
利用分解因式进行简便运算
11、已知2a -b=3,求-8a 2+8ab -2b 2的值。
已知x +y=21,x y=8
3,求x 3y +2x 2y 2+x y 3的值。
30、观察下列等式
12-02=1 22-12=3 32-22=5 42-32=7 …………
(1) 根据以上计算,你发现了什么规律,请用含有n 的式子表示该规律。
(2) 用因式分解的知识证明你发现的规律。