北师大高中数学必修二课时跟踪检测:第二章 解析几何初步 §2 22 含解析
北师大版高中数学必修二第二章《解析几何初步》测试(含答案解析)(2)

一、选择题1.已知方程2234-+=-kx k x 有两个不同的解,则实数k 的取值范围是( ) A .13,24⎡⎤⎢⎥⎣⎦B .53,124C .13,24⎛⎫⎪⎝⎭D .53,124⎛⎫⎪⎝⎭ 2.圆()()22211x y r -++=上有且仅有四个点到直线43110x y +-=的距离等于32,则半径r 的取值范围为( ) A .72r >B .72r <C .12r >D .1722r << 3.已知实数x ,y 满足()2221x y +-=,则2232x y x y++的最大值为( )A .12B .3 C .1D .274.已知直线:20l x y ++=与圆22220x y x y a ++-+=所截的弦长为4,则实数a 为( ) A .2- B .4-C .2D .45.直线3y x m =-+与圆221x y += 在第一象限内有两个不同的交点,则m 的取值范围是( ) A .(3,2)B .(3,3)C .323,⎛⎫ ⎪ ⎪⎝⎭D .231,⎛⎫⎪ ⎪⎝⎭6.在平面直角坐标系xoy 中,圆C 的方程为228150x y x +-+=,若直线2y kx =+上至少存在一点,使得以该点为圆心,半径为1的圆与圆C 有公共点,则k 的最小值是( ) A .43-B .54-C .35D .53-7.如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,四边形ABCD 为正方形,PA AB =,E 为AP 的中点,则异面直线PC 与DE 所成的角的正弦值为( ).A .25B 5C 15D 108.已知点A ,B ,C 在半径为5的球面上,且214AB AC ==,27BC =,P 为球面上的动点,则三棱锥P ABC -体积的最大值为( )A .5673B .5273 C .4973D .14739.已知平面图形PABCD ,ABCD 为矩形,4AB =,是以P 为顶点的等腰直角三角形,如图所示,将PAD △沿着AD 翻折至P AD '△,当四棱锥P ABCD '-体积的最大值为163,此时四棱锥P ABCD '-外接球的表面积为( )A .12πB .16πC .24πD .32π10.如图,在矩形ABCD 中,1AB =,3BC =,沿BD 将矩形ABCD 折叠,连接AC ,所得三棱锥A BCD -正视图和俯视图如图,则三棱锥A BCD -中AC 长为( )A .32B 3C .102D .211.已知一个正三棱锥的四个顶点都在一个球的球面上,且这个正三棱锥的所有棱长都为22 ) A .4π B .8πC .12πD .24π12.蹴鞠,又名蹴球,筑球等,蹴有用脚踢、踏的含义,鞠最早系外包皮革、内实含米糠的球.因而蹴鞠就是指古人以脚踢、踏皮球的活动,类似现在的足球运动.2006年5月20日,蹴鞠已作为非物质文化遗产经国务院批准列入第一批国家非物质文化遗产名录.3D 打印属于快速成形技术的一种,它是一种以数字模型为基础,运用粉末状金属或塑料等可粘合材料,通过逐层堆叠积累的方式来构造物体的技术.过去常在模具制造、工业设计等领域被用于制造模型,现正用于一些产品的直接制造,特别是一些高价值应用(比如人体的髋关节、牙齿或飞机零部件等).已知某蹴鞠的表面上有四个点A .B .C .D ,满足任意两点间的直线距离为6cm ,现在利用3D 打印技术制作模型,该模型是由蹴鞠的内部挖去由ABCD 组成的几何体后剩下的部分,打印所用原材料的密度为31g/cm ,不考虑打印损耗,制作该模型所需原材料的质量约为( )(参考数据)π 3.14≈ 1.41≈ 1.73≈ 2.45≈. A .101gB .182gC .519gD .731g二、填空题13.在平面直角坐标系xOy 中,设直线y =-x +2与圆x 2+y 2=r 2(r >0)交于A ,B 两点.若圆上存在一点C ,满足5344OC OA OB =+,则r 的值为________. 14.若圆222(3)(5)r x y -++=上有且只有两个点到直线432x y -=的距离为1,则半径r 的取值范围是______.15.经过两直线11370x y +-=和12190x y +-=的交点,且与()3,2A -,()1,6B -等距离的直线的方程是______.16.已知直线l 斜率的取值范围是(),则l 的倾斜角的取值范围是______.17.在平面直角坐标xOy 系中,设将椭圆()2222110y x a a a +=>-绕它的左焦点旋转一周所覆盖的区域为D ,P 为区域D 内的任一点,射线()02x y x =≥-上的点为Q ,若PQ 的最小值为a ,则实数a 的取值为_____.18.已知圆221:10C x y +=与圆222:22140C x y x y +++-=相交,则两圆的公共弦长为__________.19.已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为24,则这个球的体积为____________.20.在直三棱柱111ABC A B C -中,90ABC ∠=︒,1AA O ,已知三棱锥O ABC -O 表面积的最小值为______.21.在三棱锥P ABC -中,4PA PB ==,BC =8AC =,AB BC ⊥.平面PAB ⊥平面ABC ,若球O 是三棱锥P ABC -的外接球,则球O 的半径为_________.22.在棱长为2的正方体1111ABCD A BC D -中,P 是11A B 的中点,过点1A 作与平面1PBC 平行的截面,则此截面的面积是_______________.23.已知某几何体的三视图如图所示,则该几何体的体积是__________.24.已知点O 为圆锥PO 底面的圆心,圆锥PO 的轴截面为边长为2的等边三角形PAB ,圆锥PO 的外接球的表面积为______.三、解答题25.如图,四边形ABCD 为正方形,QA ⊥平面ABCD ,PD//QA ,112QA AB PD ===.(1)证明:直线PQ ⊥平面DCQ ; (2)求二面角D QB A --的余弦值.26.如图,四面体ABCD 中,O 是BD 的中点,点G 、E 分别在线段AO 和BC 上,2BE EC =,2AG GO =,2CA CB CD BD ====,2AB AD ==.(1)求证://GE 平面ACD ; (2)求证:平面ABD ⊥平面BCD .27.如图,在直四棱柱1111ABCD A BC D -中,底面ABCD 是梯形,,//AB CD AB AD ⊥,22CD AB AD ==.(1)求证:BD ⊥平面1BCC ;(2)在线段11C D 上是否存在一点E ,使//AE 面1BC D .若存在,确定点E 的位置并证明;若不存在,请说明理由.28.在三棱锥P ABC -中,AE BC ⊥于点,E CF AB ⊥于点F ,且AE CF O ⋂=,若点P 在平面ABC 上的射影为点O .(1)证明:AC PB ⊥;(2)若ABC 是正三角形,点,G H 分别为,PA PC 的中点.证明:四边形EFGH 是矩形.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】如图,当直线在AC 位置时,斜率303224k -==+,当直线和半圆相切时,由半径22002321k k --+=+解得k 值,即得实数k 的取值范围.【详解】 由题意得,半圆24y x =-与直线32y kx k =+-有两个交点,又直线323(2)y kx k y k x =+-⇒-=-过定点C (2,3),如图所示,又点(2,0),(2,0)A B -,当直线在AC 位置时,斜率303224k -==+. 当直线和半圆相切时,由半径2002321k k --+=+解得512k =, 故实数k 的取值范围为53(,]124故选:B 【点睛】关键点点睛:由函数解析式转化为直线与半圆有两个公共点,根据直线与圆的位置关系,点到直线的距离公式的应用,求出直线在AC 位置时的斜率k 值及切线CD 的斜率,是解题的关键.2.A解析:A 【分析】圆()()22211x y r -++=上有且仅有四个点到直线43110x y +-=的距离等于32,先求圆心到直线的距离,再根据题意求半径的范围即可. 【详解】由()()22211x y r -++=可知圆心为()1,1-,圆心到直线43110x y +-=的距离为22431123+4--=,因为圆上有且仅有四个点到直线43110x y +-=的距离等于32,所以322->r,解得72r >. 故选:A 【点睛】本题主要考查直线与圆的位置关系,属于中档题.3.B解析:B 【分析】设(),P x y 为圆()2221x y +-=上的任意一点,构造直线:30l x y +=,过点p 作PM l ⊥,将2232x y x y++转化为点p 到直线30x y +=的距离和到原点的距离的比,即223sin 2x y PMPOM OPx y +==∠+,然后利用数形结合法求得POM ∠的范围求解. 【详解】 如图所示:设(),P x y 为圆()2221x y +-=上的任意一点,则点P 30x y +=的距离为3x y PM +=点P 到原点的距离为22OP x y =+223sin 2x y PMPOM OPx y +==∠+,设圆()2221x y +-=与直线y kx =相切1=,解得k =所以POM ∠的最小值为0,最大值为60,所以0sin POM ≤∠≤即0≤≤故选:B 【点睛】本题主要考查点到直线的距离,直线与圆的位置关系以及三角函数的性质的应用,还考查了数形结合的思想和运算求解的能力,属于中档题.4.B解析:B 【分析】根据圆的标准方程确定圆心和半径,由距离公式得出圆心到直线:20l x y ++=的距离d ,最后由弦长公式得出实数a .【详解】由22(1)(1)2x y a ++-=-可知,圆心为(1,1)-,半径2r a < 圆心到直线:20l x y ++=的距离d ==∣242r =r ∴=4a ∴=-故选:B 【点睛】本题主要考查了由直线与圆相交的弦长求参数的值,属于中档题.5.D解析:D 【分析】求出直线过(0,1)时m 的值,以及直线与圆相切时m 的值,即可确定出满足题意m 的范围. 【详解】 解:如图所示:当直线过(0,1)时,将(0,1)代入直线方程得:1m =;当直线与圆相切时,圆心到切线的距离d r =,即21313=⎛⎫+ ⎪ ⎪⎝⎭,解得:233m =或233m =-(舍去), 则直线与圆在第一象限内有两个不同的交点时,m 的范围为231m <<. 故选:D .【点睛】本题考查了直线与圆相交的性质,利用了数形结合的思想,熟练掌握数形结合法是解本题的关键,属于中档题.6.A解析:A 【分析】化圆C 的方程为22(4)1x y -+=,求出圆心与半径,由题意,只需22(4)4x y -+=与直线2y kx =+有公共点即可. 【详解】 解:圆C 的方程为228150x y x +-+=,整理得:22(4)1x y -+=,即圆C 是以(4,0)为圆心,1为半径的圆;又直线2y kx =+上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,∴只需圆22:(4)4C x y '-+=与直线2y kx =+有公共点即可.设圆心(4,0)C 到直线2y kx =+的距离为d , 则221d k=+,即234k k -,403k ∴-. k ∴的最小值是43-. 故选:A . 【点睛】本题考查直线与圆的位置关系,将条件转化为“22(4)4x y -+=与直线2y kx =+有公共点”是关键,考查学生灵活解决问题的能力,属于中档题.7.D解析:D 【分析】先取正方形的中心O ,连接OE ,由PC //OE 知OED ∠为异面直线PC 与DE 所成的角,再在OED 中求OED ∠的正弦即可. 【详解】连AC ,BD 相交于点O ,连OE 、BE ,因为E 为AP 的中点,O 为AC 的中点,有PC //OE ,可得OED ∠为异面直线PC 与DE 所成的角,不妨设正方形中,2AB =,则2PA =,由PA ⊥平面ABCD ,可得,PA AB PA AD ⊥⊥, 则145BE DE ==+=1122222OD BD ==⨯= 因为BE DE =,O 为BD 的中点,所以90EOD ∠=︒,210sin 5OD OED DE ∠===故选:D. 【点睛】 方法点睛:求空间角的常用方法:(1)定义法,由异面直线所成角、线面角、二面角的定义,结合图形,作出所求空间角,再结合题中条件,解对应三角形,即可求出结果;(2)向量法:建立适当的空间直角坐标系,通过计算向量夹角(直线方向向量与直线方向向量、直线方向向量与平面法向量,平面法向量与平面法向量)余弦值,即可求出结果.8.A解析:A 【分析】求出球心到平面ABC 的距离,由这个距离加上球半径得P 到平面ABC 距离的最大值,再由体积公式可得P ABC -体积的最大值. 【详解】如图,M 是ABC 的外心,O 是球心,OM ⊥平面ABC ,当P 是MO 的延长线与球面交点时,P 到平面ABC 距离最大,由214AB AC ==,27BC =,得72cos 214ACB ∠==,则14sin 4ACB ∠=, 21428sin 144AB AM CB ===∠,4AM =, 2222543OM OA AM =-=-=,358PM =+=,又1114sin 2142777224ABC S AC BC ACB =⋅⋅∠=⨯⨯⨯=△, 所以最大的156777833P ABC V -=⨯⨯=. 故选:A .【点睛】本题考查求三棱锥的体积,解题关键是确定三棱锥体积最大时P 点在球面上的位置,根据球的性质易得结论.当底面ABC 固定,M 是ABC 外心,当PM ⊥平面ABC ,且球心O 在线段PM 上时,P 到平面ABC 距离最大.9.C解析:C 【分析】分析出当平面P AD '⊥平面ABCD 时,四棱锥P ABCD '-的体积取最大值,求出AD 、P A '的长,然后将四棱锥P ABCD '-补成长方体P AMD QBNC '-,计算出该长方体的体对角线长,即为外接球的直径,进而可求得外接球的表面积. 【详解】取AD 的中点E ,连接P E ',由于P AD '△是以P '为顶点的等腰直角三角形,则P E AD '⊥,设AD x =,则1122P E AD x '==, 设二面角P AD B '--的平面角为θ,则四棱锥P ABCD '-的高为1sin 2h x θ=, 当90θ=时,max 12h x =, 矩形ABCD 的面积为4S AB AD x =⋅=,2111216433233P ABCD V Sh x x x '-=≤⨯⨯==,解得22x =.将四棱锥P ABCD '-补成长方体P AMD QBNC '-, 所以,四棱锥P ABCD '-的外接球直径为22222226R P N P A P D P Q AD AB ''''==++=+=,则6R =,因此,四棱锥P ABCD '-的外接球的表面积为2424R ππ=.故选:C.【点睛】方法点睛:求空间多面体的外接球半径的常用方法:①补形法:侧面为直角三角形,或正四面体,或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;②利用球的性质:几何体中在不同面均对直角的棱必然是球大圆直径,也即球的直径; ③定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可.10.C解析:C 【分析】先由正视图、俯视图及题意还原三棱锥,过A 作AM ⊥BD 于点M ,连结MC ,把AC 放在直角三角形AMC 中解AC . 【详解】根据三棱锥A BCD -正视图和俯视图,还原后得到三棱锥的直观图如图示,由图可知:平面ABD ⊥平面CBD ,过A 作AM ⊥BD 于点M ,连结MC ,则AM ⊥平面CBD , ∴△MCA 为直角三角形. 过C 作CN ⊥BD 于点N ,在直角三角形ABD 中,AB =1,AD 3∴222BD AB AD =+=所以∠ABD=60°,∠ADB=30°,则在直角三角形ABM 中,AB =1,∠ABM=60°,∴13,2BM AM ==同理,在直角三角形CBD 中,13,2DN CN ==. ∴MN =BD -BM -DN =112122--=, ∴222237()122CM CN MN =+=+= 在直角三角形AMC 中,22227310()22AC CM AM ⎛⎫=+=+⎪ ⎪⎝⎭故选:C 【点睛】(1)根据三视图画直观图,可以按下面步骤进行:①、首先看俯视图,根据俯视图画出几何体地面的直观图 ;②、观察正视图和侧视图找到几何体前、后、左、右的高度;③、画出整体,让后再根据三视图进行调整.(2)立体几何中求线段长度:①、把线段放在特殊三角形中,解三角形;②、用等体积法求线段.11.C解析:C 【分析】将正三棱锥补成一个正方体,计算出正方体的棱长,可得出正方体的体对角线长,即为外接球的直径,进而可求得这个球的表面积. 【详解】设该正三棱锥为A BCD -,将三棱锥A BCD -补成正方体AEBF GCHD -,如下图所示:则正方体AEBF GCHD -的棱长为22222⨯=,该正方体的体对角线长为23 所以,正三棱锥A BCD -的外接球直径为223R =3R 该球的表面积为2412S R ππ==. 故选:C. 【点睛】方法点睛:求空间多面体的外接球半径的常用方法:①补形法:侧面为直角三角形,或正四面体,或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;②利用球的性质:几何体中在不同面均对直角的棱必然是球大圆直径,也即球的直径; ③定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可.12.B解析:B 【分析】由题意可知所需要材料的体积即为正四面体外接球体积与正四面体体积之差,求出正四面体体积、外接球体积,然后作差可得所需要材料的体积,再乘以原料密度可得结果. 【详解】由题意可知,几何体ABCD 是棱长为6cm 的正四面体, 所需要材料的体积即为正四面体外接球体积与正四面体体积之差,设正四面体的棱长为a 2223632aa a ⎛⎫-⨯= ⎪ ⎪⎝⎭设正四面体外接球半径为R ,则222623()()3a R R =+,解得R =6a 所以3D 打印的体积为:323346113662343223812V a a a a ππ⎛⎫=-⋅=- ⎪ ⎪⎝⎭,又336216a ==,所以276182207.71125.38182.331182V π=-≈-=≈, 故选:B 【点睛】关键点点睛:本题考查正四面体与正四面体的外接球,考查几何体的体积公式,解决本题的关键点是求出正四面体外接球体积与正四面体体积,考查学生空间想象能力和计算能力,属于中档题.二、填空题13.【详解】即整理化简得cos ∠AOB =-过点O 作AB 的垂线交AB 于D 则cos ∠AOB =2cos2∠AOD -1=-得cos2∠AOD =又圆心到直线的距离为OD =所以cos2∠AOD ===所以r2=10r = 解析:10【详解】22225325539OC OA OB OA 2OA OB OB 44164416⎛⎫=+=+⋅⋅+ ⎪⎝⎭即222225159r r r cos AOB r 16816=+∠+,整理化简得cos ∠AOB =-35,过点O 作AB 的垂线交AB 于D ,则cos ∠AOB =2cos 2∠AOD -1=-35,得cos 2∠AOD =15.又圆心到直线的距离为OD =22=,所以cos 2∠AOD =15=22OD r=22r ,所以r 2=10,r =10. 14.【详解】∵圆心P(3−5)到直线4x−3y=2的距离等于由|5−r|<1解得:4<r<6则半径r 的范围为(46)故答案为:(46)当时满足题意考点:1直线和圆的位置关系;2点到直线的距离 解析:46r <<【详解】∵圆心P (3,−5)到直线4x −3y =2的距离等于,由|5−r |<1,解得:4<r <6, 则半径r 的范围为(4,6). 故答案为:(4,6),当46r <<时满足题意.考点:1、直线和圆的位置关系;2、点到直线的距离.15.或【分析】直接求两直线的交点与等距离的直线一条过AB 的中点一条平行AB 【详解】两直线和的交点为的中点为因为所求直线过且与等距离故所求直线过的中点或与直线平行当直线过的中点时直线方程为即当直线与直线平解析:790x y +-=或210x y ++= 【分析】直接求两直线的交点,与(3,2),(1,6)A B --等距离的直线,一条过AB 的中点,一条平行AB . 【详解】两直线11370x y +-=和12190x y +-=的交点为(2,5)-,(3,2),(1,6)A B --的中点为(1,2),因为所求直线过(2,5)-且与()3,2A -,()1,6B -等距离, 故所求直线过AB 的中点或与直线AB 平行, 当直线过AB 的中点时,2(5)712k --==--, 直线方程为27(1)y x -=--,即790x y +-=, 当直线与直线AB 平行时,26823(1)4k ---===---,直线方程为52(2)y x +=--,即210x y ++=. 故答案为:790x y +-=或210x y ++= 【点睛】本题主要考查了直线交点,直线的平行,直线的斜率,直线方程,属于中档题.16.【分析】根据斜率与倾斜角的关系即可求解【详解】因为直线斜率的取值范围是所以当斜率时倾斜角当斜率时倾斜角综上倾斜角的取值范围故答案为:【点睛】本题主要考查了直线的斜率直线的倾斜角属于中档题解析:20,,43πππ⎡⎫⎛⎫⎪⎪⎢⎣⎭⎝⎭【分析】根据斜率与倾斜角的关系即可求解. 【详解】因为直线l 斜率的取值范围是(), 所以当斜率01k ≤<时,倾斜角04πα≤<,当斜率0k <时,倾斜角23παπ<<, 综上倾斜角的取值范围20,,43πππ⎡⎫⎛⎫⎪⎪⎢⎣⎭⎝⎭, 故答案为:20,,43πππ⎡⎫⎛⎫⎪⎪⎢⎣⎭⎝⎭【点睛】本题主要考查了直线的斜率,直线的倾斜角,属于中档题.17.【分析】先确定轨迹再根据射线上点与圆的位置关系求最值即得结果【详解】所以为以为圆心为半径的圆及其内部设射线的端点为所以的最小值为故答案为:【点睛】本题考查动点轨迹以及点与圆位置关系考查数形结合思想以【分析】先确定D 轨迹,再根据射线上点与圆的位置关系求最值,即得结果. 【详解】2222222(1)1,111,y x c a a c a a =+∴=--=∴=-, 所以D 为以(1,0)F -为圆心,1a +为半径的圆及其内部, 设射线()02x y x =≥-的端点为(2,2)A ,所以PQ 的最小值为||(1),12,AF a a a a -+===【点睛】本题考查动点轨迹以及点与圆位置关系,考查数形结合思想以及基本分析求解能力,属中档题.18.【分析】求出公共弦的方程再利用垂径定理求解即可【详解】由题圆与圆的公共弦方程为化简得又圆圆心到弦的距离故弦长为故答案为:【点睛】本题主要考查了求相交圆的公共弦长问题需要利用两个圆的方程相减求出公共弦解析:【分析】求出公共弦的方程,再利用垂径定理求解即可. 【详解】由题, 圆221:10C x y +=与圆222:22140C x y x y +++-=的公共弦方程为()()22222214100xy x y x y +++--+-=,化简得20x y +-=.又圆1C 圆心()0,0到弦20x y +-=的距离d ==故弦长为=故答案为:【点睛】本题主要考查了求相交圆的公共弦长问题,需要利用两个圆的方程相减求出公共弦的方程,再利用垂径定理求解.属于中档题.19.【分析】根据正方体的表面积可得正方体边长然后计算外接球的半径利用球的体积的公式可得结果【详解】设正方体边长正方体外接球的半径为R 由正方体的表面积为24所以则又所以所以外接球的体积为:故答案为:【点睛解析:【分析】根据正方体的表面积,可得正方体边长a ,然后计算外接球的半径R =,利用球的体积的公式,可得结果. 【详解】设正方体边长a ,正方体外接球的半径为R , 由正方体的表面积为24,所以2624a =,则2a =,又R =,所以R =所以外接球的体积为:334433R ππ==.故答案为:. 【点睛】方法点睛:求多面体的外接球的表面积和体积问题关键是要求出外接球的半径,常用方法有:(1)三条棱两两互相垂直时,可恢复为长方体,利用长方体的体对角线为外接球的直径,求出球的半径;(2)直棱柱的外接球可利用棱柱的上下底面平行,借助球的对称性,球心为上下底面外接圆的圆心连线的中点,再根据勾股定理求球的半径;(3)如果设计几何体有两个面相交,可过两个面的外心分别作两个面的垂线,垂线的交点为几何体的球心.20.【分析】设球的半径为连接交于点取中点连接即为三棱柱外接球球心根据三棱锥体积可得间关系表示出根据基本不等式可求得的最小值从而得到球的表面积的最小值【详解】如图因为三棱柱是且设球的半径为连接交于点取中点 解析:27π【分析】 设ABa ,BCb =,球的半径为r ,连接1AC ,1AC 交于点O ,取AC 中点D ,连接BD ,即O 为三棱柱外接球球心,根据三棱锥体积可得a b ,间关系,表示出r ,根据基本不等式可求得r 的最小值,从而得到球的表面积的最小值.【详解】如图,因为三棱柱111ABC A B C -是 ,且90ABC ∠=︒, 设ABa ,BCb =,球的半径为r ,连接1AC ,1AC 交于点O ,取AC 中点D ,连接BD ,则O 到三棱柱六个定点的距离相等,即O 为三棱柱外接球球心,11322OD AA ==, 又因为三棱锥O ABC -3 即1133322ab ⨯⨯=12ab =, 所以2222223133322242a b r AD OD ab ⎛⎫⎛⎫+=+=+≥+=⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭, 当且仅当a b =时等号成立,所以球O 的表面积最小值为2427S r ππ==, 故答案为:27π. 【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.21.4【分析】取中点连接再根据题意依次计算进而得球的球心即为(与重合)【详解】解:因为所以又因为所以所以因为平面平面平面平面平面所以平面取中点连接所以所以平面所以此时所以即球的球心球心即为(与重合)半径解析:4 【分析】取,AB AC 中点,D E ,连接DE ,DP ,再根据题意依次计算4EA EB EC EP ====,进而得球O 的球心O 即为E (O 与E 重合)【详解】解:因为BC =8AC =,AB BC ⊥,所以AB =4PA PB ==, 所以222PA PB AB +=,所以PA PB ⊥,因为平面PAB ⊥平面ABC ,平面PAB ⋂平面ABC AB =,AB BC ⊥,BC ⊂平面ABC ,所以BC ⊥平面PAB ,取,AB AC 中点,D E ,连接DE ,DP所以//DE BC ,DE =DP =所以DE ⊥平面PAB ,所以DE PD ⊥,此时,142EB AC EA EC ====, 4EP =, 所以4EA EB EC EP ====,即球O 的球心球心O 即为E (O 与E 重合),半径为4EA =. 故答案为:4.【点睛】本题解题的关键在于寻找球心,在本题中,,PAB ABC △△均为直角三角形,故易得AC 中点即为球心.考查空间思维能力,运算求解能力,是中档题.22.【分析】取的中点分别为连接先证明四边形是平行四边形再利用面面平行的判断定理证明平面平面可得平行四边形即为所求的截面再计算其面积即可【详解】取的中点分别为连接因为所以四边形是平行四边形所以因为所以四边 解析:26【分析】取AB ,11D C 的中点分别为,M N ,连接11,,,,A M MC CN A N PM ,先证明四边形1A MCN 是平行四边形,再利用面面平行的判断定理证明平面1//PBC 平面1A MCN ,可得平行四边形1A MCN 即为所求的截面,再计算其面积即可.【详解】取AB ,11D C 的中点分别为,M N ,连接11,,,,A M MC CN A N PM ,因为11A P NC ,所以四边形11A PC N 是平行四边形,所以11A N PC ,因为1PM CC 所以四边形1PMCC 是平行四边形,所以1MC PC , 所以1A N MC ,所以四边形1A MCN 是平行四边形,因为11//PC A N ,1PC ⊄平面1A MCN ,1A N ⊂平面1AMCN , 所以1//PC 平面1A MCN ,同理可证//PB 平面1A MCN ,因为1PC PB P ⋂=,所以平面1//PBC 平面1A MCN ,因此过点1A 作与平面1PBC 平行的截面,即是平行四边形1AMCN , 连接MN ,作1A H MN ⊥于点H ,由11AM A N ==,MN =可得1A H ==所以111122A MN S MN A H =⨯⨯=⨯=所以平行四边形1A MCN 的面积为12A MN S=故答案为:【点睛】 关键点点睛:本题的关键点是找出过点1A 与平面1PBC 平行的截面,所以想到作平行线,利用面面平行的判断定理证明所求的截面即是平行四边形1A MCN ,先求四边形一半的面积,乘以2即可得所求平行四边形的面积,也可以直接求菱形的面积.23.【分析】先根据三视图得到几何体是底面是直角三角形的一个三棱锥再根据锥体的体积计算公式求解即可【详解】利用正方体法还原三视图如图所示根据三视图可知该几何体是底面直角边为2的等腰直角三角形高为2的三棱锥 解析:43. 【分析】先根据三视图得到几何体是底面是直角三角形的一个三棱锥,再根据锥体的体积计算公式求解即可.【详解】利用正方体法还原三视图,如图所示,根据三视图,可知该几何体是底面直角边为2的等腰直角三角形,高为2的三棱锥S-ABC ,故其体积114222323V =⨯⨯⨯⨯=. 故答案为:43. 【点睛】本题主要考查三视图还原几何体,锥体的体积公式,考查考生的观察分析能力与空间想象能力及运算能力,属于中档题. 24.【分析】由题意知圆锥的轴截面为外接球的最大截面即过球心的截面且球心在上由等边三角形性质有即求得外接球的半径为R 进而求外接球的表面积【详解】设外接球球心为连接设外接球的半径为R 依题意可得在中有即解得故 解析:163π 【分析】由题意知圆锥PO 的轴截面为外接球的最大截面,即过球心的截面且球心在PO 上,由等边三角形性质有Rt AO O '△,即222O A AO O O ''=+求得外接球的半径为R ,进而求外接球的表面积.【详解】设外接球球心为O ',连接AO ',设外接球的半径为R ,依题意可得1AO =,3PO =,在Rt AO O '△中,有222O A AO O O ''=+,即()22213R R =+-,解得3R =, 故外接球的表面积为24164433S R πππ==⋅=. 故答案为:163π. 【点睛】 本题考查了求圆锥体的外接球面积,由截面是等边三角形,结合等边三角形的性质求球半径,进而求外接球面积,属于基础题.三、解答题25.(1)证明见解析(2)3 【分析】(1)由CD PQ ⊥,PQ DQ ⊥可证得结论成立;(2)取BQ 的中点E ,连DE 、AE ,则AED ∠是二面角D QB A --的平面角,在Rt ADE △中,通过计算可得结果.【详解】(1)因为QA ⊥平面ABCD ,∴QA CD ⊥,又四边形ABCD 为正方形,∴CD AD ⊥,又因为QA AD A =,∴CD ⊥平面AQPD ,则CD PQ ⊥,因为1AQ AD ==,AQ AD ⊥,∴2DQ =,因为4PDQ π∠=,2PD =,∴2DQP π∠=,即PQ DQ ⊥, 因为CD DQ D =,所以PQ ⊥平面DCQ .(2)取BQ 的中点E ,连DE 、AE ,如图:因为2BD DQ =BE EQ =,∴DE BQ ⊥,AE BQ ⊥,所以AED ∠是二面角D QB A --的平面角,因为QA ⊥平面ABCD ,所以QA AD ⊥,又AD AB ⊥,AB AQ A =,∴AD ⊥平面BAQ ,∴AD AE ⊥,因为1AB AQ ==,所以2BQ =,所以2AE =,在Rt ADE △中,221612DE AD AE =+=+=, 所以232cos 6AE ADE DE ∠===. 所以二面角D QB A --的余弦值为3. 【点睛】关键点点睛:根据二面角的平面角的定义作出平面角是本题解题关键.26.(1)证明见解析;(2)证明见解析.【分析】(1)先依题意得到G 为ABD △的重心,即得到21BG BE GM EC ==,证得//GE MC ,再利用线面平行的判定定理即证结论;(2)先在ABD △中,证得AO BD ⊥,求得1AO =,在BCD △中,求得3OC =,结合勾股定理证得AO OC ⊥,再利用线面垂直的判定定理证明AO ⊥平面BCD ,即证平面ABD ⊥平面BCD .【详解】证明:(1)连接BG 并延长,交AD 于M ,连接MC ,在ABD △中,O 为BD 中点,G 在AO 上,2AG GO =,∴G 为ABD △的重心∴21BG GM =, 又21BE EC =∴BG BE GM EC=∴//GE MC , ∵GE ⊄平面ACD ,AC ⊂平面ACD ,∴//GE 平面ACD ;(2)在ABD △中,O 为BD 中点,2BD =,2AB AD ==∴AO BD ⊥∴221AO AB BO -=,在BCD △中,2BC CD BD ===,O 为BD 中点,连接OC ,则OC = 又2CA =,∴222OA OC CA +=,∴AO OC ⊥由AO OC ⊥,AO BD ⊥,OCBD O =,,OC BD ⊂平面BCD ,得AO ⊥平面BCD ,又AO ⊂平面ABD ,∴平面ABD ⊥平面BCD .【点睛】思路点睛:证明线面平行时运用线面平行的判定定理证得,或者利用面面平行的性质证得;证明线面垂直时,运用其判定定理需要证明一条直线与相交的两条直线垂直,当题目条件中给出长度时可以采用勾股定理逆定理证得线线垂直,或者运用面面垂直的性质定理证得线面垂直.27.(1)证明见解析(2)存在,点E 是11C D 的中点,证明见解析【分析】(1)根据线面垂直的判定定理即可证明BD ⊥平面1BDC ;(2)存在点E 是11C D 的中点,使//AE 平面1BDC ,由线面平行的判定定理进行证明即可得到结论.【详解】(1)因为1AA ⊥底面ABCD ,所以1CC ⊥底面ABCD ,因为BD ⊂底面ABCD ,所以1CC BD ⊥,因为底面ABCD 是梯形,//AB DC ,90BAD ∠=︒, 22CD AB AD ==,设1AB =,则1AD =,2CD =所以BD =,BC所以在BCD ∆中,222BD BC CD +=,所以90CBD ∠=︒,所以BD BC ⊥,又因为1CC BD ⊥,且1CC BC C ⋂=所以BD ⊥平面1BCC .(2)存在点E 是11C D 的中点,使//AE 平面1BDC证明如下:取线段11C D 的中点为点E ,连结AE ,如图,。
北师大版高中数学必修二第二章《解析几何初步》检测(含答案解析)

一、选择题1.在坐标平面内,与点()1,2A 距离为1,且与点()3,1B 距离为2的直线共有( ) A .1条B .2条C .3条D .4条2.若直线y x b =+与曲线24y x =-有公共点,则b 的取值范围为( )A .[]22-,B.2,22⎡⎤-⎣⎦C .22,22-⎡⎤⎣⎦D .()2,22-3.已知方程2234-+=-kx k x 有两个不同的解,则实数k 的取值范围是( )A .13,24⎡⎤⎢⎥⎣⎦B .53,124C .13,24⎛⎫ ⎪⎝⎭D .53,124⎛⎫ ⎪⎝⎭4.已知半径为2的圆经过点()5,12,则其圆心到原点的距离的最小值为( ) A .9B .11C .13D .155.若直线0x y b +-=与曲线210x y -+=有公共点,则b 的取值范围是( ) A .[1,2]-B .[2,1]-C .[1,1]-D .[2,2]-6.直线l 经过()2,1A ,()2(,)1B m m R ∈两点,那么直线l 的倾斜角的取值范围为( )A .0,B .30,,44πππ⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦C .0,4⎡⎤⎢⎥⎣⎦π D .0,,42πππ⎡⎤⎛⎫⎪⎢⎥⎣⎦⎝⎭7.已知平面,αβ,直线l ,记l 与,αβ所成的角分别为1θ,2θ,若αβ⊥,则( ) A .12sin sin 1θθ+≤B .12sin sin 1θθ+≥C .122πθθ+≤D .122πθθ+≥8.如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,四边形ABCD 为正方形,PA AB =,E 为AP 的中点,则异面直线PC 与DE 所成的角的正弦值为( ).A .25B 5C .155D .1059.现有一个三棱锥形状的工艺品P ABC -,点P 在底面ABC 的投影为Q ,满足12QAB QAC QBC PABPACPBCS S S S S S ===△△△△△△,22222213QA QB QC AB BC CA ++=++,93ABCS =品放入一个球形容器(不计此球形容器的厚度)中,则该球形容器的表面积的最小值为( ) A .42πB .44πC .48πD .49π10.设m ,n 为两条不同的直线,α,β为两个不同的平面,给出下列命题: ①若//m α,//m n ,则//n α; ②若m α⊥,//m β,则αβ⊥; ③若αβ⊥,n αβ=,m n ⊥,则m β⊥;④若//m n ,//αβ,则m 与α所成的角和n 与β所成的角相等. 其中正确命题的序号是( )) A .①②B .①④C .②③D .②④11.已知正方体1111ABCD A B C D -的棱长为2,E 为棱1AA 的中点,截面1CD E 交棱AB 于点F ,则四面体1CDFD 的外接球表面积为( ) A .394πB .414πC .12πD .434π12.某三棱锥的三视图如图所示,已知网格纸上小正方形的边长为1,则该三棱锥的体积为( )A .43 B .83C .3D .4二、填空题13.2020年是中国传统的农历“鼠年”,有人用3个圆构成“卡通鼠”的形象,如图:(0,3)Q -是圆Q 的圆心,圆Q 过坐标原点O ;点L 、S 均在x 轴上,圆L 与圆S 的半径都等于2,圆S 、圆L 均与圆Q 外切.已知直线l 过点O .若直线l 截圆L 、圆S 、圆Q 所得弦长均等于d ,则d =_____.14.已知直线l 斜率的取值范围是()3,1-,则l 的倾斜角的取值范围是______. 15.已知点(1,0),(3,0)M N .若直线:0l x y m +-=上存在一点P 使得0PM PN ⋅=成立,则m 的取值范围是_____________.16.经过两条直线2310x y ++=和340x y -+=的交点,并且平行于直线3470x y +-=的直线方程是________.17.已知点()3,2A ,()2,3B -,直线():32260l k x y k ---+=.若直线l 与线段AB 有公共点,则实数k 的取值范围是________.18.已知A 是直角坐标平面内一定点,点(0,0)O ,若圆22()(–12)3x y -+=上任意一点M 到定点A 与点(0,0)O 的距离之比是一个定值λ,则这个定值λ的大小是________.19.已知直三棱柱111ABC A B C -,14AB BC AA ===,42AC =,若点P 是上底面111 A B C 所在平面内一动点,若三棱锥P ABC -的外接球表面积恰为41π,则此时点P 构成的图形面积为________.20.如图所示,Rt A B C '''∆为水平放置的ABC ∆的直观图,其中A C B C ''''⊥,2B O O C ''''==,则ABC ∆的面积是________________.21.正四面体ABCD 棱长为2,AO ⊥平面BCD ,垂足为O ,设M 为线段AO 上一点,且90BMC ︒∠=则二面角M BC O --的余弦值为________.22.表面积为16π的球与一个正三棱柱各个面都相切,则这个正三棱柱的体积为___________.23.三棱锥P ABC -的各顶点都在同一球面上,PC ⊥底面ABC ,若1PC AC ==,2AB =,且60BAC ∠=︒,给出如下命题:①ACB △是直角三角形;②此球的表面积等于11π; ③AC ⊥平面PBC ;④三棱锥A PBC -的体积为3. 其中正确命题的序号为______.(写出所有正确结论的序号)24.如图①,一个圆锥形容器的高为2a ,内装有一定量的水.如果将容器倒置,这时水面的高恰为a (如图②),则图①中的水面高度为_________.三、解答题25.如图所示,在边长为2的菱形ABCD 中,60BAC ∠=,沿BD 将三角形BCD 向上折起到PBD 位置,E 为PA 中点,若F 为三角形ABD 内一点(包括边界),且//EF 平面PBD .(1)求点F 轨迹的长度;(2)若EF ⊥平面ABD ,求证:平面PBD ⊥平面ABD ,并求三棱锥P ABD -的体积. 26.在所有棱长均为2的直棱柱1111ABCD A B C D -中,底面ABCD 是菱形,且60BAD ∠=︒,O ,M 分别为1,BD B C 的中点.(Ⅰ)求证:直线//OM 平面11DB C ; (Ⅱ)求二面角1D AC D --的余弦值.27.如图,在直三棱柱111ABC A B C -中,底面是等腰直角三角形,90ACB ∠=︒且AC a =,侧棱12AA =,D ,E 分别是1CC ,11A B 的中点.(1)求直三棱柱111ABC A B C -的体积(用字母a 表示); (2)若点E 在平面ABD 上的射影是三角形ABD 的重心G , ①求直线EB 与平面ABD 所成角的余弦值; ②求点1A 到平面ABD 的距离28.如图,矩形ABCD 所在平面与半圆弧CD 所在平面垂直,M 是CD 上异于C D ,的点.(1)证明:平面AMD ⊥平面BMC ;(2)在线段AM 上是否存在点P ,使得//MC 平面PBD ?若不存在,说明理由,若存在请证明你的结论并说明P 的位置.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【详解】根据题意可知,所求直线斜率存在,可设直线方程为y =kx +b , 即kx -y +b =0, 所以1211d k ==+,2221d k ==+,解之得k =0或43k =-, 所以所求直线方程为y =3或4x +3y -5=0, 所以符合题意的直线有两条,选B.2.B解析:B 【分析】直线y x b =+与曲线24y x =-y x b =+与半圆()224,0x y y +=≥有交点,分析几何图形得出有交点的临界情况.【详解】 由24y x =-()224,0x y y +=≥,表示圆心 (0,0),2r =的半圆,当y x b =+经过(2,0)时,此时2b =-; 当y x b =+与此半圆相切时,222221(1)r b ==⇒=+-,作出半圆与直线的图象如下,由图象可知,要使直线y x b =+与曲线24y x =-有公共点,则2,22b ⎡⎤∈-⎣⎦.故选:B 【点睛】 关键点点睛:由24y x =-变形可知其图象为半圆,找出直线y x b =+与其有公共点的临界情况,是解决问题的关键.3.B解析:B 【分析】如图,当直线在AC 位置时,斜率303224k -==+,当直线和半圆相切时,由半径22002321k k --+=+解得k 值,即得实数k 的取值范围.【详解】 由题意得,半圆24y x =-与直线32y kx k =+-有两个交点,又直线323(2)y kx k y k x =+-⇒-=-过定点C (2,3),如图所示,又点(2,0),(2,0)A B -,当直线在AC 位置时,斜率303224k -==+.当直线和半圆相切时,由半径2=解得512k =, 故实数k 的取值范围为53(,]124故选:B 【点睛】关键点点睛:由函数解析式转化为直线与半圆有两个公共点,根据直线与圆的位置关系,点到直线的距离公式的应用,求出直线在AC 位置时的斜率k 值及切线CD 的斜率,是解题的关键.4.B解析:B 【分析】设圆心坐标为(),a b ,则圆的圆心轨迹方程()()225124a b -+-=,再利用点与点的距离公式求解 【详解】半径为2的圆经过点()5,12,设圆心坐标为(),a b ,则其方程为()()224x a y b -+-= ,由其过点()5,12,则()()225124a b -+-=,即()()225124a b -+-=可得该圆的圆心轨迹是以()5,12为圆心,2为半径的圆, 故圆心到原点的距离的最小值为()5,12到原点的距离减半径,213211=-=, 故选:B . 【点睛】关键点睛:本题考查轨迹问题和点与圆上的点的距离的最值,解答本题的关键是由题意得到圆心的轨迹方程()()225124a b -+-=,再根据点与圆上的点的距离的最值的求法得出答案,属于中档题.5.B解析:B 【分析】根据题意,对曲线的方程变形,分析可得曲线为圆x 2+y 2=1的下半部分,结合图形分析可得答案. 【详解】根据题意,y 21x =--,变形可得x 2+y 2=1(0y ≤),为圆x 2+y 2=1的下半部分, 若直线x +y ﹣b =0与曲线y 21x =--有公共点,则当直线经过点A 时,直线x +y ﹣b =0与曲线y 21x =-有公共点 此时b =1,将直线向下平移至直线与曲线相切时,有2b -=1,解可得b =±2,又由b <0,则b 2=-,则b 的取值范围为[2,1]-; 故选:B .【点睛】关键点点睛:曲线y 21x =--,变形可得x 2+y 2=1(0y ≤),为圆x 2+y 2=1的下半部分,数形结合解决即可.6.D解析:D 【分析】根据直线过两点,求出直线的斜率,再根据斜率求出倾斜角的取值范围. 【详解】解:直线l 的斜率为2212121121y y m k m x x --===---,因为m R ∈,所以(],1k ∈-∞,所以直线的倾斜角的取值范围是0,,42πππ⎡⎤⎛⎫⎪⎢⎥⎣⎦⎝⎭. 故选:D. 【点睛】本题考查了利用两点求直线的斜率以及倾斜角的应用问题,属于基础题.7.C解析:C 【分析】如图,作出1θ和2θ,再由线面角推得12sin sin 2πθθ⎛⎫≤- ⎪⎝⎭,利用三角函数的单调性判断选项. 【详解】设直线l 为直线AB ,m αβ=,AD m ⊥,BC m ⊥,连结BD ,AC ,1ABD θ=∠,2BAC θ=∠,12sin sin 2AD AC AB AB πθθ⎛⎫=≤=- ⎪⎝⎭,12,2πθθ-都是锐角, 122πθθ∴≤-,即122πθθ+≤故选:C 【点睛】关键点点睛:本题的关键是作图,并利用线段AD AC ≤,传递不等式,12sin sin 2AD AC AB AB πθθ⎛⎫=≤=- ⎪⎝⎭. 8.D解析:D 【分析】先取正方形的中心O ,连接OE ,由PC//OE 知OED ∠为异面直线PC 与DE 所成的角,再在OED 中求OED ∠的正弦即可. 【详解】连AC ,BD 相交于点O ,连OE 、BE ,因为E 为AP 的中点,O 为AC 的中点,有PC//OE ,可得OED ∠为异面直线PC 与DE 所成的角,不妨设正方形中,2AB =,则2PA =,由PA ⊥平面ABCD ,可得,PA AB PA AD ⊥⊥, 则145BE DE ==+=,1122222OD BD ==⨯=, 因为BE DE =,O 为BD 的中点,所以90EOD ∠=︒,210sin 55OD OED DE ∠===. 故选:D. 【点睛】 方法点睛:求空间角的常用方法:(1)定义法,由异面直线所成角、线面角、二面角的定义,结合图形,作出所求空间角,再结合题中条件,解对应三角形,即可求出结果;(2)向量法:建立适当的空间直角坐标系,通过计算向量夹角(直线方向向量与直线方向向量、直线方向向量与平面法向量,平面法向量与平面法向量)余弦值,即可求出结果.9.D解析:D 【分析】作QM AB ⊥,连接PM ,易证AB PM ⊥,由112122QAB PABAB QMS S AB PM ⨯⨯==⨯⨯△△,得到2PM QM =,再根据12QAB QAC QBC PABPACPBCS S S S S S ===△△△△△△,由对称性得到AB BC AC ==,然后根据22222213QA QB QC AB BC CA ++=++,93ABCS =,求得6,23AB AQ ==,在AOQ△中,由222AO OQ AQ =+求解半径即可.【详解】 如图所示:作QM AB ⊥与M ,连接PM , 因为PQ ⊥平面ABC ,所以PQ AB ⊥,又QM PQ Q ⋂=, 所以AB ⊥平面PQM , 所以AB PM ⊥,所以112122QAB PABAB QM S S AB PM ⨯⨯==⨯⨯△△, 2PM QM =,因为12QAB QAC QBC PABPACPBCS S S S S S ===△△△△△△, 由对称性得AB BC AC ==,又因为22222213QA QB QC AB BC CA ++=++,ABCS =所以21sin 60932ABCSAB =⨯⨯= 解得6,ABAQ ==所以3QM PM PQ ===,设外接球的半径为r ,在AOQ △中,222AOOQ AQ =+,即()(2223r r =-+,解得72r =, 所以外接球的表面积为2449S r ππ==, 即该球形容器的表面积的最小值为49π. 故选:D 【点睛】关键点点睛:本题关键是由12QAB QAC QBC PABPACPBCS S S S S S ===△△△△△△得到三棱锥是正棱锥,从而找到外接球球心的位置而得解..10.D解析:D 【分析】①根据//n α或n ⊂α判断;②利用面面垂直的判定定理判断;③根据m β⊂,或//m β,或m 与β相交判断;④利用线面角的定义判断.【详解】①若//m α,//m n ,则//n α或n ⊂α,因此不正确;②若//m β,则β内必存在一条直线//m m ',因为m α⊥,所以m α'⊥,又因为m β'⊂,所以αβ⊥,正确;③若αβ⊥,n αβ=,m n ⊥,则m β⊂,或//m β,或m 与β相交,因此不正确;④若//m n ,//αβ,则m 与α所成的角和n 与β所成的角相等,正确. 其中正确命题的序号是②④. 故选:D . 【点睛】空间直线、平面平行或垂直等位置关系命题的真假判断,除了利用定理、公理、推理判断外,还常采用画图(尤其是画长方体)、现实实物判断法(如墙角、桌面等)、排除筛选法等;另外,若原命题不太容易判断真假,可以考虑它的逆否命题,判断它的逆否命题真假,原命题与逆否命题等价.11.B解析:B 【分析】可证F 为AB 的中点,设1DD 的中点为G ,DFC △的外接圆的球心为1O ,四面体1CDFD 的外接球的球心为O ,连接11,,,OG OF OO A B ,利用解三角形的方法可求DFC △的外接圆的半径,从而可求四面体1CDFD 的外接球的半径.【详解】设1DD 的中点为G ,DFC △的外接圆的圆心为1O ,四面体1CDFD 的外接球的球心为O ,连接11,,,OG OF OO A B ,因为平面11//A ABB 平面11D DCC ,平面1CD E ⋂平面11A ABB EF =, 平面1CD E ⋂平面111D DCC D C =,故1//EF D C , 而11//A B D C ,故1//EF A B ,故F 为AB 的中点,所以145DF CF ==+=,故3cos 5255DFC ∠==⨯⨯,因为DFC ∠为三角形的内角,故4sin 5DFC ∠=,故DFC △的外接圆的半径为1254245⨯=,1OO ⊥平面ABCD ,1DD ⊥平面ABCD ,故11//OO DD ,在平面1GDO O 中,111,OG DD O D DD ⊥⊥,故1//OG O D , 故四边形1GDO O 为平行四边形,故1//OO GD ,1OO GD =, 所以四面体1CDFD 的外接球的半径为25411164+=, 故四面体1CDFD 的外接球表面积为41414164ππ⨯=, 故选:B. 【点睛】方法点睛:三棱锥的外接球的球的半径,关键是球心位置的确定,通常利用“球心在过底面外接圆的圆心且垂直于底面的直线上”来确定.12.A解析:A 【分析】首先由三视图还原几何体,然后由几何体的空间结构特征求解三棱锥的体积即可. 【详解】由三视图可知,在棱长为2的正方体中,其对应的几何体为棱锥P ABC -,该棱锥的体积:11142223323V Sh ⎛⎫==⨯⨯⨯⨯= ⎪⎝⎭. 故选:A. 【点睛】方法点睛:(1)求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解;(2)若所给几何体的体积不能直接利用公式得出,则常用等积法、分割法、补形法等方法进行求解.二、填空题13.【分析】圆L 与圆S 关于原点对称直线l 过原点求出圆L 与圆S 的圆心坐标设出直线l 方程由三个弦长相等得直线方程从而可得弦长d 【详解】由题意圆与圆关于原点对称设则即设方程为则三个圆心到该直线的距离分别为:则 解析:125【分析】圆L 与圆S 关于原点对称,直线l 过原点,求出圆L 与圆S 的圆心坐标,设出直线l 方程,由三个弦长相等得直线方程,从而可得弦长d . 【详解】由题意圆L 与圆S 关于原点对称,设(),0(0)S a a >23,4a =+=,即()()4,04,0S L ∴-,. 设方程为(0y kx k =≠),则三个圆心到该直线的距离分别为:1d =,2d =,3d =,则()()()2222123444449d d d d =-=-=-,即有222449⎛⎫⎛⎫⎛⎫-=-=-,解得2421k =, 则24161442144425121d ⎛⎫⨯ ⎪=-= ⎪ ⎪+⎝⎭,即125d =. 故答案为: 125. 【点睛】本题考查直线与圆的位置关系,考查直线与圆相交弦长问题.求出圆心到直线的距离,用勾股定理求得弦长是求圆弦长的常用方法.14.【分析】根据斜率与倾斜角的关系即可求解【详解】因为直线斜率的取值范围是所以当斜率时倾斜角当斜率时倾斜角综上倾斜角的取值范围故答案为:【点睛】本题主要考查了直线的斜率直线的倾斜角属于中档题解析:20,,43πππ⎡⎫⎛⎫⎪⎪⎢⎣⎭⎝⎭【分析】根据斜率与倾斜角的关系即可求解. 【详解】因为直线l 斜率的取值范围是(), 所以当斜率01k ≤<时,倾斜角04πα≤<,当斜率0k <<时,倾斜角23παπ<<, 综上倾斜角的取值范围20,,43πππ⎡⎫⎛⎫⎪⎪⎢⎣⎭⎝⎭, 故答案为:20,,43πππ⎡⎫⎛⎫⎪⎪⎢⎣⎭⎝⎭【点睛】本题主要考查了直线的斜率,直线的倾斜角,属于中档题.15.【分析】根据可确定点轨迹为以为圆心为半径的圆利用直线与圆有交点可知由此构造不等式求得结果【详解】点轨迹是以为圆心为半径的圆上存在点与以为圆心为半径的圆有交点圆心到直线距离解得:即的取值范围为:故答案解析:[22【分析】根据PM PN ⊥可确定P 点轨迹为以()2,0为圆心,1为半径的圆,利用直线l 与圆有交点可知d r ≤,由此构造不等式求得结果. 【详解】0PM PN ⋅=,PM PN ∴⊥,P ∴点轨迹是以()2,0为圆心,1为半径的圆.:0l x y m +-=上存在点P ,l ∴与以()2,0为圆心,1为半径的圆有交点,∴圆心()2,0到直线l 距离1d =≤,解得:22m ≤+即m 的取值范围为:22⎡-+⎣.故答案为:22⎡+⎣.【点睛】本题考查根据直线与圆的位置关系求解参数范围的问题;关键是能够根据平面向量数量积得到垂直关系,进而确定动点轨迹,从而将问题转化为直线与圆位置关系的求解问题.16.【分析】先求出两相交直线的交点设出平行于直线的直线方程根据交点在直线上求出直线方程【详解】联立直线的方程得到两直线的交点坐标平行于直线的直线方程设为则所以直线的方程为:故答案为:【点睛】本题考查了直 解析:1934011x y ++=【分析】先求出两相交直线的交点,设出平行于直线3470x y +-=的直线方程,根据交点在直线上,求出直线方程. 【详解】联立直线的方程23103470x y x y ++=⎧⎨+-=⎩,得到两直线的交点坐标135(,)1111-,平行于直线3470x y +-=的直线方程设为340x y c ++=, 则1353()4()+01111c ⋅-+⋅= 所以直线的方程为:1934011x y ++= 故答案为:1934011x y ++= 【点睛】本题考查了直线的交点,以及与已知直线平行的直线方程,考查了学生概念理解,转化与划归的能力,属于基础题.17.【分析】首先求出直线恒过定点表示出直线的斜率再结合图形即可求出参数的取值范围【详解】解:因为直线所以令解得故直线恒过点直线的斜率为则依题意直线与线段有公共点由图可知或解得或即故答案为:【点睛】本题考解析:[)3,7,2⎛⎤-∞+∞ ⎥⎝⎦【分析】首先求出直线恒过定点()2,0P ,表示出直线的斜率,再结合图形即可求出参数的取值范围. 【详解】解:因为直线():32260l k x y k ---+= 所以()()23260k x x y -+--+=令203260x x y -=⎧⎨--+=⎩解得20x y =⎧⎨=⎩故直线():32260l k x y k ---+=恒过点()2,0P直线l 的斜率为32k -则20232AP k -==-,303224BP k -==--- 依题意直线l 与线段AB 有公共点,由图可知322k -≥或3324k -≤- 解得7k ≥或32k ≤,即[)3,7,2k ⎛⎤∈-∞+∞ ⎥⎝⎦故答案为:[)3,7,2⎛⎤-∞+∞ ⎥⎝⎦【点睛】本题考查直线恒过定点问题以及直线的斜率的计算,属于中档题.18.【分析】设按距离之比为定值求出点的轨迹方程它就是方程比较后可得【详解】设则整理得:易知方程化为已知圆的一般式方程为所以解得故答案为:【点睛】本题考查平面轨迹方程解题时由点到两点距离之比为常数求出的轨 15【分析】设(,)A m n ,(,)M x y ,按距离之比为定值求出M 点的轨迹方程,它就是方程22()(–12)3x y -+=,比较后可得λ.【详解】设(,)A m n ,(,)M x y ,则2222()()MA x m y n MOx yλ-+-==+,整理得:222222(1)(1)220x y mx ny m n λλ-+---++=,易知210λ-≠,方程化为2222222220111m n m n x y x y λλλ++--+=---,已知圆22()(–12)3x y -+=的一般式方程为222420x y x y +--+=,所以2222222124121mnm n λλλ⎧=⎪-⎪⎪=⎨-⎪⎪+=⎪-⎩,解得2545m n λ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩.. 【点睛】本题考查平面轨迹方程,解题时由M 点到,A O 两点距离之比为常数λ,求出M 的轨迹方程,它就是已知圆,比较系数可得结论.19.【分析】确定是等腰直角三角形的中点分别是和的外心由直棱柱性质得的外接球的球心在上外接球面与平面的交线是圆是以为圆心为半径的圆求出可得面积【详解】则设分别是的中点则分别是和的外心由直三棱柱的性质得平面 解析:4π【分析】确定ABC 是等腰直角三角形,11,AC A C 的中点1,D D 分别是ABC 和111A B C △的外心,由直棱柱性质得P ABC -的外接球的球心O 在1DD 上,外接球面与平面111A B C 的交线是圆,是以1D 为圆心,1D P 为半径的圆,求出1PD 可得面积. 【详解】4,AB BC AC ===90ABC ∠=︒,设1,D D 分别是11,AC A C 的中点,则1,D D 分别是ABC 和111A B C △的外心,由直三棱柱的性质得1DD ⊥平面ABC , 所以P ABC -的外接球的球心O 在1DD 上,如图,24()41OA ππ=,则2OP OA ==,32OD ===, 所以11135422OD DD OD AA OD =-=-=-=,12PD ===, P ABC -的外接球面与平面111A B C 的交线是圆,是以1D 为圆心,1D P 为半径的圆,其面积为224S ππ=⨯=.故答案为:4π.【点睛】关键点点睛:本题考查立体几何中动点轨迹问题的求解,重点考查了几何体的外接球的有关问题的求解,关键是根据外接球的性质确定球心位置,结合勾股定理得出动点所满足的具体条件,结论:三棱锥的外接球的球心在过各面外心且与此面垂直的直线上.20.【分析】根据直观图和原图的之间的关系由直观图画法规则将还原为如图所示是一个等腰三角形直接求解其面积即可【详解】由直观图画法规则将还原为如图所示是一个等腰三角形则有所以故答案为:【点睛】关键点点睛:根 解析:82【分析】根据直观图和原图的之间的关系,由直观图画法规则将Rt A B C '''还原为ABC ,如图所示,ABC 是一个等腰三角形,直接求解其面积即可. 【详解】由直观图画法规则将Rt A B C '''还原为ABC ,如图所示,ABC 是一个等腰三角形,则有2BO OC B O O C ''''====,242AO A O ''==所以114428222ABCSBC AO =⋅=⨯⨯= 故答案为:2【点睛】关键点点睛:根据斜二测画法的规则,可得出三角形的直观图,并求出对应边长,根据面积公式求解.21.【分析】连接延长交于则是中点可得是二面角的平面角求出可得结论【详解】由已知是中心连接延长交于则是中点连接则而∴平面平面∴∴是二面角的平面角由对称性又由平面平面得∴故答案为:【点睛】关键点点睛:本题考 解析:3 【分析】 连接DO 延长交BC 于E ,则E 是BC 中点,可得MEO ∠是二面角M BC O --的平面角.求出,ME OE 可得结论.【详解】由已知O 是BCD △中心,连接DO 延长交BC 于E ,则E 是BC 中点,连接AE ,则BC AE ⊥,BC DE ⊥,而AE DE E =,∴BC ⊥平面AED ,ME ⊂平面AED ,∴BC ME ⊥,∴MEO ∠是二面角M BC O --的平面角.2BC =,90BMC ︒∠=,由对称性2BM CM ==,112ME BC ==, 又1133233EO DE ==⨯⨯=, 由AO ⊥平面BCD ,EO ⊂平面BCD ,得AO EO ⊥, ∴3cos EO MEO ME ∠==. 故答案为:3.【点睛】关键点点睛:本题考查求二面角,解题关键是作出二面角的平面角.这可根据平面角的定义作出(并证明),然后在直角三角形中求角即得.注意一作二证三计算三个步骤. 22.【分析】求出正三棱柱的高底面三角形的边长和高即可求出正三棱柱的体积【详解】设球的半径为r 由得则球的半径为2正三棱柱的高为正三棱柱底面正三角形的内切圆的半径是2所以正三角形的边长是高是6正三棱柱的体积 解析:3【分析】求出正三棱柱的高、底面三角形的边长和高,即可求出正三棱柱的体积.【详解】设球的半径为r ,由2416r π=π,得2r ,则球的半径为2,正三棱柱的高为24r =,正三棱柱底面正三角形的内切圆的半径是2,所以正三角形的边长是6,正三棱柱的体积为1642⨯⨯=故答案为:【点睛】本题考查正三棱柱的内切球、正三棱柱的体积,考查空间想象能力与计算能力. 23.①③【分析】①先求出再得到最后判断①正确;②先判断三棱锥的外接球就是以为顶点以棱的长方体的外接球再求半径最后求出球的表面积判断②错误;③先证明最后证明平面判断③正确;④直接求出三棱锥的体积判断④错误解析:①③.【分析】①先求出BC =222AB BC AC =+,最后判断①正确;②先判断三棱锥P ABC -的外接球就是以C 为顶点,以CA ,CB ,CP 棱的长方体的外接球,再求半径r ,最后求出球的表面积,判断②错误;③先证明AC PC ⊥,AC BC ⊥,⋂=PC CB C ,最后证明AC ⊥平面PBC ,判断③正确;④直接求出三棱锥A PBC -的体积,判断④错误.【详解】解:①在ACB △,因为1AC =,2AB =,且60BAC ∠=︒,所以2222cos 3BC AB AC AB AC BAC =+-⋅⋅∠=,则BC =所以222AB BC AC =+,所以ACB △是直角三角形,故①正确;②由(1)可知AC BC ⊥,又因为PC ⊥底面ABC ,所以三棱锥P ABC -的外接球就是以C 为顶点,以CA ,CB ,CP 棱的长方体的外接球,则2r ==,则此球的表面积等于245S r ππ==,故②错误; ③因为PC ⊥底面ABC ,所以AC PC ⊥,由(1)可知AC BC ⊥,⋂=PC CB C , 所以AC ⊥平面PBC ,故③正确;④三棱锥A PBC -的体积11(1132V =⨯⨯⨯=,故④错误. 故答案为:①③.【点睛】本题考查判断三角形是直角三角形、求三棱锥的外接球的表面积、求三棱锥的体积、线面垂直的证明,是中档题.24.【分析】由第二个图可知水的体积占整个圆锥体积的在第一个图中水的体积占圆锥的上面小圆锥体积占大圆锥体积的根据小圆锥体积与大圆锥体积比是其高的三次方的比即可解得a 的值【详解】在图②中水形成的小圆锥和大圆解析:(2a【分析】 由第二个图可知,水的体积占整个圆锥体积的18,在第一个图中,水的体积占圆锥的18,上面小圆锥体积占大圆锥体积的78,根据小圆锥体积与大圆锥体积比是其高的三次方的比,即可解得a 的值.【详解】在图②中,水形成的小“圆锥”和大圆锥形容器高的比为12,底面半径比为12,故其底面积的比为14,所以体积比为18,则在图①中,无水部分形成的小“圆锥”和大圆锥形容器的体积比为78,设水面高度为h ,则小“圆锥”和大圆锥形容器的高的比为22a h a-,体积比为327(=28a h a -),解的h =(2a .故答案为: (2a【点睛】本题考查了圆锥的体积的计算,属于中档题目,解题中的关键是要准确利用圆锥体积公式得到大小圆锥体积比与大小圆锥的高比的关系.三、解答题25.(1;(2)证明见解析,三棱锥P ABD - 【分析】(1)取AB 、AD 中点为M 、N ,连接MN ,证明出平面//PBD 平面EMN ,可得出点F 的轨迹为线段MN ,求出BD 的长,可求得线段MN 的长,即可得解;(2)连接AF 延长交BD 于点O ,利用面面平行的性质定理可得出//EF PO ,可得出PO ⊥平面ABD ,利用面面垂直的判定定理可证得平面PBD ⊥平面ABD ,可得出三棱锥P ABD -的高为PO ,利用锥体的体积公式可求得结果.【详解】(1)如图,取AB 、AD 中点为M 、N ,连接MN ,则点F 在线段MN 上,证明如下:连接EM 、EN ,因为E 为PA 中点,M 为AB 中点,所以//EM PB ,EM ⊄平面PBD ,PB ⊂平面PBD ,//EM ∴平面PBD ,同理可证//EN 平面PBD , 又EM EN E =,所以平面//PBD 平面EMN ,EF ⊂平面EMN ,所以//EF 平面PBD ,所以点F 的轨迹为线段MN ,因为60BAC ∠=,所以120BAD ∠=,2sin 23BD AB BAC ∴=∠=,所以132MN BD ==,即点F 的轨迹的长度为3; (2)连接AF 延长交BD 于点O ,因为平面//PBD 平面EMN , 且平面APO平面EMN EF =,平面APO 平面PBD PO =,所以//EF PO ,因为EF ⊥平面ABD ,所以PO ⊥平面ABD ,又PO ⊂平面PBD ,所以平面PBD ⊥平面ABD ,可得PO 为三棱锥P ABD -的高,且cos 1PO AO AB BAC ==∠=,1113231332P ABD ABD V S PO -=⨯⨯=⨯⨯=△. 【点睛】方法点睛:求空间几何体体积的方法如下:(1)求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解;(2)若所给几何体的体积不能直接利用公式得出,则常用等积法、分割法、补形法等方法进行求解.26.(Ⅰ)证明见解析;(Ⅱ5. 【分析】(Ⅰ)由中位线定理证明1//OM C D ,即可得线面平行;(Ⅱ)连1D O ,证明1D OD ∠为二面角1D AC D --的平面角, 在直角1D DO △中计算可得.【详解】解:(Ⅰ)连1BC ,则M 也为1BC 的中点,又M 为BD 的中点,所以1//OM C D ,因为OM ⊄平面11DB C ,1C D ⊂平面11DC B ,所以直线//OM 平面11DB C ;(Ⅱ)连1D O ,因为ABCD 是菱形,所以DO AC ⊥,又1111ABCD A B C D -为直棱柱,底面为菱形,所以11D A D C =,而O 为AC 中点,所以1D O AC ⊥,所以1D OD ∠为二面角1D AC D --的平面角,因为ABCD 是边长为2的菱形,且60BAD ∠=︒,所以1DO =,又12DD =, 由直棱柱知1DD DO ⊥,所以15DO =,所以115cos DO D OD D O ∠==.【点睛】 方法点睛:本题考查证明线面平行,考查求二面角角,求二面角常用方法:(1)定义法:作出二面角的平面角并证明,然后在三角形中计算可得;(2)向量法:建立空间直角坐标系,求出两个平面的法向量夹角的余弦即可得二面角的余弦(注意判断二面角是锐角还是钝角). 27.(1)2a ;(2)①519;30. 【分析】 (1)直接由体积公式计算;(2)取AB 的中点F ,连接1,,,EF FC EC BG ,得1EFCC 是矩形,由G 是DAB 的重心,EG ⊥平面DAB ,求出a , ①EBG ∠是直线EB 与平面DAB 所成的角,在直角三角形中计算可得;②由点1A 到平面ABD 的距离等于点E 到平面ABD 的距离可得.【详解】(1)由题意111221122ABC A B C ABC V S AA a a -=⋅=⨯=△;(2)如图,取AB 的中点F ,连接1,,,EF FC EC BG ,由AC BC =,90ACB ∠=︒,F 是AB 中点得CF AB ⊥,12CF AB =, 由直三棱柱111ABC A B C -可得1EFCC 是矩形,设CF x =,则21ED FD x ==+,2EF =.11C D =,G 是DAB 的重心,则222133DG DF x ==+,2113GF x =+, 又EG ⊥平面DAB ,DF ⊂平面DAB ,∴EG DF ⊥,∴2222EF FG ED DG -=-,即222144(1)(1)(1)99x x x -+=+-+,解得5x =, ∴10AC AB a ===,①由EG ⊥平面DAB ,知EBG ∠是直线EB 与平面DAB 所成的角, 21304(1)93EG x =-+=,()22523EB =+=, ∴1017933BG =-=, ∴17513cos 9BG EBG BE ∠===. ②∵1//A E AB ,AB 平面DAB ,1A E ⊄面DAB ,∴1//A E 面DAB ,∴点1A 到平面ABD 的距离等于点E 到平面ABD 的距离为30EG =.【点睛】关键点点睛:本题考查求棱柱的体积,求直线与平面所成的角及点到平面的距离.本题关键是由点E 在平面ABD 上的射影是三角形ABD 的重心G 求出a ,然后根据直线与平面所成角的定义得出这个角后计算即可得.28.(1)证明见解析;(2)存在;证明见解析;P 为AM 中点.。
北师大高中数学必修二课时跟踪检测:第二章 解析几何初步 §2 21 含解析

第二章解析几何初步§2圆与圆的方程2.1圆的标准方程课时跟踪检测一、选择题1.若圆的标准方程为(x-1)2+(y+1)2=4,则此圆的圆心和半径分别是() A.(1,-1),4B.(1,-1),2C.(-1,1),4 D.(-1,1),2解析:∵圆的标准方程(x-a)2+(y-b)2=r2的圆心(a,b),半径为r,∴(x-1)2+(y+1)2=4的圆心(1,-1),半径r=2.答案:B2.点A(m,6)与圆x2+y2=25的位置关系是()A.在圆内B.在圆上C.在圆外D.不确定解析:把点A的坐标(m,6)代入x2+y2=25,得m2+36>25,∴点A在圆外.答案:C3.直线x+2y+3=0将圆(x-a)2+(y+5)2=3平分,则a等于()A.13 B.7C.-13 D.以上答案都不对解析:由题意知,(a,-5)在直线上,∴a+2×(-5)+3=0,a=7.答案:B4.方程y=1-x2表示的图形是()解析:原式可转化为:x2+y2=1(y≥0),它表示原点为圆心,半径为1的圆位于x轴及上面部分.答案:C5.若直线y=ax+b通过第一、二、四象限,则圆(x+a)2+(y+b)2=1的圆心位于()A.第一象限B.第二象限C.第三象限D.第四象限解析:∵直线通过第一、二、四象限,∴a<0,b>0,∴-a>0,-b<0,∴圆心(-a,-b)位于第四象限.答案:D6.已知直线l的方程为3x+4y-25=0,则圆x2+y2=1上的点到直线l的距离的最小值是()A.3B.4C.5D.6|0+0-25|=5,圆半径r为1,d-r=4就是圆解析:圆心到直线的距离d=32+42上的点到直线l距离的最小值.答案:B二、填空题7.以直线2x+y-4=0与两坐标轴的一个交点为圆心,过另一个交点的圆的方程为________________________________________________.解析:直线2x+y-4=0与两坐标轴的交点分别为A(0,4),B(2,0).∴r2=|AB|2=(2-0)2+(0-4)2=20.∴圆的方程为x 2+(y -4)2=20或(x -2)2+y 2=20.答案:x 2+(y -4)2=20或(x -2)2+y 2=208.若圆C 和圆(x -2)2+(y +2)2=1关于直线x -y +1=0对称,则圆C 的方程___________________________________.解析:设C (a ,b ).已知圆心坐标为(2,-2).由题意知,⎩⎪⎨⎪⎧ b +2a -2=-1,a +22-b -22+1=0,解得⎩⎪⎨⎪⎧ a =-3,b =3. ∴所求圆的方程为(x +3)2+(y -3)2=1.答案:(x +3)2+(y -3)2=1 9.已知点P (x ,y )在圆x 2+y 2=1上,则(x -1)2+(y -1)2的最大值为________.解析: (x -1)2+(y -1)2表示点A (1,1)到点P (x ,y )的距离,它的最大值为A 到圆心(0,0)的距离加上半径,即2+1. 答案:2+1三、解答题10.一圆经过点P (-4,3),圆心在直线2x -y +1=0上,且半径为5,求该圆的方程.解:设圆心坐标为(a ,b ).则⎩⎨⎧ 2a -b +1=0,(-4-a )2+(3-b )2=25,解得⎩⎨⎧ a =1,b =3或⎩⎨⎧a =-1,b =-1, ∴圆的方程为(x -1)2+(y -3)2=25或(x +1)2+(y +1)2=25.11.已知圆C 经过点A (1,3),B (2,2),并且直线l :3x -2y =0平分圆C ,求圆C 的方程.解:由于直线l :3x -2y =0平分圆C ,故圆C 的圆心C (a ,b )在直线l 上,即3a -2b =0.①又|CA |=|CB | ∴(a -1)2+(b -3)2=(a -2)2+(b -2)2.②把①代入②得a =2,b =3,∴|CA |=(2-1)2+(3-3)2=1,∴圆C 的方程为(x -2)2+(y -3)2=1.12.如图,矩形ABCD 的两条对角线相交于点M (2,0),AB 边所在直线的方程为x -3y -6=0,点T (-1,1)在AD 边所在的直线上.(1)求AD 边所在直线的方程;(2)求矩形ABCD 外接圆的方程.解:(1)因为AB 边所在直线的方程为x -3y -6=0,且AD 与AB 垂直,所以直线AD 的斜率为-3.又因为点T (-1,1)在直线AD 上,所以AD 边所在直线的方程为y -1=-3(x +1),即3x +y +2=0.(2)由⎩⎨⎧x -3y -6=0,3x +y +2=0,解得点A 的坐标为(0,-2).因为矩形ABCD 两条对角线的交点为M (2,0),所以M 为矩形ABCD 外接圆的圆心.又|AM |= (2-0)2+(0+2)2=22, 从而矩形ABCD 外接圆的方程为(x -2)2+y 2=8.13.平面上两点A (-1,0),B (1,0),在圆C :(x -3)2+(y -4)2=4上取一点P ,求使|P A |2+|PB |2取最小值时点P 的坐标.解:设P 点的坐标为(x ,y ),∵A (-1,0),B (1,0),∴|AP |2+|BP |2=(x +1)2+y 2+(x -1)2+y 2=2(x 2+y 2)+2=2|OP |2+2.要使|AP |2+|BP |2取得最小值,需使|OP |2最小. 又点P 为圆C :(x -3)2+(y -4)2=4上的点, ∴|OP |min =|OC |-r (r 为半径).由(x -3)2+(y -4)2=4知:C (3,4),r =2. ∴|OC |-r =32+42-2=5-2=3, 即|OP |min =3,∴(|AP |2+|BP |2)min =2×32+2=20.此时x 2+y 2=9且y x =43,解得x =95,y =125,∴P 点坐标为⎝ ⎛⎭⎪⎫95,125.。
(北师大版)北京市必修二第二章《解析几何初步》测试(答案解析)

一、选择题1.已知点(,0)A m -,(,0)B m ,R m ∈,若圆22:(3)(3)2C x y -+-=上存在点P ,满足PA PB ⊥,则m 最大值是( )A .22B .32C .42D .522.已知点()()2,0,2,0M N -,若圆()2226900x y x r r +-+-=>上存在点P (不同于,M N ),使得PM PN ⊥,则实数r 的取值范围是( )A .()1,5B .[]1,5C .()1,3D .[]1,33.已知直线10kx y k ---=和以()3,1M -,()3,2N 为端点的线段相交,则实数k 的取值范围为( ) A .32k ≤B .12k ≥-C .1322k -≤≤ D .12k ≤-或32k ≥ 4.函数sin cos y a x b x =-的一个对称中心为,04π⎛⎫⎪⎝⎭,则直线0ax by c 的倾斜角大小为( ) A .4π B .3π C .23π D .34π 5.ABC 中,(1,5)A ,高BE ,CF 所在的直线方程分别为20x y -=,5100++=x y ,则BC 所在直线的方程是( ).A .04=+y xB .528x y -=C .350x y +=D .5328x y -=6.若直线l 过点(1,1)--和(2,5),且点(1009,)b 在直线l 上,则b 的值为( ) A .2019B .2018C .2017D .20167.如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,四边形ABCD 为正方形,PA AB =,E 为AP 的中点,则异面直线PC 与DE 所成的角的正弦值为( ).A .25B 5C 15D 10 8.在底面为正方形的四棱锥P ABCD -中,侧面PAD ⊥底面ABCD ,PA AD ⊥,PA AD =,则异面直线PB 与AC 所成的角为( )A .30B .45︒C .60︒D .90︒9.在棱长为2的正方体ABCD ﹣A 1B 1C 1D 1中,点E ,F 分别是棱C 1D 1,B 1C 1的中点,P 是上底面A 1B 1C 1D 1内一点,若AP ∥平面BDEF ,则线段AP 长度的取值范围是( ) A .[322,5] B .[5,22]C .[324,6] D .[6,22]10.一个底面为正三角形的棱柱的三视图如图所示,若在该棱柱内部放置一个球,则该球的最大体积为( )A .6πB .12πC .43πD .83π11.在下面四个正方体ABCD A B C D ''''-中,点M 、N 、P 均为所在棱的中点,过M 、N 、P 作正方体截面,则下列图形中,平面MNP 不与直线A C '垂直的是( )A .B .C .D .12.如图(1),Rt ABC ,1,3,2AC AB BC ===,D 为BC 的中点,沿AD 将ACD △折起到AC D ',使得C '在平面ABD 上的射影H 落在AB 上,如图(2),则以下结论正确的是( )A .AC BD '⊥B .AD BC '⊥ C .BD C D ⊥' D .AB C D ⊥'二、填空题13.已知直线1:220l x by ++=与直线2:210l x y -+=平行,则直线1l ,2l 之间的距离为__________.14.已知平面向量a ,b ,c ,满足1a =,2b =,3c =,01λ<<,若0b c ⋅=,则()1a b c λλ---所有取不到的值的集合为______.15.直线y kx =与函数2143y x x -=-+-的图象有且仅有一个交点,则k 的最小值是______.16.经过直线20x y -=与圆224240x y x y +-+-=的交点,且过点()1,0的圆的方程为______.17.已知点P 是直线l 上的一点,将直线l 绕点P 逆时针方向旋转角02παα⎛⎫<< ⎪⎝⎭,所得直线方程是20x y --=,若将它继续旋转2πα-角,所得直线方程是210x y +-=,则直线l 的方程是______.18.若直线()():1210l m x m y m -+--=与曲线()2:422C y x =--有公共点,则直线l 的斜率的最小值是_________.19.如图,点E 是正方体1111ABCD A B C D -的棱1DD 的中点,点M 在线段1BD 上运动,则下列结论正确的有__________.①直线AD 与直线1C M 始终是异面直线 ②存在点M ,使得1B M AE ⊥ ③四面体EMAC 的体积为定值④当12D M MB =时,平面EAC ⊥平面MAC20.已知直三棱柱111ABC A B C -,90CAB ∠=︒,1222AA AB AC ===,则直线1A B 与侧面11B C CB 所成角的正弦值是______.21.在如图棱长为2的正方体中,点M 、N 在棱AB 、BC 上,且1AM BN ==,P 在棱1AA 上,α为过M 、N 、P 三点的平面,则下列说法正确的是__________.①存在无数个点P ,使面α与正方体的截面为五边形; ②当11A P =时,面α与正方体的截面面积为33;③只有一个点P ,使面α与正方体的截面为四边形;④当面α交棱1CC 于点H ,则PM 、HN 、1BB 三条直线交于一点.22.正四面体ABCD 棱长为2,AO ⊥平面BCD ,垂足为O ,设M 为线段AO 上一点,且90BMC ︒∠=则二面角M BC O --的余弦值为________.23.如图,正方形BCDE 的边长为a ,已知3AB BC =,将ABE △沿边BE 折起,折起后A 点在平面BCDE 上的射影为D 点,则翻折后的几何体中有如下描述:①AB 与DE 所成角的正切值是2;②//AB CE ;③B ACE V -体积是316a ;④平面ABC ⊥平面ADC .其中正确的有______.(填写你认为正确的序号)24.如下图所示,三棱锥P ABC -外接球的半径为1,且PA 过球心,PAB △围绕棱PA 旋转60︒后恰好与PAC △重合.若3PB =,则三棱锥P ABC -的体积为_____________.三、解答题25.如图,在四棱锥M ABCD -中,四边形ABCD 为梯形,90ABC BAD ∠=∠=,//BC AD ,22AD AB BC ==(1)若E 为MA 中点,证明:BE //面MCD(2)若点M 在面ABCD 上投影在线段AC 上,1AB =,证明:CD ⊥面MAC . 26.如图所示,四棱锥P ABCD -的底面ABCD 是平行四边形,90DBA ∠=︒,2BA BD ==,10,,PA PD E F ==分别是棱,AD PC 的中点.(1)证明://EF 平面PAB ;(2)若二面角P AD B --为60︒,求点B 到平面PAD 的距离. 27.如图,在多面体ABCDEF 中,底面ABCD 为菱形,且∠DAB =π3,AB =2,EF //AC ,EA =ED =3,BE =5.(1)求证:平面EAD ⊥平面ABCD ; (2)求三棱锥F -BCD 的体积.28.在四棱台1111ABCD A B C D -中,1AA ⊥平面ABCD ,//AB CD ,90ACD ∠=︒,26BC AC ==,1CD =,1AM CC ⊥,垂足为M .(1)证明:平面ABM ⊥平面11CDD C ; (2)若二面角B AM D --正弦值为217,求直线AC 与平面11CDD C 所成角的余弦.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】首先设点(),P x y ,利用0AP BP ⋅=,转化为m =m 的最大值. 【详解】由圆的方程可知,圆的圆心()3,3C ,设(),P x y 则(),AP x m y =+,(),BP x m y =-,()()20AP BP x m x m y ⋅=+-+=,即222m x y m =+⇒=m 的最大值就是圆上的点到原点的距离的最大值,即圆心到原点的距离加半径,即OC r +== 故选:C 【点睛】结论点睛:与圆的几何性质有关的最值,具体结论如下:(1)设O 为圆的圆心,半径为r ,圆外一点A 到圆上的距离的最小值为AO r -,最大值为AO r -;(2)过圆内一点的最长弦为圆的直径,最短弦是以该点为中点的弦;(3)记圆的半径为r ,圆心到直线的距离为d ,直线与圆相离,则圆上的点到直线的最大距离为d r +,最小值为d r -;2.A解析:A 【分析】由题意可得两圆相交,而以MN 为直径的圆的方程为x 2+y 2=4,圆心距为3,由两圆相交的性质可得|r ﹣2|<3<|r+2|,由此求得r 的范围. 【详解】根据直径对的圆周角为90°,结合题意可得以MN 为直径的圆和圆 (x ﹣3)2+y 2=r 2有交点,显然两圆相切时不满足条件,故两圆相交.而以AB 为直径的圆的方程为x 2+y 2=4,两个圆的圆心距为3, 故|r ﹣2|<3<|r+2|,求得1<r <5, 故选A . 【点睛】本题主要考查直线和圆的位置关系,两圆相交的性质,体现了转化的数学思想,属于中档题.3.D解析:D 【分析】直线10kx y k ---=过定点()1,1P -,分别求出PM k 和PN k ,结合图形,可求出答案. 【详解】由题意,直线10kx y k ---=可化为()110k x y ---=,令1x =,得1y =-,即该直线过定点()1,1P -,111312PM k +==---,213312PN k +==-,所以当12k ≤-或32k ≥时,直线10kx y k ---=和以()3,1M -,()3,2N 为端点的线段相交. 故选:D. 【点睛】本题考查了直线系方程的应用,以及过两点的直线的斜率的求法,考查了数形结合的解题思想方法,是中档题.4.D解析:D 【分析】首先根据函数的对称性,得到(0)()02f f π+=,从而有a b =,再利用直线的斜率为1ak b =-=-,结合倾斜角的取值范围求得结果. 【详解】令()sin cos y f x a x b x ==- 因为函数sin cos y a x b x =-的一个对称中心为,04π⎛⎫⎪⎝⎭, 所以有(0)()02f f π+=,所以0b a -+=,即a b =,所以直线0ax by c 的斜率1ak b=-=-,设其倾斜角为(0)ααπ≤<, 所以有tan 1k α==-,所以34πα=, 故选:D. 【点睛】该题考查的是有关直线倾斜角的问题,涉及到的知识点有三角函数的对称性,根据直线方程求直线的倾斜角,属于简单题目.5.C解析:C 【分析】由垂直关系可得AB 和AC 的斜率,进而可得AB 和AC 的方程,分别解方程组可得B ,C 的坐标,进而可得方程. 【详解】解:∵两边AB ,AC 上的高线方程分别为5100++=x y 与20x y -=, ∴它们的斜率分别为15-,12,故AB 和AC 的斜率分别为5,2-, ∴AB 和AC 的方程分别为()551y x -=-,()521y x -=--, 整理为一般式可得50x y -=,270x y +-=联立方程组5020x y x y -=⎧⎨-=⎩,解得00x y =⎧⎨=⎩,即()0,0B ,同理联立2705100x y x y +-=⎧⎨++=⎩,解得53x y =⎧⎨=-⎩,即()5,3C -,∴BC 所在直线的方程为3050y x --=-,即350x y +=. 故选:C. 【点睛】本题考查直线的一般式方程和垂直关系,涉及直线的点斜式方程和斜率公式以及方程组的解法,属中档题.6.A解析:A 【分析】根据直线l 过点(1,1)--和(2,5),由直线的两点式方程化简得21y x =+,然后将点(1009,)b 代入方程21y x =+,求解得出b 的值.【详解】解:因为直线l 过点(1,1)--和(2,5), 由直线的两点式方程,得直线l 的方程为(1)(1)5(1)2(1)y x ----=----,化简得:21y x =+,由于点(1009,)b 在直线l 上,将点(1009,)b 代入方程21y x =+, 得210091b =⨯+, 解得:2019b =. 故选:A. 【点睛】本题考查直线的两点式方程的求法和应用,属于基础题.7.D解析:D 【分析】先取正方形的中心O ,连接OE ,由PC//OE 知OED ∠为异面直线PC 与DE 所成的角,再在OED 中求OED ∠的正弦即可. 【详解】连AC ,BD 相交于点O ,连OE 、BE ,因为E 为AP 的中点,O 为AC 的中点,有PC//OE ,可得OED ∠为异面直线PC 与DE 所成的角,不妨设正方形中,2AB =,则2PA =, 由PA ⊥平面ABCD ,可得,PA AB PA AD ⊥⊥,则145BE DE ==+=1122222OD BD ==⨯=因为BE DE =,O 为BD 的中点,所以90EOD ∠=︒,210sin 55OD OED DE ∠===. 故选:D. 【点睛】 方法点睛:求空间角的常用方法:(1)定义法,由异面直线所成角、线面角、二面角的定义,结合图形,作出所求空间角,再结合题中条件,解对应三角形,即可求出结果;(2)向量法:建立适当的空间直角坐标系,通过计算向量夹角(直线方向向量与直线方向向量、直线方向向量与平面法向量,平面法向量与平面法向量)余弦值,即可求出结果.8.C解析:C 【分析】由已知可得PA ⊥平面ABCD ,底面ABCD 为正方形,分别过P ,D 点作AD ,AP 的平行线 交于M ,连接CM ,AM ,因为PB ∥CM ,所以ACM 就是异面直线PB 与AC 所成的角,再求解即可. 【详解】由题意:底面ABCD 为正方形, 侧面PAD ⊥底面ABCD ,PA AD ⊥, 面PAD面ABCD AD =,PA ⊥平面ABCD ,分别过P ,D 点作AD ,AP 的平行线交于M , 连接CM ,AM , ∵PM ∥AD ,AD ∥BC , PM =AD ,AD =BC . ∴ PBCM 是平行四边形, ∴ PB ∥CM ,所以∠ACM 就是异面直线PB 与AC 所成的角. 设PA =AB =a , 在三角形ACM 中,2,2,2AM a AC a CM a ===,∴三角形ACM 是等边三角形.所以∠ACM 等于60°,即异面直线PB 与AC 所成的角为60°. 故选:C. 【点睛】思路点睛:先利用面面垂直得到PA ⊥平面ABCD ,分别过P ,D 点作AD ,AP 的平行线交于M ,连接CM ,AM ,得到∠ACM 就是异面直线PB 与AC 所成的角.9.A解析:A 【分析】分别取棱A 1B 1、A 1D 1的中点M 、N ,连接MN ,可证平面AMN ∥平面BDEF ,得P 点在线段MN 上.由此可判断当P 在MN 的中点时,AP 最小;当P 与M 或N 重合时,AP 最大.然后求解直角三角形得答案. 【详解】如图所示,分别取棱A 1B 1、A 1D 1的中点M 、N ,连接MN ,连接B 1D 1, ∵M 、N 、E 、F 为所在棱的中点,∴MN ∥B 1D 1,EF ∥B 1D 1, ∴MN ∥EF ,又MN ⊄平面BDEF ,EF ⊂平面BDEF ,∴MN ∥平面BDEF ; 连接NF ,由NF ∥A 1B 1,NF =A 1B 1,A 1B 1∥AB ,A 1B 1=AB , 可得NF ∥AB ,NF =AB ,则四边形ANFB 为平行四边形,则AN ∥FB ,而AN ⊄平面BDEF ,FB ⊂平面BDEF ,则AN ∥平面BDEF . 又AN ∩NM =N ,∴平面AMN ∥平面BDEF .又P 是上底面A 1B 1C 1D 1内一点,且AP ∥平面BDEF ,∴P 点在线段MN 上. 在Rt △AA 1M 中,AM 222211215AA A M =+=+=,同理,在Rt △AA 1N 中,求得AN 5=,则△AMN 为等腰三角形.当P 在MN 的中点时,AP 最小为222322()2+=, 当P 与M 或N 重合时,AP 最大为5.∴线段AP 长度的取值范围是32,52⎡⎤⎢⎥⎣. 故选:A .【点睛】本题主要考查了空间中点、线、面间的距离问题,其中解答中通过构造平行平面寻找得到点P 的位置是解答的关键,意在考查空间想象能力与运算能力,属于中档试题.10.C解析:C 【分析】先由三视图计算底面正三角形内切圆的半径,内切圆的直径和三棱柱的高比较大小,确定球的半径的最大值,计算球的最大体积. 【详解】由三视图知该直三棱柱的高为4,底面正三角形的高为33半径为高的三分之一,即3r =,由于234<,所以该棱柱内部可放置球的半径的最大值为3,它的体积()343433V ππ==.故选:C 【点睛】关键点点睛:本题的第一个关键是由三视图确定底面三角形的高是33,第二个关键是确定球的最大半径.11.A解析:A 【分析】利用线面垂直的判定定理可判断BCD 选项,利用假设法推出矛盾,可判断A 选项. 【详解】对于A 选项,连接B C ',假设A C '⊥平面MNP ,在正方体ABCD A B C D ''''-中,A B ''⊥平面BB C C '',B C '⊂平面BB C C '',A B B C '''∴⊥,所以,A B C ''为直角三角形,且A CB ''∠为锐角,因为M 、N 分别为BB '、BC 的中点,则//MN B C ',所以,MN 与A C '不垂直, 这与A C '⊥平面MNP 矛盾,故假设不成立,即A C '与平面MNP 不垂直;对于B 选项,连接B D ''、A C '',如下图所示:因为四边形A B C D ''''为正方形,则A C B D ''''⊥,CC '⊥平面A B C D '''',B D ''⊂平面A B C D '''',CC B D '''∴⊥, A C CC C ''''=,B D ''∴⊥平面A CC '',A C '⊂平面A CC '',A CB D '''∴⊥,M 、P 分别为A B ''、A D ''的中点,则//MN B D '',可得MP A C '⊥, 同理可证A C MN '⊥,MP MN M ⋂=,A C '∴⊥平面MNP ;对于C 选项,连接C D '、A N '、CN 、A P '、PC ,取A B ''的中点E ,连接C E '、PE ,因为四边形CC D D ''为正方形,则CD C D ''⊥,A D ''⊥平面CC D D '',C D '⊂平面CC D D '',C D A D '''∴⊥, CD A D D ''''=,C D '∴⊥平面A CD '',A C '⊂平面A CD '',A C C D ''∴⊥,M 、N 分别为DD '、C D ''的中点,//MN C D '∴,A C MN '∴⊥,在正方形A B C D ''''中,E 、N 分别为A B ''、C D ''的中点,//A E C N ''∴且A E C N ''=, 所以,四边形A EC N ''为平行四边形,所以,//A N C E ''且A N C E ''=, 同理可证四边形CC EP '为平行四边形,//C E CP '∴且C E CP '=, 所以,//A N CP '且A N CP '=,所以,四边形A PCN '为平行四边形, 易得A N CN '=,所以,四边形A PCN '为菱形,所以,A C PN '⊥,MN PN N =,A C '∴⊥平面MNP ;对于D 选项,连接AC 、BD ,因为四边形ABCD 为正方形,则AC BD ⊥,AA '⊥平面ABCD ,BD ⊂平面ABCD ,AA BD '∴⊥, AC AA A '⋂=,BD ∴⊥平面AA C ',A C '⊂平面AA C ',AC BD '∴⊥,M 、N 分别为CD 、BC 的中点,则//MN BD ,A C MN '∴⊥,同理可证A C MP '⊥,MN MP M ⋂=,A C '∴⊥平面MNP . 故选:A. 【点睛】方法点睛:证明线面垂直的方法: 一是线面垂直的判定定理; 二是利用面面垂直的性质定理;三是平行线法(若两条平行线中一条垂直于这个平面,则另一条也垂直于这个平面),解题时,注意线线、线面与面面关系的相互转化;另外,在证明线线垂直时,要注意题中隐含的垂直关系,如等腰三角形的底边上的高、中线和顶角的角平分线三线合一、矩形的内角、直径所对的圆周角、菱形的对角线互相垂直、直角三角形(或给出线段长度,经计算满足勾股定理)、直角梯形等等.12.C解析:C 【分析】设AH a =,则BH a =,由线面垂直的性质和勾股定理可求得DH a AH ==,由等腰三角形的性质可证得BD ⊥DH ,再根据线面垂直的判定和性质可得选项. 【详解】设AH a =,则BH a =,因为'C H ⊥面ABD ,AB 面ABD ,DH ⊂面ABD ,所以'C H ⊥AB ,'C H ⊥DH ,'C H ⊥DB ,又Rt ABC ,1,2AC AB BC ===,D 为BC 的中点,所以'1,6C D BD B DAB π==∠=∠=,所以在'Rt AC H 中,'C H ==Rt C HD ’中,()2'222'211DH C D C H a a =-=--=,所以DH a AH ==,所以6ADH DAB π∠=∠=,又23ADB π∠=,所以2HDB π∠=,所以BD ⊥DH ,又'C HDH H =,所以BD ⊥面'C DH ,又'C D ⊂面'C DH ,所以BD ⊥'C D , 故选:C. 【点睛】关键点点睛:在解决折叠问题时,关键在于得出折叠的前后中,线线、线面、面面之间的位置关系的不变和变化,以及其中的边的长度、角度中的不变量和变化的量.二、填空题13.【分析】利用直线平行与斜率之间的关系点到直线的距离公式即可得出【详解】解:因为直线与直线平行所以解得当时则故答案为:【点睛】熟练运用直线平行与斜率之间的关系点到直线的距离公式是解题关键【分析】利用直线平行与斜率之间的关系、点到直线的距离公式即可得出. 【详解】解:因为直线1:220l x by ++=与直线2:210l x y -+=平行, 所以22(1)b =⨯-,解得1b =-,当1b =-时,1:220l x y -+=,2:210l x y -+=,则d ==【点睛】熟练运用直线平行与斜率之间的关系、点到直线的距离公式,是解题关键.14.【分析】设由于则在线段上又在以为圆心1为半径的圆上问题转化为求线段上的点到圆上点的距离的最大值和最小值然后可得结论【详解】∵∴可取∵∴是单位圆上如图设由于则在线段上易得直线方程是即到线段的距离为斜边解析:,1(4,)⎛-∞-+∞ ⎝⎭ 【分析】()()11a b c a b c λλλλ⎡⎤---=-+-⎣⎦,设,,OA a OB b OC c ===,()1b c OP λλ+-=,由于01λ<<,则P 在线段BC 上,又A 在以O 为圆心,1为半径的圆O 上,问题转化为求线段BC 上的点P 到圆O 上点A 的距离的最大值和最小值,然后可得结论. 【详解】∵0b c ⋅=,2b =,3c =,∴可取(2,0)b OB ==,(0,3)c OC ==,a OA =,∵1a =,∴A 是单位圆O 上,如图,()()11a b c a b c λλλλ⎡⎤---=-+-⎣⎦,设()1b c OP λλ+-=,由于01λ<<,则P 在线段BC 上,()()11a b c a b c PA λλλλ⎡⎤---=-+-=⎣⎦,易得直线BC 方程是123x y+=即3260x y +-=,O 到线段BC 的距离为OBC 斜边BC 边上高,即2361323d ==+,∴min 61311PA d =-=-,又3OC =,∴min314PA=+=,∴PA 的取值范围是6131,413, ∴()1a b c λλ---所有取不到的值的集合为613,1(4,)13⎛⎫-∞-+∞ ⎪ ⎪⎝⎭.故答案为:613,1(4,)⎛⎫-∞-+∞ ⎪ ⎪⎝⎭.【点睛】本题考查求向量模的取值范围,解题关键是取(2,0)b OB ==,(0,3)c OC ==,把所有向量的起点都移到原点,由几何意义得出动点所成轨迹,从而由几何意义得出模的范围,最后求其在实数集上的补集即可.15.【分析】利用函数图象考虑当直线与半圆仅有一个交点时的取值范围同时注意讨论直线与圆相切的情况由此求解出的范围并确定出最小值【详解】如图函数的图象是圆的上半部分结合图象可知当时即时直线与半圆只有一个交点解析:13【分析】利用函数图象,考虑当直线与半圆2143y x x --+-仅有一个交点时k 的取值范围,同时注意讨论直线与圆相切的情况,由此求解出k 的范围并确定出最小值. 【详解】如图函数2431y x x =-+-的图象是圆()()22211x y -+-=的上半部分, 结合图象可知,当10103010k --≤<--时,即113k ≤<时,直线与半圆只有一个交点;当直线与半圆相切时也仅有一个交点,则22111k k -=+,解得43k =或0k =(舍), 综上可知:min 13k =. 故答案为:13.【点睛】本题考查根据直线与圆的交点个数求解参数值,着重考查了数形结合思想的运用,难度一般.解答此题时要注意函数2143y x x -=-+-表示的是半圆,不是一个整圆.16.【分析】根据题意设出过直线和圆的交点的圆系方程代入已知点坐标可求出的值即可确定所求圆的方程【详解】设过已知直线和圆的交点的圆系方程为:∵所求圆过点∴解得所以圆的方程为化简得故答案为:【点睛】本题主要 解析:2231240x y x y ++--=【分析】根据题意设出过直线和圆的交点的圆系方程,代入已知点坐标,可求出λ的值,即可确定所求圆的方程. 【详解】设过已知直线和圆的交点的圆系方程为:()2242420x y x y x y λ+-+-+-=∵所求圆过点()1,0 ∴70λ-+= 解得7λ=所以圆的方程为()22424720x y x y x y +-+-+-=,化简得2231240x y x y ++--=.故答案为:2231240x y x y ++--=. 【点睛】本题主要考查求解圆的方程,设出过已知直线和圆的交点的圆系方程是解本题的关键.17.【分析】求出点坐标由于直线与直线垂直得出直线的斜率为再由点斜式写出直线的方程【详解】由于直线可看成直线先绕点逆时针方向旋转角再继续旋转角得到则直线与直线垂直即直线的斜率为所以直线的方程为即故答案为: 解析:230x y --=【分析】求出点P 坐标,由于直线210x y +-=与直线l 垂直,得出直线l 的斜率为12,再由点斜式写出直线l 的方程. 【详解】()1,120210x x y P y -⎧⇒-⎨--=+⎩= 由于直线210x y +-=可看成直线l 先绕点P 逆时针方向旋转角α,再继续旋转2πα-角得到,则直线210x y +-=与直线l 垂直,即直线l 的斜率为12所以直线l 的方程为11(1)2y x +=-,即230x y --= 故答案为:230x y --= 【点睛】本题主要考查了求直线的方程,涉及了求直线的交点以及直线与直线的位置关系,属于中档题.18.【分析】将直线的方程化为可求出直线所过的定点坐标作出曲线的图象利用数形结合思想可得出当直线与曲线有公共点时直线的斜率的最小值【详解】将直线的方程化为由得则直线过定点将曲线的方程变形为曲线为圆的上半圆解析:15【分析】将直线l 的方程化为()()210m x y x y +--+=,可求出直线l 所过的定点坐标,作出曲线C 的图象,利用数形结合思想可得出当直线l 与曲线C 有公共点时,直线l 的斜率的最小值. 【详解】将直线l 的方程化为()()210m x y x y +--+=,由2100x y x y +-=⎧⎨+=⎩,得11x y =-⎧⎨=⎩. 则直线l 过定点()1,1P -,将曲线C 的方程变形为()()()222242x y y -+-=≥,曲线C 为圆()()22224x y -+-=的上半圆,如下图所示:由图象可知,当直线l 过点A 时,直线l 的斜率取最小值211415PA k -==+. 故答案为:15. 【点睛】 本题考查利用直线与圆的位置关系求直线斜率的最值,考查数形结合思想的应用,属于中等题.19.②③④【分析】取点为线段的中点可判断①建立空间直角坐标系假设存在点使得利用解出的值即可判断②;连接交于点证明线段到平面的距离为定值可判断③;求出点的坐标然后计算平面和平面的法向量即可判断④【详解】对解析:②③④.【分析】取点M 为线段1BD 的中点可判断①,建立空间直角坐标系假设存在点M ,使得1B M AE ⊥,利用()1110AE B M AE B B BD λ⋅=⋅+=解出λ的值即可判断②;连接AC 、BD 交于点1O ,证明11//EO BD ,线段1BD 到平面AEC 的距离为定值,可判断③;求出点M 的坐标,然后计算平面AEC 和平面MAC 的法向量,即可判断④.【详解】对于①:连接1AC 交1BD 于点O ,当点M 在O 点时直线AD 与直线1C M 相交,故①不正确,以D 为坐标原点,建立如图所示的空间直角坐标系,设正方体的边长为2,则()0,0,0D ,()10,0,2D ,()2,0,0A ,()0,2,0C ,()0,0,1E ,()2,2,0B ,()12,2,2B ,对于②:()2,0,1AE =-,假设存在点M ,使得1B M AE ⊥,()()()1110,0,22,2,22,2,22B M B B BD λλλλλ=+=-+--=---,[]0,1λ∈, 所以14220AE B M λλ⋅=+-=,解得13λ=,所以当12D M MB =时1B M AE ⊥, 故②正确;对于③:连接AC 、BD 交于点1O ,因为点E 是棱1DD 的中点,此时11//EO BD ,故线段1BD 到平面AEC 的距离为定值,所以四面体EMAC 的体积为定值,故③正确; 对于④:当12D M MB =时,442,,333M ⎛⎫ ⎪⎝⎭,()2,0,1AE =-,()2,2,0AC =-,设平面AEC 的法向量为()111,,m x y z =,由111120220m AE x z m AC x y ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩ 令12z =,可得11x =,11y =,可得()1,1,2m =,设平面MAC 的法向量为()222,,n x y z =,242,,333MA ⎛⎫=-- ⎪⎝⎭,由222222202420333n AC x y n MA x y z ⎧⋅=-+=⎪⎨⋅=--=⎪⎩解得:20y =,令 21x =可得22z =,所以1,1,1n ,因为1111120m n ⋅=⨯+⨯-⨯=,m n ⊥所以平面EAC ⊥平面MAC ,故④正确;故答案为:②③④.【点睛】方法点睛:证明面面垂直的方法(1)利用面面垂直的判定定理,先找到其中一个平面的一条垂线,再证明这条垂线在另外一个平面内或与另外一个平面内的一条直线平行即可;(2)利用性质://,αββγαγ⊥⇒⊥(客观题常用);(3)面面垂直的定义(不常用);(4)向量方法:证明两个平面的法向量垂直,即法向量数量积等于0.20.【分析】取中点连接证明平面可得为直线与侧面所成的角进而可得答案【详解】取中点连接直三棱柱中平面平面又又面平面在平面上的射影为故为直线与侧面所成的角中中中故答案为:【点睛】方法点睛:求直线与平面所成的 解析:10 【分析】取11B C 中点D ,连接1,A D BD ,证明1A D ⊥平面11B C CB ,可得1A BD ∠为直线1A B 与侧面11B C CB 所成的角,进而可得答案.【详解】取11B C 中点D ,连接1,A D BD ,直三棱柱中,1BB ⊥平面111A B C ,1A D ⊂平面111A B C ,11BB A D ∴⊥,又11111A B A C ==,111A D B C ∴⊥,又1111B C BB B =,111,B C BB ⊂面11BB C C , 1A D ∴⊥平面11B C CB ,1A B ∴在平面11B C CB 上的射影为DB ,故1A BD ∠为直线1A B 与侧面11B C CB 所成的角,11Rt A B B 中,22211121125BB A B A B =+=+=111Rt B A C 中,1112212122B C AD =⨯==, 1Rt A BD ∴中,1112102sin 5A D A BD AB ∠===, 故答案为:1010. 【点睛】方法点睛:求直线与平面所成的角有两种方法:一是传统法,证明线面垂直找到直线与平面所成的角,利用平面几何知识解答;二是利用空间向量,求出直线的方向向量以及平面的方向向量,利用空间向量夹角余弦公式求解即可. 21.①②④【分析】让从开始逐渐向运动变化观察所得的截面从而可得正确的选项【详解】由题设可得为所在棱的中点当时如图(1)直线分别交与连接并延长于连接交于则与正方体的截面为五边形故①正确当如图(2)此时与正 解析:①②④【分析】让P 从A 开始逐渐向1A 运动变化,观察所得的截面,从而可得正确的选项.【详解】由题设可得,M N 为所在棱的中点.当203AP <<时,如图(1),直线MN 分别交,AD DC 与,T S ,连接TP 并延长1DD 于G ,连接GS 交1CC 于H ,则α与正方体的截面为五边形,故①正确.当11A P =,如图(2),此时α与正方体的截面为正六边形,其边长为2, 其面积为()2362=33⨯⨯,故B 正确.当,A P 重合或1,A P 重合时,如图(3),α与正方体的截面均为四边形,故③错误.如图(4),在平面α内,设PM HN S ⋂=,则S PM ∈,而PM ⊂平面11A B BA ,故S ∈平面11A B BA ,同理S ∈平面11C B BC ,故S ∈平面11A B BA ⋂平面111C B BC BB =即PM 、HN 、1BB 三条直线交于一点. 故答案为:①②④.【点睛】思路点睛:平面的性质有3个公理及其推理,注意各个公理的作用,其中公理2可用来证明三点共线或三线共点,公理3及其推理可用来证明点共面或线共面,作截面图时用利用公理2来处理.22.【分析】连接延长交于则是中点可得是二面角的平面角求出可得结论【详解】由已知是中心连接延长交于则是中点连接则而∴平面平面∴∴是二面角的平面角由对称性又由平面平面得∴故答案为:【点睛】关键点点睛:本题考 解析:33【分析】连接DO 延长交BC 于E ,则E 是BC 中点,可得MEO ∠是二面角M BC O --的平面角.求出,ME OE 可得结论.【详解】由已知O 是BCD △中心,连接DO 延长交BC 于E ,则E 是BC 中点,连接AE ,则BC AE ⊥,BC DE ⊥,而AE DE E =,∴BC ⊥平面AED ,ME ⊂平面AED ,∴BC ME ⊥,∴MEO ∠是二面角M BC O --的平面角.2BC =,90BMC ︒∠=,由对称性2BM CM ==112ME BC ==,又113323323EO DE ==⨯⨯=, 由AO ⊥平面BCD ,EO ⊂平面BCD ,得AO EO ⊥, ∴3cos EO MEO ME ∠==. 故答案为:3.【点睛】关键点点睛:本题考查求二面角,解题关键是作出二面角的平面角.这可根据平面角的定义作出(并证明),然后在直角三角形中求角即得.注意一作二证三计算三个步骤. 23.①③④【分析】作出折叠后的几何体的直观图由题中条件得到是异面直线与所成的角求出其正切可判断①正确;根据线面垂直的的判定定理先证明平面可判断②错;根据等体积法由体积公式求出可判断③正确;根据面面垂直的解析:①③④【分析】作出折叠后的几何体的直观图,由题中条件,得到ABC ∠是异面直线AB 与DE 所成的角,求出其正切,可判断①正确;根据线面垂直的的判定定理,先证明CE ⊥平面ABD ,可判断②错;根据等体积法,由体积公式求出B ACE V -,可判断③正确;根据面面垂直的判定定理,可判断④正确.【详解】作出折叠后的几何体直观图如图所示:由题意,3AB a =,BE a =,∴2AE a =; ∴22AD AE DE a =-=,222AC CD AD a ∴=+=,∵//BC DE ,∴ABC ∠是异面直线AB 与DE 所成的角,在Rt ABC 中, tan 2AC ABC BC∠==①正确; 连结BD ,CE ,则CE BD ⊥,又AD ⊥平面BCDE ,CE ⊂平面BCDE ,∴CE AD ⊥,又BD AD D ,BD ⊂平面ABD ,AD ⊂平面ABD ,∴CE ⊥平面ABD ,又AB 平面ABD ,∴CE AB ⊥.故②错误.三棱锥B ACE -的体积2311113326B ACE A BCE BCE V V S AD a a a --===⨯⨯=⋅⨯. 故③正确.∵AD ⊥平面BCDE ,BC ⊂平面BCDE ,∴BC AD ⊥,又BC CD ⊥,CD AD D =,CD ⊂平面ADC ,AD ⊂平面ADC , ∴BC ⊥平面ADC ,∵BC ⊂平面ABC ,∴ABC ⊥平面ADC .故④正确.故答案为:①③④.【点睛】思路点睛:判断空间中线线、线面、面面位置关系时,一般根据相关概念,结合线面平行、垂直的判定定理及性质,以及面面平行、垂直的判定定理及性质,根据题中条件,进行判断或证明. 24.【分析】作于可证得平面得得等边三角形利用是球的直径得然后计算出再应用棱锥体积公式计算体积【详解】∵围绕棱旋转后恰好与重合∴作于连接则∴又过球心∴而∴同理由得平面∴故答案为:【点睛】易错点睛:本题考查 3 【分析】作BH PA ⊥于H ,可证得PA ⊥平面BCH ,得60BHC ∠=︒,得等边三角形BCH ,利用PA 是球的直径,得PB AB ⊥,然后计算出BH ,再应用棱锥体积公式计算体积.【详解】∵PAB △围绕棱PA 旋转60︒后恰好与PAC △重合,∴PAB PAC ≅△△,作BH PA ⊥于H ,连接CH ,则,CH PA CH BH ⊥=,60BHC ∠=︒,∴BC BH CH ==.又PA 过球心,∴PB AB ⊥,而2,3PA PB ==,∴1AB =,同理1AC =,31322PB AB BH PA ⋅⨯===,2233333BCH S BH ⎛⎫=⨯=⨯= ⎪ ⎪⎝⎭△, 由BH PA ⊥,CH PA ⊥,CHBH H =,得PA ⊥平面BCH , ∴11333233P ABC BCH V S PA -=⋅=⨯⨯=△. 故答案为:3.【点睛】易错点睛:本题考查求棱锥的体积,解题关键是作BH PA ⊥于H ,利用旋转重合,得PA ⊥平面BCH ,这样只要计算出BCH 的面积,即可得体积,这样作图可以得出60BHC ∠=︒,为旋转所形成的二面角的平面角,这里容易出错在误认为旋转60︒,即为60CAB ∠=︒.旋转60︒是旋转形成的二面角为60︒.应用作出二面角的平面角.三、解答题25.(1)证明见解析;(2)证明见解析.【分析】(1)取MD 中点为F ,连接EF ,CF ,四边形BCFE 为平行四边形,所以//BE CF ,利用线面平行的性质定理即可证明;(2)利用勾股定理证明AC CD ⊥,设点M 在面ABCD 上投影在线段AC 上设为点H ,再利用已知条件证明MH CD ⊥,利用线面垂直的判断定理即可证明.【详解】。
最新北师大版高中数学必修二第二章《解析几何初步》测试(含答案解析)

一、选择题1.两圆22440x y x y ++-=和22280x y x ++-=相交于两点,M N ,则线段MN 的长为A .4B C D 2.已知直线(3k -1)x +(k +2)y -k =0,则当k 变化时,所有直线都通过定点( ) A .(0,0)B .(17,27) C .(27,17) D .(17,114)3.若直线0x y b +-=0y =有公共点,则b 的取值范围是( )A .[1-B .[C .[1,1]-D .[4.直线1y kx =+与圆()()22214x y -+-=相交于P 、Q 两点.若PQ ≥k 的取值范围是( )A .3,04⎡⎤-⎢⎥⎣⎦B .[]1,1-C .⎡⎢⎣⎦D .⎡⎣5.在平面直角坐标系xOy 中,过x 轴上的点P 分别向圆221(1)(4)7:C x y -++=和圆222:(2)(5)9C x y -+-=引切线,记切线长分别为12,d d .则12d d +的最小值为( )A .B .C .D .6.已知圆2260x y x +-=,过点(1,2)的直线被该圆所截得的弦的长度的最小值为( ) A .1 B .2 C .3D .47.正三棱锥(底面为正三角形,顶点在底面的射影为底面中心的棱锥)的三视图如图所示,俯视图是正三角形,O 是其中心,则正视图(等腰三角形)的腰长等于( )A .5B .2C .3D .28.在正方体1111ABCD A BC D -中,点,E F 分别是梭BC ,CD 的中点,则1A F 与1C E 所成角的余弦值为( ) A .5B .25C .515D .25159.《九章算术》与《几何原本》并称现代数学的两大源泉.在《九章算术》卷五商功篇中介绍了羡除(此处是指三面为等腰梯形,其他两侧面为直角三角形的五面体)体积的求法.在如图所示的羡除中,平面ABDA '是铅垂面,下宽3m AA '=,上宽4m BD =,深3m ,平面BDEC 是水平面,末端宽5m CE =,无深,长6m (直线CE 到BD 的距离),则该羡除的体积为( )A .324mB .330mC .336mD .342m10.在长方体1111ABCD A BC D -中,12,3AB BC AA ===,E 是BC 的中点,则直线1ED 与直线BD 所成角的余弦值是( )A 7B .7C 37D .3711.已知平面图形PABCD ,ABCD 为矩形,4AB =,是以P 为顶点的等腰直角三角形,如图所示,将PAD △沿着AD 翻折至P AD '△,当四棱锥P ABCD '-体积的最大值为163,此时四棱锥P ABCD '-外接球的表面积为( )A .12πB .16πC .24πD .32π12.在三棱锥S ABC -中,SA ⊥底面ABC ,且22AB AC ==,30C ∠=,2SA =,则该三棱锥外接球的表面积为( ) A .20πB .12πC .8πD .4π二、填空题13.已知点(2,2),(4,2)A B ---,点P 在圆224x y +=上运动,则22||||PA PB +的最小值是__________.14.若三条直线20x y -=,30x y +-=,50mx ny ++=相交于同一点,则点(,)m n 到原点的距离的最小值为________.15.经点()2,3P -,作圆2220x y +=的弦AB ,使得P 平分AB ,则弦AB 所在直线方程是______.16.关于x 29(3)4x k x -=-+有两个不同的实数解时,实数k 的取值范围是_______17.已知点P 是直线l 上的一点,将直线l 绕点P 逆时针方向旋转角02παα⎛⎫<< ⎪⎝⎭,所得直线方程是20x y --=,若将它继续旋转2πα-角,所得直线方程是210x y +-=,则直线l 的方程是______.18.若直线30ax by +-=与圆22410x y x ++-=相切于点()1,2P -,则a b +=________.19.在正三棱锥O ABC -中,已知45AOB ∠=︒,记α为二面角--A OB C 的大小,cos =m n αm ,n 为整数,则以||n ,||m ,||m n +分别为长、宽、高的长方体的外接球直径为__________.20.已知一个几何体的三视图如图所示,俯视图为等腰三角形,则该几何体的外接球表面积为_________.21.如图,圆柱的体积为16π,正方形ABCD 为该圆柱的轴截面,F 为AB 的中点,E 为母线BC 的中点,则异面直线AC ,EF 所成的角的余弦值为______.22.在直三棱柱111ABC A B C -中,90ABC ∠=︒,13AA =,设其外接球的球心为O ,已知三棱锥O ABC -的体积为3,则球O 表面积的最小值为______.23.在三棱锥P ABC -中,4PA PB ==,42BC =,8AC =,AB BC ⊥.平面PAB ⊥平面ABC ,若球O 是三棱锥P ABC -的外接球,则球O 的半径为_________.24.如图①,一个圆锥形容器的高为2a ,内装有一定量的水.如果将容器倒置,这时水面的高恰为a (如图②),则图①中的水面高度为_________.三、解答题25.设某几何体的三视图如图(尺寸的长度单位为cm ),(1)用斜二测画法画出该几何体的直观图(不写画法); (2)求该几何体最长的棱长.26.如图,在四棱锥P ABCD -中,PAB △是等边三角形,CB ⊥平面,//PAB AD BC 且22PB BC AD F ===,为PC 中点.(1)求证://DF 平面PAB ;(2)求直线AB 与平面PDC 所成角的正弦值.27.如图所示,在边长为2的菱形ABCD 中,60BAC ∠=,沿BD 将三角形BCD 向上折起到PBD 位置,E 为PA 中点,若F 为三角形ABD 内一点(包括边界),且//EF 平面PBD .(1)求点F 轨迹的长度;(2)若EF ⊥平面ABD ,求证:平面PBD ⊥平面ABD ,并求三棱锥P ABD -的体积. 28.在四棱锥P ABCD -中,90ABC ACD ∠=∠=,60BAC CAD ∠=∠=,PA ⊥平面ABCD ,E 为PD 的中点,M 为AD 的中点,24PA AB ==.(1)取PC 中点F ,证明:PC ⊥平面AEF ; (2)求点D 到平面ACE 的距离.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】求出圆心和半径以及公共弦所在的直线方程,再利用点到直线的距离公式,弦长公式,求得公共弦的长. 【详解】∵两圆为x 2+y 2+4x ﹣4y=0①,x 2+y 2+2x ﹣8=0,② ①﹣②可得:x ﹣2y+4=0.∴两圆的公共弦所在直线的方程是x ﹣2y+4=0,∵x 2+y 2+4x ﹣4y=0的圆心坐标为(﹣2,2),半径为2∴圆心到公共弦的距离为=∴公共弦长==故答案为:C 【点睛】本题主要考查圆与圆的位置关系,考查两圆的公共弦长的计算,意在考查学生对这些知识的掌握水平和分析推理计算能力.2.C解析:C 【解析】直线方程变形为(31)(2)0k x y y x +-+-=,则直线通过定点21(,)77,故选C .3.B解析:B 【分析】根据题意,对曲线的方程变形,分析可得曲线为圆x 2+y 2=1的下半部分,结合图形分析可得答案. 【详解】根据题意,y =x 2+y 2=1(0y ≤),为圆x 2+y 2=1的下半部分, 若直线x +y ﹣b =0与曲线y =则当直线经过点A 时,直线x+y ﹣b =0与曲线y 有公共点 此时b =1,=1,解可得b =b <0,则b=则b 的取值范围为[; 故选:B .【点睛】关键点点睛:曲线y 21x =--x 2+y 2=1(0y ≤),为圆x 2+y 2=1的下半部分,数形结合解决即可.4.B解析:B 【分析】由22PQ ≥()2,1到直线1y kx =+的距离2d ≤,利用点到直线距离公式,列不等式可得结果. 【详解】若22PQ ≥则圆心()2,1到直线1y kx =+的距离222422d ⎛⎫≤-=⎪ ⎪⎝⎭2221k k≤+解得[]1,1k ∈-,故选B. 【点睛】本题主要考查点到直线的距离公式、直线与圆的位置关系,属于中档题.解答直线与圆的位置关系的题型,常见思路有两个:一是考虑圆心到直线的距离与半径之间的大小关系(求弦长问题需要考虑点到直线距离、半径,弦长的一半之间的等量关系);二是直线方程与圆的方程联立,考虑运用韦达定理以及判别式来解答.5.D解析:D 【分析】利用两点间的距离公式,将切线长的和转化为到两圆心的距离和,利用三点共线距离最小即可求解. 【详解】221(1)(4)7:C x y -++=,圆心()1,4-,半径17r =222:(2)(5)9C x y -+-=,圆心()2,5,半径33r =设点P ()0,0x ,则12d d +===即()0,0x 到()1,3-与()2,4两点距离之和的最小值, 当()0,0x 、()1,3-、()2,4三点共线时,12d d +的和最小,即12d d +==故选:D 【点睛】本题考查了两点间的距离公式,需熟记公式,属于基础题.6.B解析:B 【分析】当直线和圆心与点(1,2)的连线垂直时,所求的弦长最短,即可得出结论. 【详解】圆2260x y x +-=化为22(3)9x y -+=,所以圆心C 坐标为(3,0)C ,半径为3, 设(1,2)P ,当过点P 的直线和直线CP 垂直时,圆心到过点P 的直线的距离最大,所求的弦长最短,此时||CP ==根据弦长公式得最小值为2==. 故选:B. 【点睛】本题考查圆的简单几何性质,以及几何法求弦长,属于基础题.7.B解析:B 【分析】可得原几何体如图所示正三棱锥A BCD -,取BD 中点E ,连接,AE CE ,设底面边长为2x ,表示出AO OE ===133OE CE ==,即可求出x ,进而求出腰长. 【详解】根据三视图可得原几何体如图所示正三棱锥A BCD -,取BD 中点E ,连接,AE CE ,则底面中心O 在CE 上,连接AO ,可得AO ⊥平面ABC ,由三视图可知5AB AC AD ===,45AEC ∠=, 设底面边长为2x ,则DE x =,则25AE x =-,则在等腰直角三角形AOE 中,2522xAO OE -===, O 是底面中心,则133xOE CE ==,则2532x x-=,解得3x =, 则1AO =,底面边长为23, 则正视图(等腰三角形)的腰长为()22312+=.故选:B.【点睛】本题考查根据三视图计算原几何体的相关量,解题的关键是根据正三棱锥中的关系求出底面边长.8.D解析:D 【分析】延长DA 至G ,使AG CE =,可证11//AG C E ,得1GA F ∠是异面直线1A F 与1C E 所成的角(或其补角).在1AGF △中,由余弦定理可得结论. 【详解】延长DA 至G ,使AG CE =,连接1,GE GA ,GF ,11,AC AC , 又//AG CE 所以AGEC 是平行四边形,//,GE AC GE AC =, 又正方体中1111//,AC AC AC AC =, 所以1111//,AC DE AC DE =,所以11AC EG 是平行四边形,则11//AG C E , 所以1GA F ∠是异面直线1A F 与1C E 所成的角(或其补角). 设正方体棱长为2,在正方体中易得15AG =,10GF =,22222112(21)3A F AA AF =+=++=,1AGF △中,2221111125cos 2253AG A F GF GA F AG A F +-∠===⋅⨯⨯. 故选:D .【点睛】方法点睛:本题考查空间向量法求异面直线所成的角,求异面直线所成角的方法: (1)定义法:根据定义作出异面直线所成的角并证明,然后解三角形得结论; (2)建立空间直角坐标系,由两异面直线的方向向量的夹角得异面直线所成的角.9.C解析:C 【分析】在BD ,CF 上分别取点B ',C ',使得3m BB CC ''==,连接A B '',A C '',B C '',把几何体分割成一个三棱柱和一个四棱锥,然后由棱柱、棱锥体积公式计算. 【详解】如图,在BD ,CF 上分别取点B ',C ',使得3m BB CC ''==,连接A B '',A C '',B C '',则三棱柱ABC A B C '''-是斜三棱柱,该羡除的体积V V=三棱柱ABC A B C '''-V+四棱锥A B DEC '''-()311123636336m 232+⎛⎫⎛⎫=⨯⨯⨯+⨯⨯⨯= ⎪ ⎪⎝⎭⎝⎭.故选:C .【点睛】思路点睛:本题考查求空间几何体的体积,解题思路是观察几何体的结构特征,合理分割,将不规则几何体体积的计算转化为锥体、柱体体积的计算.考查了空间想象能力、逻辑思维能力、运算求解能力.10.C解析:C 【分析】连接11D B 、1D E 、DE ,先证明四边形11BB D D 为平行四边形,得到11//B D BD ,故异面直线1ED 与BD 所成的角即为相交直线1ED 与11D B 所成的角,由余弦定理可得答案. 【详解】连接11D B 、1D E 、DE ,因为棱11//BB DD ,11BB DD =,所以四边形11BB D D 为平行四边形,所以11//B D BD ,故异面直线1ED 与BD 所成的角即为相交直线1ED 与11D B 所成的角11B D E ∠,因为12,3AB AD AA ===,1BE CE ==,所以2211111122B D D C B C =+=,213110B E =+222415ED CE DC +=+==,所以222115914D E ED D D ==+=+,由余弦定理得,从而222111111111cos2B D D E B EB D EB D D E+-∠===⨯.故选:C【点睛】本题考查异面直线所成角的余弦值的求法,关键点是找到异面直线所成的角,考查空间中线线的位置关系等基础知识,考查运算求解能力,是中档题.11.C解析:C【分析】分析出当平面P AD'⊥平面ABCD时,四棱锥P ABCD'-的体积取最大值,求出AD、P A'的长,然后将四棱锥P ABCD'-补成长方体P AMD QBNC'-,计算出该长方体的体对角线长,即为外接球的直径,进而可求得外接球的表面积.【详解】取AD的中点E,连接P E',由于P AD'△是以P'为顶点的等腰直角三角形,则P E AD'⊥,设AD x=,则1122P E AD x'==,设二面角P AD B'--的平面角为θ,则四棱锥P ABCD'-的高为1sin2h xθ=,当90θ=时,max12h x=,矩形ABCD的面积为4S AB AD x=⋅=,2111216433233P ABCDV Sh x x x'-=≤⨯⨯==,解得x=将四棱锥P ABCD'-补成长方体P AMD QBNC'-,所以,四棱锥P ABCD'-的外接球直径为2R P N'====,则R=,因此,四棱锥P ABCD'-的外接球的表面积为2424Rππ=.故选:C.【点睛】方法点睛:求空间多面体的外接球半径的常用方法:①补形法:侧面为直角三角形,或正四面体,或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;②利用球的性质:几何体中在不同面均对直角的棱必然是球大圆直径,也即球的直径; ③定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可.12.A解析:A 【分析】利用正弦定理求出ABC 的外接圆直径2r ,利用公式()2222R r SA =+可计算得出三棱锥S ABC -的外接球直径,然后利用球体的表面积公式可求得结果. 【详解】如下图所示,设圆柱的底面半径为r ,母线长为h ,圆柱的外接球半径为R ,取圆柱的轴截面,则该圆柱的轴截面矩形的对角线的中点O 到圆柱底面圆上每个点的距离都等于R ,则O 为圆柱的外接球球心,由勾股定理可得()()22222r h R +=.本题中,SA ⊥平面ABC ,设ABC 的外接圆为圆1O ,可将三棱锥S ABC -内接于圆柱12O O ,如下图所示:设ABC 的外接圆直径为2r ,2SA h ==, 由正弦定理可得24sin ABr C==∠,,该三棱锥的外接球直径为2R ,则()222225R r h =+=.因此,三棱锥S ABC -的外接球的表面积为()224220R R πππ=⨯=.故选:A. 【点睛】方法点睛:求空间多面体的外接球半径的常用方法:①补形法:侧面为直角三角形,或正四面体,或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;②利用球的性质:几何体中在不同面均对直角的棱必然是球大圆直径,也即球的直径; ③定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可.二、填空题13.【分析】设求出再利用几何意义求得最小值【详解】设则又记(为坐标原点)则的最小值为所以的最小值为故答案为:【点睛】本题考查用几何意义平面上的最值问题对一些特殊的表达式可利用几何意义求解:平方和形式:表 解析:3685-【分析】设(,)P x y ,求出22||||PA PB +,再利用几何意义求得最小值. 【详解】 设(,)P x y ,则22||||PA PB +22222222(2)(2)(4)(2)2(1)2(2)182(1)(2)18x y x y x y x y ⎡⎤=++++-++=-+++=-+++⎣⎦,又记(1,2)C -,CO =(O 为坐标原点),则22(1)(2)-++x y 的最小值为22(2)2)9CO -==-所以22PA PB +的最小值为2(91836-+=-故答案为:36- 【点睛】本题考查用几何意义平面上的最值问题.对一些特殊的表达式可利用几何意义求解:平方和形式:22()()x a y b -+-(,)P x y 与(,)Q a b 的距离,分式形式:y bx a--表示(,)P x y 与定点(,)a b 连线斜率.这是两个常用的几何意义.另外圆外的点到圆上点的最值可通过定点到圆心距离求解.14.【分析】联立解得交点代入可得:再利用两点之间的距离公式二次函数的性质即可得出【详解】解:联立解得把代入可得:点到原点的距离当时取等号点到原点的距离的最小值为故答案为:【点睛】本题考查了两条直线的交点【分析】 联立23y xx y =⎧⎨+=⎩,解得交点(1,2),代入50mx ny ++=可得:250m n ++=.再利用两点之间的距离公式、二次函数的性质即可得出. 【详解】解:联立23y xx y =⎧⎨+=⎩,解得1x =,2y =.把(1,2)代入50mx ny ++=可得:250m n ++=.52m n ∴=--.∴点(,)m n 到原点的距离5d ,当2n =-,1m =-时,取等号.∴点(,)m n【点睛】本题考查了两条直线的交点、两点之间的距离公式、二次函数的性质,考查了推理能力和计算能力,属于中档题.15.【分析】由题意知圆的圆心从而可求出由从而可求出弦所在直线的斜率是由直线的点斜式可写出弦所在直线方程【详解】解:设圆的圆心为则由是的中点知因为所以点在圆内且所以弦所在直线的斜率是则弦所在的直线方程是整解析:23130x y --=.【分析】由题意知圆2220x y +=的圆心()0,0O ,从而可求出32OP k =-,由AB OP ⊥,从而可求出弦AB 所在直线的斜率是123AB OP k k =-=,由直线的点斜式,可写出弦AB 所在直线方程. 【详解】解:设圆2220x y +=的圆心为O ,则()0,0O .由P 是AB 的中点,知AB OP ⊥.因为()22231320+-=<,所以点P 在圆O 内,且303202OP k --==--. 所以弦AB 所在直线的斜率是123AB OP k k =-=,则弦AB 所在的直线方程是23(2)3y x +=-, 整理可得,23130x y --=. 故答案为:23130x y --=. 【点睛】本题考查了直线的点斜式方程,考查了两直线垂直的应用.本题的关键是分析出AB OP ⊥,进而求出弦所在直线的斜率.16.【分析】方程左边是圆心为原点半径为3的上半圆右边为恒过的直线当直线与半圆相切时求出的值直线过点时求得的值利用图象即可确定出实数的范围【详解】设图象如图所示当直线与半圆相切时圆心到直线的距离即解得:当解析:72,243⎛⎤⎥⎝⎦【分析】方程左边是圆心为原点,半径为3的上半圆,右边为恒过(3,4)的直线,当直线AB 与半圆相切时,求出k 的值,直线过点(3,0)-时,求得k 的值,利用图象即可确定出实数k 的范围. 【详解】设1y =,2(3)4y k x =-+,图象如图所示, 当直线与半圆相切时,圆心O 到直线AB 的距离d r =3=,解得:724k =, 当直线过点(3,0)-时,可求得4023(3)3k -==--,则利用图象得:实数k 的范围为72(,]243,故答案为:72(,]243. 【点睛】此题考查了直线与圆相交的性质,利用了数形结合的思想,熟练掌握数形结合思想是解本题的关键.17.【分析】求出点坐标由于直线与直线垂直得出直线的斜率为再由点斜式写出直线的方程【详解】由于直线可看成直线先绕点逆时针方向旋转角再继续旋转角得到则直线与直线垂直即直线的斜率为所以直线的方程为即故答案为: 解析:230x y --=【分析】求出点P 坐标,由于直线210x y +-=与直线l 垂直,得出直线l 的斜率为12,再由点斜式写出直线l 的方程. 【详解】()1,120210x x y P y -⎧⇒-⎨--=+⎩= 由于直线210x y +-=可看成直线l 先绕点P 逆时针方向旋转角α,再继续旋转2πα-角得到,则直线210x y +-=与直线l 垂直,即直线l 的斜率为12所以直线l 的方程为11(1)2y x +=-,即230x y --= 故答案为:230x y --= 【点睛】本题主要考查了求直线的方程,涉及了求直线的交点以及直线与直线的位置关系,属于中档题.18.3【分析】根据题意先由圆的方程求出圆心为根据直线和圆相切的性质列出方程组求出即得解【详解】根据题意的圆心为:若直线与圆相切于则有故答案为:3【点睛】本题考查了直线和圆的位置关系考查了学生转化与划归数解析:3 【分析】根据题意,先由圆的方程求出圆心为()2,0-,根据直线和圆相切的性质列出方程组,求出,a b ,即得解.【详解】根据题意22410x y x ++-=的圆心为:()2,0-,若直线30ax by +-=与圆22410x y x ++-=相切于()1,2P -,则有2301,2302()1(2)(1)a b a b a b a b -+-=⎧⎪∴==∴+=-⎨⨯-=-⎪---⎩故答案为:3 【点睛】本题考查了直线和圆的位置关系,考查了学生转化与划归,数学运算的能力,属于中档题.19.【分析】过作垂足为连接则为二面角的平面角即在中利用余弦定理结合为整数求出的值进而可得外接球直径【详解】如图过作垂足为连接则为二面角的平面角即不妨设因为所以所以所以在中因为为整数所以则设以为长宽高的长 解析:6【分析】过A 作AH OB ⊥,垂足为H ,连接CH ,则AHC ∠为二面角--A OB C 的平面角,即∠=AHC α,在AHC 中,利用余弦定理结合m ,n 为整数,求出m ,n 的值,进而可得外接球直径. 【详解】如图,过A 作AH OB ⊥,垂足为H ,连接CH ,则AHC ∠为二面角--A OB C 的平面角,即∠=AHC α.不妨设2OC a =,因为45AOB ∠=︒,所以===CH a AH OH ,所以(21)=HB a ,所以22222(422)=+=-=BC HB HC a AC .在AHC 中,222cos 2+-==⋅⋅HA HC AC HA HC α2222(422)212+--=-=+a a a m n a, 因为m ,n 为整数,所以1m =-,2n =,则||1m =,||2n =,||1m n +=. 设以||m ,||n ,||m n +为长、宽、高的长方体的外接球半径为R , 则2222(2)||||||6=+++=R m n m n ,所求外接球的直径为6. 故答案为:6 【点睛】关键点点睛:本题考查二面角的应用,考查几何体的外接球,考查解三角形,解决本题的关键点是利用定义法找出二面角的平面角,在AHC 中,利用余弦定理结合已知条件求出m ,n 的值,考查学生空间想象能力,考查计算能力,属于中档题.20.【分析】首先把三视图转换为直观图进一步求出几何体的外接球的半径最后求出球的表面积【详解】根据几何体的三视图可知该几何体是底面为等腰三角形高为2的三棱锥体如图所示:设底面外接圆的半径为t 圆心为H 则解得 解析:414π【分析】首先把三视图转换为直观图,进一步求出几何体的外接球的半径,最后求出球的表面积. 【详解】根据几何体的三视图可知该几何体是底面为等腰三角形,高为2的三棱锥体.如图所示:设底面外接圆的半径为t ,圆心为H ,则2221(2)t t =+-,解得54t =, 设外接球的半径r ,球心为O ,则OH ⊥底面,且1OH =, 则22541()14r =+=所以41414().164S ππ=⨯⨯= 故答案为:414π【点睛】关键点点睛:球心与底面外接圆圆心连线垂直底面,且OH 等于棱锥高的一半,利用勾股定理求出球的半径,由面积公式计算即可.21.【分析】由圆柱体积求得底面半径母线长设底面圆心为可得为异面直线与所成的角(或其补角)在对应三角形中求解可得【详解】设圆柱底面半径为则母线长为由得设底面圆心为连接则所以为异面直线所成的角在中所以故答案 解析:6 【分析】 由圆柱体积求得底面半径,母线长,设底面圆心为O ,可得OEF ∠为异面直线AC 与EF 所成的角(或其补角).在对应三角形中求解可得.【详解】设圆柱底面半径为r ,则母线长为2r ,由2216r r ππ⋅=得2r .设底面圆心为O ,连接OE ,OF .则//OE AC ,所以OEF ∠为异面直线AC , EF 所成的角.在Rt OEF △中,2OF =,22OE =,23EF =.所以6cos OE OEF EF ∠==. 故答案为:6.【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下:(1)平移:平移异面直线中的一条或两条,作出异面直线所成的角;(2)认定:证明作出的角就是所求异面直线所成的角;(3)计算:求该角的值,常利用解三角形;(4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤ ⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.22.【分析】设球的半径为连接交于点取中点连接即为三棱柱外接球球心根据三棱锥体积可得间关系表示出根据基本不等式可求得的最小值从而得到球的表面积的最小值【详解】如图因为三棱柱是且设球的半径为连接交于点取中点 解析:27π【分析】设AB a ,BC b =,球的半径为r ,连接1AC ,1AC 交于点O ,取AC 中点D ,连接BD ,即O 为三棱柱外接球球心,根据三棱锥体积可得a b ,间关系,表示出r ,根据基本不等式可求得r 的最小值,从而得到球的表面积的最小值.【详解】如图,因为三棱柱111ABC A B C -是 ,且90ABC ∠=︒,设AB a ,BC b =,球的半径为r ,连接1AC ,1AC 交于点O ,取AC 中点D ,连接BD ,则O 到三棱柱六个定点的距离相等,即O 为三棱柱外接球球心,1132OD AA ==, 又因为三棱锥O ABC -3 即113332ab ⨯=12ab =, 所以222222313332224a b r AD OD ab ⎛⎫⎛⎫+=+=+≥+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭, 当且仅当a b =时等号成立,所以球O 的表面积最小值为2427S r ππ==,故答案为:27π.【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.23.4【分析】取中点连接再根据题意依次计算进而得球的球心即为(与重合)【详解】解:因为所以又因为所以所以因为平面平面平面平面平面所以平面取中点连接所以所以平面所以此时所以即球的球心球心即为(与重合)半径 解析:4【分析】取,AB AC 中点,D E ,连接DE ,DP ,再根据题意依次计算4EA EB EC EP ====,进而得球O 的球心O 即为E (O 与E 重合)【详解】解:因为BC =8AC =,AB BC ⊥,所以AB =4PA PB ==,所以222PA PB AB +=,所以PA PB ⊥,因为平面PAB ⊥平面ABC ,平面PAB ⋂平面ABC AB =,AB BC ⊥,BC ⊂平面ABC ,所以BC ⊥平面PAB ,取,AB AC 中点,D E ,连接DE ,DP所以//DE BC ,DE =DP =所以DE ⊥平面PAB ,所以DE PD ⊥,此时,142EB AC EA EC ====, 4EP =, 所以4EA EB EC EP ====,即球O 的球心球心O 即为E (O 与E 重合),半径为4EA =.故答案为:4.【点睛】本题解题的关键在于寻找球心,在本题中,,PAB ABC △△均为直角三角形,故易得AC 中点即为球心.考查空间思维能力,运算求解能力,是中档题.24.【分析】由第二个图可知水的体积占整个圆锥体积的在第一个图中水的体积占圆锥的上面小圆锥体积占大圆锥体积的根据小圆锥体积与大圆锥体积比是其高的三次方的比即可解得a 的值【详解】在图②中水形成的小圆锥和大圆 解析:3(27)a【分析】 由第二个图可知,水的体积占整个圆锥体积的18,在第一个图中,水的体积占圆锥的18,上面小圆锥体积占大圆锥体积的78,根据小圆锥体积与大圆锥体积比是其高的三次方的比,即可解得a 的值.【详解】在图②中,水形成的小“圆锥”和大圆锥形容器高的比为12,底面半径比为12,故其底面积的比为14,所以体积比为18,则在图①中,无水部分形成的小“圆锥”和大圆锥形容器的体积比为78,设水面高度为h ,则小“圆锥”和大圆锥形容器的高的比为22a h a-,体积比为327(=28a h a -),解的h =3(27)a . 故答案为: 3(27)a【点睛】本题考查了圆锥的体积的计算,属于中档题目,解题中的关键是要准确利用圆锥体积公式得到大小圆锥体积比与大小圆锥的高比的关系.三、解答题25.(1)答案见解析;(2)4cm .【分析】(1)直接画出三棱锥S ABC -即可;(2)作SE ⊥面ABC ,取线段AC 中点为D ,分别在等腰ABC ,Rt SEA △,Rt SEC △,Rt BDE △和Rt SEB △中,求出线段长度,得到该几何体最长的棱长.【详解】(1)(2)如下图,SE ⊥面ABC ,线段AC 中点为D 2,3,1,4,2,=1SE cm AE cm CE cm AC cm AD DC cm DE cm ======,BD AC ⊥,3BD cm =,在等腰ABC 中,222313cm AB AC ==+=在Rt SEA △中,22222313cm SA SE AE +=+=在Rt SEC △中,2222215cm SC SE CE =++=在Rt BDE △中,22223110cm BE BD DE ++=SE ⊥面ABC ,SE BE ∴⊥ 在Rt SEB △中,22222(10)14cm SB SE BE =+=+ 在三梭锥S-ABC 中,SC AB AC SA SB AC <==<<,所以最长的棱为AC ,长为4cm【点睛】关键点点睛:本题考查几何体的三视图,以及棱锥的性质,解决本题的关键点是作出SE ⊥面ABC ,取线段AC 中点为D ,由三视图得出等腰ABC ,Rt SEA △,Rt SEC △,Rt BDE △和Rt SEB △,分别求出线段长度,得出答案,考查学生空间想象能力与计算能力,属于中档题.26.(1)证明见解析;(22【分析】(1)取PB 边的中点E ,即可证明四边形AEFD 为平行四边形,再根据线面平行的判定定理即可证明;(2)取BC 边的中点G ,由//DG AB ,即可得到直线AB 与平面PDC 所成角即为DG 与平面PDC 所成角,再由等体积法求得22G PCD d -=,即可求得直线AB 与平面PDC 所成角的正弦值.【详解】解:(1)如图所示:取PB 边的中点E ,连,AE FE ,则三角形中位线可知://EF BC 且12EF BC =, 由题可知://AD BC 且12AD BC =, //AD EF ∴且AD EF =,即四边形AEFD 为平行四边形,//DF AE ∴又DF ⊄平面,PAB AE ⊂平面PAB ,故//DF 平面PAB ;(2)取BC 边的中点G ,则//DG AB ,且2DG AB ==,直线AB 与平面PDC 所成角即为DG 与平面PDC 所成角,又1CDG S =,且易得DC PD =,所以11223622CDP S PC DF =⋅=⨯=由等体积法,1113633P CDG G PCD G PCD V V d ---==⨯=,得2G PCD d -=,DG ∴与平面PDC 所成角的正弦值为2222=, 故直线AB 与平面PDC 所成角的正弦值为24. 【点睛】关键点点睛:本题解题的关键是利用等体积法求出G 点到平面PCD 的距离.27.(1)3;(2)证明见解析,三棱锥P ABD -的体积为33. 【分析】(1)取AB 、AD 中点为M 、N ,连接MN ,证明出平面//PBD 平面EMN ,可得出点F 的轨迹为线段MN ,求出BD 的长,可求得线段MN 的长,即可得解;(2)连接AF 延长交BD 于点O ,利用面面平行的性质定理可得出//EF PO ,可得出PO ⊥平面ABD ,利用面面垂直的判定定理可证得平面PBD ⊥平面ABD ,可得出三棱锥P ABD -的高为PO ,利用锥体的体积公式可求得结果.【详解】(1)如图,取AB 、AD 中点为M 、N ,连接MN ,则点F 在线段MN 上,证明如下:连接EM 、EN ,因为E 为PA 中点,M 为AB 中点,所以//EM PB ,EM ⊄平面PBD ,PB ⊂平面PBD ,//EM ∴平面PBD ,同理可证//EN 平面PBD , 又EM EN E =,所以平面//PBD 平面EMN ,EF ⊂平面EMN ,所以//EF 平面PBD ,所以点F 的轨迹为线段MN ,因为60BAC ∠=,所以120BAD ∠=,2sin 23BD AB BAC ∴=∠=所以132MN BD ==F 3 (2)连接AF 延长交BD 于点O ,因为平面//PBD 平面EMN , 且平面APO平面EMN EF =,平面APO 平面PBD PO =,所以//EF PO ,。
高一北师大版数学必修2第二章 解析几何初步练习题含答案解析 双基限时练22

双基限时练(二十二)一、选择题1.直线3x +y -5=0与x +y -1=0的交点是( ) A .(2,-1) B .(-1,2) C .(-2,1)D .(-2,-1)解析 由⎩⎪⎨⎪⎧ 3x +y -5=0,x +y -1=0,得⎩⎪⎨⎪⎧x =2,y =-1.答案 A2.若(-1,-2)为直线ax +3y +8=0与x -by =0的交点,则a ,b 的值分别为( )A .2,12 B .12,2 C .-2,-12D .-2,12解析 ∵(-1,-2)为两条直线的交点,∴⎩⎪⎨⎪⎧-a -6+8=0,-1+2b =0,得⎩⎨⎧a =2,b =12.答案 A3.若直线x +y +3m +2=0与x -y -5m +6=0的交点在第三象限,则m 的取值范围是( )A .12<m<4 B .-4<m<-12 C .m>4D .m<12解析 由⎩⎪⎨⎪⎧ x +y +3m +2=0,x -y -5m +6=0,得⎩⎪⎨⎪⎧x =m -4,y =-4m +2,由⎩⎪⎨⎪⎧m -4<0,-4m +2<0,得12<m<4. 答案 A4.已知三条直线y =2x ,x +y =3,mx +ny +5=0交于一点,则坐标(m ,n)可能是( )A .(1,-3)B .(3,-1)C .(-3,1)D .(-1,3)解析 由⎩⎪⎨⎪⎧ y =2x ,x +y =3,得⎩⎪⎨⎪⎧x =1,y =2.由三条直线相交于一点,可知m ×1+n ×2+5=0即m +2n +5=0,结合选项可知A 项正确. 答案 A5.已知直线l 1:2x +y -10=0,l 2⊥l 1,且l 2过(-10,0),则l 1与l 2的交点坐标为( )A .(6,2)B .(2,-6)C .(-6,2)D .(2,6)解析 ∵kl 1=-2,l 2⊥l 1,∴kl 2=12. 又l 2过(-10,0),∴l 2:x -2y +10=0.由⎩⎪⎨⎪⎧ x -2y +10=0,2x +y -10=0,得⎩⎪⎨⎪⎧x =2,y =6.答案 D6.无论k 为何值,直线(k +2)x +(1-k)y -5-4k =0都过一个定点,则这个定点的坐标为( )A .(1,3)B .(-1,3)C .(3,1)D .(3,-1)解析 原直线可化为(2x +y -5)+k(x -y -4)=0,由⎩⎪⎨⎪⎧ 2x +y -5=0,x -y -4=0,得⎩⎪⎨⎪⎧x =3,y =-1.∴交点(3,-1). 答案 D 二、填空题7.直线l 1:3x +4y -5=0与直线l 2:2x -3y +8=0的交点坐标为________.解析 由⎩⎪⎨⎪⎧ 3x +4y -5=0,2x -3y +8=0,得⎩⎪⎨⎪⎧x =-1,y =2.答案 (-1,2)8.经过直线x +y -1=0和x -y +1=0的交点,且与3x +2y +6=0垂直的直线方程为________.解析 所求的直线方程为x +y -1+λ(x -y +1)=0,即(λ+1)x -(λ-1)y +λ-1=0,k =λ+1λ-1,由k·⎝ ⎛⎭⎪⎫-32=-1,则λ+1λ-1=23,得λ=-5,故所求的直线方程为-4x +6y -6=0,即2x -3y +3=0.答案 2x -3y +3=09.已知l 1:x -y -1=0,l 2:2x -y +3=0,l 3:x +my -5=0,若l 1,l 2,l 3只有两个交点,则m =________.解析 ∵l 1与l 2相交,故只需l 1∥l 3,或l 2∥l 3即可,得m =-1,或m =-12.答案 -1或-12 三、解答题10.设直线l 经过2x -3y +2=0和3x -4y -2=0的交点,且与两坐标轴围成等腰直角三角形,求直线l 的方程.解 设所求的直线方程为(2x -3y +2)+λ(3x -4y -2)=0,整理得(2+3λ)x -(4λ+3)y -2λ+2=0由题意,得2+3λ3+4λ=±1,解得λ=-1,或λ=-57.∴所求的直线方程为x -y -4=0,或x +y -24=0.11.三条直线ax +2y +8=0,4x +3y =10和2x -y =10相交于一点,求a 的值.解 解方程组⎩⎪⎨⎪⎧ 4x +3y =10,2x -y =10得⎩⎪⎨⎪⎧x =4,y =-2,所以交点坐标为(4,-2).代入直线方程ax +2y +8=0,得a ×4+2×(-2)+8=0,解得a =-1.12.设直线l 的方程为(a +1)x +y +(2-a)=0(a ∈R ). (1)证明直线l 恒过定点;(2)若l 在两坐标轴上的截距相等,求直线l 的方程.解 (1)证明:直线l 的方程可化为(x -1)a +x +y +2=0(a ∈R )令⎩⎪⎨⎪⎧ x -1=0,x +y +2=0,得⎩⎪⎨⎪⎧x =1,y =-3.∴无论a 为任何实数,直线l 总经过定点(1,-3). (2)∵直线l 在两坐标轴上截距相等,l 的方程为 (a +1)x +y +2-a =0,∴l 的两截距一定存在, ∴a ≠-1,令y =0,x =a -2a +1,令x =0,y =a -2,由a -2a +1=a -2,得a =2,或a =0. ∴所求直线l 的方程为3x +y =0,或x +y +2=0.思 维 探 究13.求经过两直线2x +y -8=0与x -2y +1=0的交点,且在y 轴上的截距为x 轴上截距的两倍的直线l 的方程.解 设所求的直线方程为2x +y -8+λ(x -2y +1)=0即:(2+λ)x +(1-2λ)y +λ-8=0,由题意得2+λ≠0且1-2λ≠0.令x >0,得y =λ-82λ-1;令y =0,得x =8-λ2+λ.由题意得2·8-λ1-2λ=8-λ2+λ,得λ=8或λ=-34.当λ=8时,直线方程为10x -15y =0,即2x -3y =0; 当λ=-34时,直线方程为:54x +52y -354=0,即x +2y -7=0. ∴所求的直线方程为2x -3y =0或x +2y -7=0.。
年北师大版高中数学必修二课时跟踪检测:第二章 解析几何初步 阶段性测试题二

阶段性测试题二第二章 解析几何初步 (时间:90分钟 满分:120分) 第Ⅰ卷(选择题,共50分)一、选择题(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知点A (x,1,2)和点B (2,3,4),且|AB |=26,则实数x 的值是( ) A .-3或4 B .6或2 C .3或-4D .6或-2解析:∵|AB |=(x -2)2+(1-3)2+(2-4)2=(x -2)2+8=2 6.∴x =6或-2.答案:D2.若直线ax +2y +a -1=0与直线2x +3y -4=0垂直,则a 的值为( ) A .3 B .-3 C.43D .-43解析:由题意知,⎝ ⎛⎭⎪⎫-a 2·⎝ ⎛⎭⎪⎫-23=-1,解得a =-3. 答案:B3.已知直线l 1:(k -3)x +(4-k )y +1=0与l 2:2(k -3)x -2y +3=0平行,则k 的值是( )A .1或3B .1或5C .3或5D .1或2解析:∵l 1∥l 2,∴k -3k -4=2(k -3)2,(k -3)(k -5)=0,解得k =3或k =5.答案:C4.两平行直线x +2y -1=0与2x +4y +3=0间的距离为( ) A.25 5 B .52 C.45 5D . 5解析:两平行直线2x +4y -2=0与2x +4y +3=0间的距离为d =|-2-3|22+42=520=52. 答案:B5.已知倾斜角60°为的直线l 平分圆:x 2+y 2+2x +4y -4=0,则直线l 的方程为( )A.3x -y +3+2=0B.3x +y +3+2=0C.3x -y +3-2=0D.3x -y -3+2=0解析:圆x 2+y 2+2x +4y -4=0的圆心(-1,-2),直线l 的斜率k =tan60°=3,又过点(-1,-2),∴直线l 的方程为y +2=3(x +1),即3x -y +3-2=0.答案:C6.直线x -2y -3=0与圆(x -2)2+(y +3)2=9交于E 、F 两点,则△EOF (O 是圆心)的面积为( )A.32 B .34 C .2 5D .655解析:圆心(2,-3)到直线x -2y -3=0的距离为 d =|2+6-3|12+(-2)2=5|EF |=29-5=4. ∴S △EOF =12|EF |·d =12×4×5=2 5. 答案:C7.M ,N 是圆x 2+y 2+kx +2y -4=0上的两点,且M ,N 关于直线x -y +1=0对称,则该圆的半径为( )A .2 2B . 2C .3D .1解析:∵M ,N 在圆上,且关于直线x -y +1=0对称,∴直线x -y +1=0经过圆心⎝ ⎛⎭⎪⎫-k 2,-1.∴-k 2+1+1=0,k =4,则圆的方程为x 2+y 2+4x +2y -4=0,化为标准方程得:(x +2)2+(y +1)2=9,∴半径为3.答案:C8.从点P (1,-2)引圆C :x 2+y 2-20x -16y +149=0的切线,则切线长为( )A .14B .142 C.166D .172解析:圆的方程可化为(x -10)2+(y -8)2=15,切线长的平方等于|PC |2-15=(1-10)2+(-2-8)2-15=166,∴|PC |=166.答案:C9.圆x 2+y 2=1上的点到直线3x +4y -25=0的距离的最小值是( ) A .6 B .4 C .5D .1解析:圆x 2+y 2=1的圆心为C (0,0),半径r =1,圆心到直线3x +4y -25=0的距离d =259+16=5,所以圆上的点到直线的距离的最小值是d -r =5-1=4.答案:B10.已知直线l :y =k (x -4)(k ≠0)被圆C :(x +3)2+(y -1)2=4截得的弦长为23,则直线l 与坐标轴围成的三角形的面积为( )A.76 B .73 C.143D .72解析:圆心C (-3,1)到直线kx -y -4k =0的距离d =|-3k -1-4k |k 2+1=4-3,解得k =-724或k =0(舍),∴直线方程为y =-724(x -4),与坐标轴交点分别为A ⎝ ⎛⎭⎪⎫0,76,B (4,0),∴l与坐标轴围成的三角形面积为12×4×76=73.答案:B第Ⅱ卷(非选择题,共70分)二、填空题(本大题共4小题,每小题5分,满分20分.把答案填写在题中的横线上)11.在空间直角坐标系中,点A(1,-2,1)与点B(0,1,-1)的距离为________.解析:|AB|=(1-0)2+(-2-1)2+(1+1)2=14.答案:1412.直线l经过点A(a+1,2-b)、点B(a-2,5-b),则直线l的倾斜角的大小是________.解析:k=5-b-(2-b)a-2-(a+1)=3-3=-1.∴α=135°.答案:135°13.若⊙O1:x2+y2=5与圆O2:(x+m)2+y2=20(m∈R)相交于A,B两点,且两圆在点A处的切线互相垂直,则线段AB的长度是________.解析:由题意知△O1AO2构成直角三角形,又|O1A|=5|O2A|=25|O1O2|=|m|则|m|2=(5)2+(25)2=25,∴m=±5.设△O1AO2斜边O1O2上的高为h,由三角形面积相等,得h=5×255=2,∴弦长|AB|=2h=4.答案:414.设P为直线3x+4y+3=0上的动点,过点P作圆C:(x-1)2+(y-1)2=1的两条切线,切点分别为A,B,则四边形P ACB的面积最小时,∠APB=________.解析:如图,四边形P ACB 面积=2S △P AC = 2×⎝ ⎛⎭⎪⎫12×|AC |·|P A |= |AC |·|P A |=|P A |=|PC |2-1,则当|PC |最小时,四边形面积最小. 此时|PC |=|3+4+3|32+42=105=2.Rt △P AC 中, sin ∠APC =|AC ||PC |=12,∴∠APC =30°,同理∠BPC =30°,∴∠APB =60°. 答案:60°三、解答题(本大题共4小题,满分50分.解答应写出必要的文字说明、证明过程或演算步骤)15.(12分)求满足下列条件的直线方程:(1)求经过直线l 1:x +3y -3=0和l 2:x -y +1=0的交点,且平行于直线2x +y -3=0的直线l 方程;(2)已知直线l 1:2x +y -6=0和点A (1,-1),过点A 作直线l 与l 1相交于点B ,且|AB |=5,求直线l 的方程.解:(1)由⎩⎨⎧x +3y -3=0,x -y +1=0,得交点坐标为(0,1).∵直线l 平行于直线2x +y -3=0,∴直线l 的斜率为-2,∴直线l 的方程为y -1=-2(x -0),即2x +y -1=0.(2)解法一:当直线l 的斜率存在时,设直线l 的方程为y +1=k (x -1), 即直线l 的方程为y =kx -(k +1). ∵直线l 与l 1相交于点B ,联立方程组⎩⎨⎧y =kx -(k +1),y =-2x +6,解得点B 的坐标为⎝⎛⎭⎪⎫k +7k +2,4k -2k +2. 又|AB |=⎝⎛⎭⎪⎫k +7k +2-12+⎝ ⎛⎭⎪⎫4k -2k +2+12=5,解得k =-34. ∴直线l 的方程为3x +4y +1=0;当直线l 的斜率不存在时,直线l 的方程为x =1,此时直线l 与l 1的交点为(1,4),也满足题意,故直线x =1符合题设.综上所述,直线l 的方程为3x +4y +1=0或x =1. 解法二:设点B 的坐标为(m ,n ), ∵点B 在直线l 1:2x +y -6=0上, ∴2m +n -6=0.①又∵|AB |=5,且点A (1,-1), ∴(m -1)2+(n +1)2=5.②联立①②,解得B 的坐标为(1,4)和(5,-4), 由此可得直线l 的方程为:3x +4y +1=0或x =1.16.(12分)在平面直角坐标系中,△ABC 三个顶点分别为A (2,4),B (1,-3),C (-2,1).(1)求BC 边上的高所在的直线方程; (2)设AC 中点为D ,求△DBC 的面积. 解:(1)∵k BC =-3-11+2=-43,∴BC 边上的高的斜率为34. 则BC 边上的高所在的直线方程为y -4=34(x -2), 即3x -4y +10=0.(2)直线BC 的方程为y +3=-43(x -1),即4x +3y +5=0.∵点D 是AC 的中点,∴点D 的坐标为⎝ ⎛⎭⎪⎫2-22,4+12,即⎝ ⎛⎭⎪⎫0,52. 此时点D 到直线BC 的距离 d =⎪⎪⎪⎪⎪⎪4×0+3×52+532+42=52,又|BC |=(-2-1)2+(1+3)2=5,则△DBC 的面积S =12·|BC |·d =12·5·52=254.17.(12分)圆C 经过不同的三点P (k,0)、Q (2,0)、R (0,1),已知圆C 在P 点的切线斜率为1,试求圆C 的方程.解:设圆C 的方程为x 2+y 2+Dx +Ey +F =0.将P 、Q 、R 的坐标代入,得⎩⎨⎧k +2=-D ,2k =F ,E +F +1=0.∴圆的方程为x 2+y 2-(k +2)x -(2k +1)y +2k =0,圆心为⎝ ⎛⎭⎪⎫k +22,2k +12.又∵k CP =-1,∴k =-3.∴圆的方程为x 2+y 2+x +5y -6=0.18.(14分)已知圆O :x 2+y 2=1和定点A (2,1),由圆O 外一点P (a ,b )向圆O 引切线PQ ,切点为Q ,且满足|PQ |=|P A |.(1)求实数a 、b 间满足的等量关系; (2)求线段PQ 长的最小值;(3)若以P 为圆心所作的圆P 与圆O 有公共点,试求半径取最小值时圆P 的方程.解:(1)连接OP ,∵Q 为切点,PQ ⊥OQ ,由勾股定理有|PQ |2=|OP |2-|OQ |2.又已知|PQ |=|P A |故|PQ |2=|P A |2,即a 2+b 2-1=(a -2)2+(b -1)2.化简得实数a 、b 间满足的等量关系为2a +b -3=0.(2)由2a +b -3=0得b =-2a +3. |PQ |=a 2+b 2-1=5a 2-12a +8=5⎝ ⎛⎭⎪⎫a -652+45. 故当a =65时|PQ |min =255,即线段PQ 长的最小值为255. (3)设圆P 的半径为R ,圆P 与圆O 有公共点,圆O 的半径为1, ∴|R -1|≤|OP |≤R +1, 即R ≥||OP |-1|且R ≤|OP |+1. 而|OP |=a 2+b 2=a 2+(-2a +3)2= 5⎝ ⎛⎭⎪⎫a -652+95. 故当a =65时|OP |min =355.此时,b =-2a +3=35.R min =355-1.半径取最小值时圆P 的方程为⎝ ⎛⎭⎪⎫x -652+⎝ ⎛⎭⎪⎫y -352=⎝⎛⎭⎪⎫355-12.由Ruize收集整理。
新版高中数学北师大版必修2习题第二章解析几何初步2.2.3.2含解析

第2课时圆与圆的位置关系1.已知A={(x,y)|x2+y2=1},B={(x,y)|(x-5)2+(y-5)2=4},则A∩B等于()A.⌀B.{(0,0)}C.{(5,5)}D.{(0,0),(5,5)}解析:集合A是由圆O:x2+y2=1上所有点组成的,集合B是由圆C:(x-5)2+(y-5)2=4上所有点组成的.又O(0,0),圆O的半径r1=1,C(5,5),圆C的半径r2=2,|OC|=5,所以|OC|>r1+r2=3.所以圆O和圆C相离,无公共点,即A∩B=⌀.答案:A2.若圆C1:(x+2)2+(y-2)2=m(m>0)与圆C2:x2+y2-4x-10y+13=0有3条公切线,则m=()A.1B.2C.3D.4答案:A3.已知圆O1:x2+y2-4x+6y=0和圆O2:x2+y2-6x=0交于A,B两点,则公共弦AB的垂直平分线的方程为()A.x+y+3=0B.2x-y-5=0C.3x-y-9=0D.4x-3y+7=0解析:由题意知,两圆的圆心分别为(2,-3),(3,0),=3, 因为公共弦AB的垂直平分线即为两圆圆心连线所在直线,所以所求直线的斜率为k=---故直线方程为3x-y-9=0.答案:C4.已知两圆相交于点A(1,3),B(m,-1),两圆的圆心均在直线x-y+c=0上,则m+c的值为()A.-1B.2C.3D.0解析:由题意知,AB的中点在直线x-y+c=0上,∴-1+c=0,m+2c=1.又直线AB的斜率k AB=--=-1,--∴m=5.∴c=-2.∴m+c=3,故选C.答案:C5.过点A(4,-1)且与圆x2+y2+2x-6y+5=0切于点B(1,2)的圆的方程是()A.(x+3)2+(y+1)2=5B.(x-3)2+(y+1)2=5C.(x-3)2+(y-1)2=5D.(x+3)2+(y-1)2=5解析:设所求圆的圆心为(a,b),半径为r,则有------解得所以所求圆的方程为(x-3)2+(y-1)2=5.答案:C6.以两圆C1:x2+y2+4x+1=0及C2:x2+y2+2x+2y+1=0的公共弦为直径的圆的方程为()A.(x-1)2+(y-1)2=1B.(x+1)2+(y+1)2=1C.D.--解析:两圆方程相减,得相交弦所在直线为x-y=0,因为所求圆的圆心在直线x-y=0上,排除C,D选项.画图可知所求圆的圆心在第三象限,排除A,故选B.答案:B7.若点A(a,b)在圆x2+y2=4上,则圆(x-a)2+y2=1与圆x2+(y-b)2=1的位置关系是.解析:两圆的圆心距d=,又a2+b2=4,则d==2.两圆的半径之和为1+1=2,所以两圆的圆心距等于两圆的半径之和,故两圆外切.答案:外切8.若圆O1:x2+y2=5与圆O2:(x-m)2+y2=20(m∈R)相交于A,B两点,且两圆在点A处的切线互相垂直,则线段AB的长度是.解析:由题意知O1(0,0),O2(m,0),且<|m|<3,又O2A⊥AO1,所以有m2=()2+(2)2=25⇒m=±5,所以|AB|=2×=4.答案:49.若某圆的圆心为点(2,1),且它与圆x2+y2-3x=0的公共弦所在的直线经过点(5,-2),求此圆的方程.解设所求圆的方程为(x-2)2+(y-1)2=r2,即x2+y2-4x-2y+5-r2=0,所求圆的方程与已知圆的方程作差可得公共弦所在直线的方程为x+2y-5+r2=0.又公共弦所在的直线经过点(5,-2),将点(5,-2)代入直线方程x+2y-5+r2=0,得5-4-5+r2=0,解得r2=4,故所求圆的方程为(x-2)2+(y-1)2=4.10.求过点(0,6)且与圆C:x2+y2+10x+10y=0相切于原点的圆的方程.解方法一:将圆C的方程化为标准方程得(x+5)2+(y+5)2=50,则圆心为点(-5,-5).所以经过此圆心和原点的直线方程为x-y=0.设所求圆的方程为(x-a)2+(y-b)2=r2.由题意得-----解得故所求圆的方程是(x-3)2+(y-3)2=18.方法二:由题意,所求的圆经过点(0,0)和(0,6),所以所求圆的圆心一定在直线y=3上,又由方法一,知所求圆的圆心在直线x-y=0上,所以由-得圆心坐标为(3,3).所以r==3,故所求圆的方程为(x-3)2+(y-3)2=18.★11.如图,已知圆心坐标为M(,1)的圆M与x轴及直线y=x均相切,切点分别为A,B,另一圆N与圆M,x轴及直线y=x均相切,切点分别为C,D.(1)求圆M和圆N的方程;(2)过B点作MN的平行线l,求直线l被圆N截得的弦的长度.解(1)由于圆M与∠BOA的两边相切,故M到OA及OB的距离均为圆M的半径,则M在∠BOA的角平分线上,同理,N也在∠BOA的角平分线上,即O,M,N三点共线,且OMN为∠BOA的角平分线,因为M的坐标为M(,1),所以M到x轴的距离为1,即圆M的半径为1,所以圆M的方程为(x-)2+(y-1)2=1;设圆N的半径为r,由Rt△OAM∽Rt△OCN,得OM∶ON=MA∶NC,即⇒r=3,OC=3,所以圆N的方程为(x-3)2+(y-3)2=9.(2)由对称性可知,所求弦长等于过A点的MN的平行线被圆N截得的弦长,此弦所在直线方程为y=(x-),即x-y-=0,圆心N到该直线的距离d=-,则弦长=2-.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 解析几何初步
§2 圆与圆的方程
2.2 圆的一般方程
课时跟踪检测
一、选择题
1.圆x 2+y 2-4x +6y =0的圆心坐标是( )
A .(2,3)
B .(-2,3)
C .(-2,-3)
D .(2,-3)
答案:D
2.方程x 2+y 2+Dx +Ey +F =0表示的曲线是以(-2,3)为圆心,4为半径的圆,则D 、E 、F 的值分别为( )
A .4,-6,3
B .-4,6,3
C .-4,6,-3
D .4,-6,-3 解析:-D 2=-2,则D =4;-
E 2=3,则E =-6;此时方程为x 2+y 2+4x -6y +
F =0.
12 42+(-6)2-4F =4,则F =-3.
答案:D
3.圆x 2+y 2-ax +2y +1=0关于直线x -y -1=0对称的圆的方程为x 2+y 2=1,则实数a 的值为( )
A .0
B .6
C .±2
D .2
解析:两圆的圆心分别为C 1⎝ ⎛⎭
⎪⎫a 2,-1,C 2(0,0). ∵两圆关于直线x -y -1=0对称.
∴C 1C 2的中点⎝ ⎛⎭
⎪⎫a 4,-12在直线x -y -1=0上.
∴a 4+12-1=0,a =2.
答案:D
4.如果圆的方程为x 2+ y 2+kx +2y +k 2=0,那么当圆面积最大时,圆心坐标是( )
A .(-1,1)
B .(1,-1)
C .(-1,0)
D .(0,-1)
解析:R 2=k 2+4-4k 24
=4-3k 24. 当k 2=0时,R 2最大,面积也最大.
此时圆的方程为x 2+y 2+2y =0,圆心为(0,-1).
答案:D
5.若曲线C :x 2+y 2+2ax -4ay +5a 2-4=0上所有的点均在第二象限内,则a 的取值范围为( )
A .(-∞,-2)
B .(-∞,-1)
C .(1,+∞)
D .(2,+∞) 解析:方程可化为(x +a )2+(y -2a )2=4,则圆心坐标为(-a,2a ),半径为2,由题意知,
⎩⎪⎨⎪⎧ -a <0,2a >0,|-a |>2,|2a |>2,
解得a >2.
答案:D 6.圆x 2+y 2+8x -4y =0与圆x 2+y 2=20关于直线y =kx +b 对称,则k 与b 的值分别为( )
A .k =-2,b =5
B .k =2,b =5
C .k =2,b =-5
D .k =-2,b =-5
解析:两圆的圆心分别为(-4,2)和(0,0),
∵两圆关于直线y =kx +b 对称,
∴2-0
-4-0
×k =-1,∴k =2. 又∵两圆心连线的中点在直线上,
∴-2k +b =1,∴b =5.
答案:B
二、填空题
7.已知圆C :x 2+y 2+2x +ay -3=0(a 为实数)上任意一点关于直线l :x -y +2=0的对称点都在圆C 上,则a =________.
解析:由题意可得圆C 的圆心⎝ ⎛⎭⎪⎫-1,-a 2在直线x -y +2=0上,将⎝ ⎛⎭
⎪⎫-1,-a 2代入直线方程得-1-⎝ ⎛⎭
⎪⎫-a 2+2=0,解得a =-2. 答案:-2
8.圆C 的方程为x 2+y 2-4x -5=0,若此圆的一条弦AB 的中点为P (3,1),则直线AB 的方程为______________________________________________.
解析:由题可设直线AB 的斜率为k .
由圆的知识可知:CP ⊥AB .
所以k CP ·k =-1.又k CP =1-0
3-2=1⇒k =-1. 所以直线AB 的方程为y -1=-(x -3),
即x +y -4=0.
答案:x +y -4=0
9.已知圆C 经过A (5,1),B (1,3)两点,圆心在x 轴上,则圆C 的方程为__________________.
解析:设圆的方程为x 2+y 2+Dx +Ey +F =0.
∵圆心在x 轴上,
∴-E 2=0,则E =0.
此时圆的方程为x 2+y 2+Dx +F =0,
由题意得⎩⎪⎨⎪⎧
52+12+5D +F =0,12+32+D +F =0, 解得⎩⎪⎨⎪⎧ D =-4,F =-6.
∴圆的方程为x 2+y 2-4x -6=0.
答案:x 2+y 2-4x -6=0
三、解答题
10.求过点A (1,-1),B (-1,1),且圆心在直线x +y -2=0上的圆的方程. 解:设所求圆的方程为x 2+y 2+Dx +Ey +F =0,则由题意得
⎩⎪⎨⎪⎧
1+1+D -E +F =0,1+1-D +E +F =0,-D 2+⎝ ⎛⎭⎪⎫-E 2-2=0.
即⎩⎨⎧ D -E +F =-2,
-D +E +F =-2,
D +
E =-4.∴⎩⎨⎧ D =-2,E =-2,
F =-2.
∴所求圆的方程为x 2+y 2-2x -2y -2=0.
11.已知x 2+y 2+(3t +1)x +ty +t 2-2=0表示一个圆.
(1)求t 的取值范围;
(2)若圆的直径为6,求t 的值.
解:(1)因为方程表示一个圆,则有D 2+E 2-4F >0,
所以(3t +1)2+t 2-4(t 2-2)>0.
所以23t >-9,即t >-332.
(2)圆x 2+y 2+(3t +1)x +ty +t 2-2=0的标准式方程为⎝
⎛⎭⎪⎫x +3t +122+
⎝ ⎛⎭⎪⎫y +t 22=(3t +1)2+t 2-4(t 2-2)4, 由条件知,圆的半径是3,
所以3=12 (3t +1)2+t 2-4(t 2-2).
所以23t +9=36.
所以t =932>-323,所以t =932.
12.已知一圆过点P (4,-2),Q (-1,3)两点,且在y 轴上截得的线段长为43,求圆的方程.
解:设圆的方程为x 2+y 2+Dx +Ey +F =0,圆与y 轴的交点为A (0,m ),B (0,n ),
令x =0,则y 2+Ey +F =0,所以m 、n 是这个方程的根,且m +n =-E ,mn =F .
所以|AB |2=(m -n )2=(m +n )2-4mn =E 2-4F =(43)2,
故E 2-4F =48. ①
又因为点P (4,-2)、Q (-1,3)在这个圆上,所以16+4+4D -2E +F =0,且1+9-D +3E +F =0.
即4D -2E +F +20=0, ②
-D +3E +F +10=0. ③
解①②③得D =-2,E =0,F =-12或D =-10,E =-8,F =4. 因此圆的方程是x 2+y 2-2x -12=0或x 2+y 2-10x -8y +4=0.
13.已知Rt △AOB 中|OB |=3|AB |=5,点P 是△AOB 内切圆上一点,求以|P A ||PB ||PO |为直径的三个圆面积之和的最大值与最小值.
解:如图,建立平面直角坐标系,使A ,B ,O 三点的坐标分别为A (4,0),B (0,3),O (0,0),
设P (x ,y ),内切圆半径为r ,则有|OA |·r +|OB |·r +|AB |·r =|OA |·|OB |
所以r =1.
故内切圆的方程是(x -1)2+(y -1)2=1,
化简为x 2+y 2-2x -2y +1=0.①
又|P A |2+|PB |2+|PO |2=(x -4)2+y 2+x 2+(y -3)2+x 2+y 2=3x 2+3y 2-8x -6y +25.②
由①可知x 2+y 2-2y =2x -1.
将其代入②,则有|P A |2+|PB |2+|PO |2=3(2x -1)-8x +25=-2x +22,因为x ∈[0,2],
故|P A |2+|PB |2+|PO |2的最大值为22,最小值为18,
三个圆面积之和,S =π⎝ ⎛⎭⎪⎫|P A |22+π⎝ ⎛⎭⎪⎫|PB |22+π⎝ ⎛⎭
⎪⎫|PO |22=π4(|P A |2+|PB |2+|PO |2), π4×22=11π2,π4×18=92π,
所以所求面积之和的最大值为11π2,最小值为9π2.。