因式分解--公式法

合集下载

因式分解-评课

因式分解-评课

《因式分解---公式法》评课1、尊重学生的知识体验,找准学生新知的“最近发展区”教材是知识的载体,教师在充分把握教材知识点的前提下灵活处理教材内容。

本节课,于老师从生活实例“求两个正方形所围成的绿地面积”入手先让学生主动探究。

于老师的创造性开发课程资源,合理运用教学方法,发挥学生已有基础知识迁移作用,既激发了学生的学习兴趣,同时也体现了知识间的联系。

新课的引入顺利自然,也使学生在课的一开始就积极地投入到课堂教学之中。

课程既有新意又切合学生实际,符合学生认知。

2、注重学生自主探索,激发学生主动获取新知。

数学新课程标准指出:数学教学要以学生发展为本,让学生生动活泼、积极主动地参与数学学习活动,使学生在获得所必须的基本数学知识和基本技能的同时,在情感、态度、价值观和能力等方面都得到发展。

根据教材的特点,于老师在深入钻研与把握教材的基础上,力求引导学生自我完成探究,在初步经历"观察、尝试、操作、交流、欣赏"等数学活动中形成相关的活动经验,体验数学知识。

在课堂上创建一种开放的、浸润的、积极互动的课堂文化,让学生学得轻松愉快、扎实有效。

把学习的空间还给了学生,不仅培养了学生自主学习的能力,同时体验了成功的快乐。

3、挖掘教材素材,巧妙整合课程资源。

新课程实施的一个突出变化,就是教材不再是教学的唯一依据,不再占据绝对的主导地位,而是提倡教师依据自己所追求的,想要达到的目标,以及学生的实际情况,对教材内容进行选择、组合、再造,创造性地使用教材,体现的是用教材,而不是拘泥于教材。

于老师大胆进行教学从组,改变传统的因式分解教学,重视公式的特点的分析的,发展了学生的数学思维,同时为后继学习起到重要的作用。

很好的实现了有效的课堂教学。

于老师教学既用着教材又跳出教材,充分体现老师的教学智慧。

3.3.2因式分解-公式法--完全平方式

3.3.2因式分解-公式法--完全平方式
陬市中学 徐金华
完全平方公式法
我们前面学习了利用平方差公式来分 解因式即: 2 2
a -b =(a+b)(a-b)
例如: 2-9b2= (2a+3b)(2a-3b) 4a
回忆完全平方公式 2 2 2 ab a 2ab b
ab
2
a 2ab b
2
2
a 2ab b a b 2 2 a 2ab b a b
2
请运用完全平方公式把下列各式分解因式:
2
1 1 5 x x 原式 x 4 2 2 2 2 6 4a 12ab 9b 原式 2a 3b
2
2
(1)3ax 6axy 3ay
2 2
2
( 2)( a b) 12 ( a b) 36
A、a2+b2+ab C、a2-ab+2b2
B、a2+2ab-b2 D、-2ab+a2+b2
2、下列各式中,不能用完全平方公 C 式分解的是( )
A、x2+y2-2xy B、x2+4xy+4y2 C、a2-ab+b2 D、-2ab+a2+b2
3、下列各式中,能用完全平方公式 分解的是( D ) A、x2+2xy-y2 B、x2-xy+y2 C、1 x 2 -2xy+y 2 D、 1 x 2 -xy+y 2
2 2
现在我们把这个公式反过来
2
2
很显然,我们可以运用以上这 个公式来分解因式了,我们把 它称为“完全平方公式”
a 2ab b a 2ab b

因式分解公式法

因式分解公式法

因式分解公式法
公式法定义:如果把乘法公式的等号两边反过来,就可以得到一些特殊形式的多项式的因式分解公式。

这种分解因子的方法叫做公式法。

分解公式:
1.平方差公式:
即两个数的平方差等于这两个数之和与这两个数之差的乘积。

2.完全平方公式:
也就是说,两个数的平方和加上(或减去)这两个数的乘积的两倍,等于这两个数的和(或差)的平方。

注:可以用完全平方公式分解因子的多项式一定是三项式,其中两个可以写成两个数(或公式)的平方和,另一个是这两个数(或公式)的乘积的两倍。

公式:第一个正方形,最后一个正方形,两个乘积放在中间。

相同的符号相加,不同的符号相减,符号加在不同的符号之前。

通过例2我们可以总结出以下几点:
1、如果多项式的首项为负,应先提取负号;
这里的“负”,指“负号”。

如果多项式的第一项是负的,一般要提出负号,使括号内第一项系数是正的。

2、如果多项式的各项含有公因式,那么先提取这个公因式,再进一步分解因式;
需要注意的是,当一个多项式的整项都是公因式时,先提出这个公因式,然后不要遗漏括号中的1;公因数要一次性清理干净,每个括号内的多项式不能再分解。

3、如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解;
4.如果以上方法无法分解,可以尝试分组、拆分、补充的方式进行分解。

公式:先提第一个负号,再看有没有公因数,然后看能不能设个公式,试试十字乘法,适当分组。

简便计算:229²-171²
解:229²-171²
=(229+171)(229-171)
=400×58
=23200。

(完整版)因式分解——公式法教案

(完整版)因式分解——公式法教案

因式分解——公式法(1)一.教课内容人教版八年级上册数学十四章因式分解——公式法第一课时二.教材剖析分解因式与数系中分解质因数近似,是代数中一种重要的恒等变形,它是在学生学习了整式运算的基础上提出来的,是整式乘法的逆向变形。

在后边的学习过程中应用宽泛,如:将分式通分和约分,二次根式的计算与化简,以及解方程都将以它为基础。

所以分解因式这一章在整个教材中起到了承上启下的作用。

同时,在因式分解中表现了数学的众多思想,如:“化归”思想、“类比”思想、“整体”思想等。

所以,因式分解的学习是数学学习的重要内容。

依据《课标》的要求,本章介绍了最基本的两种分解因式的方法:提公因式法和运用公式法(平方差、完好平方公式)。

所以公式法是分解因式的重要方法之一,是现阶段的学习要点。

三.教课目的知识与技术:理解和掌握平方差公式的构造特色,会运用平方差公式分解因式过程与方法: 1. 培育学生自主研究、合作沟通的能力2.培育学生察看、剖析和创新能力,深入学生逆向思想能力和数学应企图识,浸透整体思想感情、态度与价值观:让学生在合作学习的过程中体验成功的愉悦,进而加强学好数学的梦想和信心四.教课重难点要点:会运用平方差公式分解因式难点:正确理解和掌握公式的构造特色,并擅长运用平方差公式分解因式易错点:分解因式不完全五.教课方案(一)温故知新1.什么是因式分解?以下变形过程中,哪个是因式分解?为何?22(1)( 2x - 1) = 4 x- 4x + 1;(2)3x2 + 9xy - 3x = 3x( x+ 3y + 1);(3)x2 - 4+ 2x = ( x + 2)( x - 2) + 2x.2.我们已经学过的因式分解的方法是什么?将以下多项式分解因式。

(1) a3b3 - 2a2 b - ab ;( 2) - 9 x2 y + 3xy2 - 6 xy.【设计企图】经过复习因式分解的定义和方法,为持续学习公式法作好铺垫。

3.依据乘法公式进行计算:(1)( x + 1)(x -1);(2)( x + 2 y)(x - 2 y).4.依据上题结果分解因式:(1) x2 - 1;(2) x 2 - 4 y 2 .由以上 3、 4 两题,你发现了什么?【设计企图】经过整式乘法中的平方差公式引出公式法因式分解进而引出课题。

因式分解常用的六种方法详解

因式分解常用的六种方法详解

一、提公因式法这种方法是最简单的,如果看到多项式中有公因子,不管三七二十一,先提取一个公因子再说,因为这样整个问题就被简化了,有点类似我们刚提到的利用因子定理进行因式分解。

例题:因式分解下列多项式:(1)x3y−xy3=xy(x2−y2)=xy(x+y)(x−y) ;(2) 3x3−18x2+27x=3x(x2−6x+9)=3x(x−3)2 ;(3) 3a3+6a2b−3a2c−6abc=3a(a2+2ab−ac−2bc)=3a[a(a−c)+2b(a−c)]=3a(a+2b)(a−c).二、公式法因式分解是把一个多项式化为几个最简整式的乘积的形式,是整式乘积的逆运算,所以如果我们熟悉整式乘积的公式,那么解决因式分解也会很快。

常用的公式如下:(x+a)(x+b)=x2+(a+b)x+ab(a±b)2=a2±2ab+b2(a±b)3=a3±3a2b+3ab2±b3a2−b2=(a−b)(a+b)a3−b3=(a−b)(a2+ab+b2)a3+b3=(a+b)(a2−ab+b2)(a+b+c)2=a2+b2+c2+2ab+2bc+2caa3+b3+c3−3abc=(a+b+c)(a2+b2+c2−ab−bc−ca)还有两个常考的n次方展开的公式:an−bn=(a−b)(an−1+an−2b+an−3b2+⋯+abn−2+bn−1)(n∈Z+)an+bn=(a+b)(an−1−an−2b+an−3b2−⋯−abn−2+bn−1)(n is odd)例题:因式分解:(a2+b2−1)2−4a2b2=(a2+b2−1+2ab)(a2+b2−1−2ab)=[(a+b)2−1][(a−b)2−1]=(a+b+1)(a+b−1)(a−b+1)(a−b−1)三、十字相乘法(双十字相乘法)简单的十字相乘其实就是公式(x+a)(x+b)=x2+(a+b)x+ab的运用,这个大家都很熟悉,还有一句口诀:首尾分解,交叉相乘,求和凑中。

一元二次方程的解法(三)--公式法,因式分解法—知识讲解(提高)

一元二次方程的解法(三)--公式法,因式分解法—知识讲解(提高)

一元二次方程的解法(三)--公式法,因式分解法—知识讲解(提高)责编:常春芳【学习目标】1. 理解一元二次方程求根公式的推导过程,了解公式法的概念,能熟练应用公式法解一元二次方程;2. 正确理解因式分解法的实质,熟练运用因式分解法解一元二次方程;3. 通过求根公式的推导,培养学生数学推理的严密性及严谨性,渗透分类的思想.【要点梳理】要点一、公式法解一元二次方程1.一元二次方程的求根公式 一元二次方程,当时,.2.一元二次方程根的判别式一元二次方程根的判别式:. ①当时,原方程有两个不等的实数根; ②当时,原方程有两个相等的实数根; ③当时,原方程没有实数根.3.用公式法解一元二次方程的步骤 用公式法解关于x 的一元二次方程的步骤: ①把一元二次方程化为一般形式; ②确定a 、b 、c 的值(要注意符号); ③求出的值; ④若,则利用公式求出原方程的解; 若,则原方程无实根.要点诠释:(1)虽然所有的一元二次方程都可以用公式法来求解,但它往往并非最简单的,一定要注意方法的选用.(2)一元二次方程20 (0)ax bx c a ++=≠,用配方法将其变形为:2224()24b b ac x a a -+=①当240b ac ∆=->时,右端是正数.因此,方程有两个不相等的实根:1,2x =② 当240b ac ∆=-=时,右端是零.因此,方程有两个相等的实根:1,22b x a=-③ 当240b ac ∆=-<时,右端是负数.因此,方程没有实根.要点二、因式分解法解一元二次方程1.用因式分解法解一元二次方程的步骤 (1)将方程右边化为0; (2)将方程左边分解为两个一次式的积; (3)令这两个一次式分别为0,得到两个一元一次方程; (4)解这两个一元一次方程,它们的解就是原方程的解.2.常用的因式分解法 提取公因式法,公式法(平方差公式、完全平方公式),十字相乘法等.要点诠释:(1)能用分解因式法来解一元二次方程的结构特点:方程的一边是0,另一边可以分解成两个一次因式的积;(2)用分解因式法解一元二次方程的理论依据:两个因式的积为0,那么这两个因式中至少有一个等于0;(3)用分解因式法解一元二次方程的注意点:①必须将方程的右边化为0;②方程两边不能同时除以含有未知数的代数式.【典型例题】类型一、公式法解一元二次方程1.解关于x 的方程2()(42)50m n x m n x n m ++-+-=.【答案与解析】(1)当m+n =0且m≠0,n≠0时,原方程可化为(42)50m m x m m +--=.∵ m≠0,解得x =1.(2)当m+n≠0时,∵ a m n =+,42b m n =-,5c n m =-,∴ 2224(42)4()(5)360b ac m n m n n m m -=--+-=≥,∴ 24|6|2()n m m x m n -±==+,∴ 11x =,25n m x m n-=+.【总结升华】解关于字母系数的方程时,应该对各种可能出现的情况进行讨论.举一反三:【高清ID 号:388515关联的位置名称(播放点名称):用公式法解含有字母系数的一元二次方程---例2练习】【变式】解关于x 的方程2223(1)x mx mx x m ++=+≠;【答案】原方程可化为2(1)(3)20,m x m x -+-+= ∵1,3,2,a mb mc =-=-= ∴ 2224(3)8(1)(1)0b ac m m m -=---=+≥,∴ 3(1),2(1)m m x m -±+==- ∴ 122, 1.1x x m==-2. 用公式法解下列方程: (m-7)(m+3)+(m-1)(m+5)=4m ;【答案与解析】方程整理为224214540m m m m m --++--=,∴ 22130m m --=,∴ a =1,b =-2,c =-13,∴ 224(2)41(13)56b ac -=--⨯⨯-=,∴ m ==1==,∴ 11m =+21m =.【总结升华】先将原方程化为一般式,再按照公式法的步骤去解.举一反三:【高清ID 号:388515关联的位置名称(播放点名称):用因式分解法解含字母系数的一元二次方程---例5(3)】【变式】用公式法解下列方程:【答案】∵21,3,2,a b m c m ==-= ∴22224(3)4120b ac m m m -=--⨯⨯=≥∴32m m x ±==∴122,.x m x m ==类型二、因式分解法解一元二次方程3.(2015•东西湖区校级模拟)解方程:x 2﹣1=2(x+1).【答案与解析】解:∵x 2﹣1=2(x+1),∴(x+1)(x ﹣1)=2(x+1),∴(x+1)(x ﹣3)=0,∴x 1=﹣1,x 2=3.【总结升华】本题主要考查了因式分解法解一元二次方程的知识,左边先平方差公式分解,然后提取公因式(x+1),注意不要两边同除(x+1),这样会漏解.举一反三:【变式】解方程(2015·茂名校级一模)(1)x 2-2x-3=0; (2)(x-1)2+2x(x-1)=0.【答案】解:(1)分解因式得:(x-3)(x+1)=0∴x-3=0,x+1=0∴x 1=3,x 2=-1.(2)分解因式得:(x-1)(x-1+2x )=0∴x-1=0,3x-1=0∴x 1=1,x 2=.134.如果2222()(2)3x y x y ++-=,请你求出22x y +的值.【答案与解析】设22x y z +=,∴ z(z-2)=3.整理得:2230z z --=,∴ (z-3)(z+1)=0.∴ z 1=3,z 2=-1.∵ 220z x y =+>,∴ z =-1(不合题意,舍去)∴ z =3.即22x y +的值为3.【总结升华】如果把22x y +视为一个整体,则已知条件可以转化成一个一元二次方程的形式,用因式分解法可以解这个一元二次方程.此题看似求x 、y 的值,然后计算22x y +,但实际上如果把22x y +看成一个整体,那么原方程便可化简求解。

因式分解——运用公式法

因式分解——运用公式法

因式分解——运用公式法因式分解是将一个多项式化简成一系列乘积的过程。

通常有两种方法用于进行因式分解:公式法和分组法。

公式法可以概括为以下几种常用的因式分解公式:1.a²-b²=(a+b)(a-b)这是平方差公式,用于因式分解差的平方。

例如,我们可以将x²-4分解为(x+2)(x-2)。

2. a³ + b³ = (a + b)(a² - ab + b²)这是立方和公式,用于因式分解和的立方。

例如,我们可以将x³+8分解为(x+2)(x²-2x+4)。

3. a³ - b³ = (a - b)(a² + ab + b²)这是立方差公式,用于因式分解差的立方。

例如,我们可以将x³-8分解为(x-2)(x²+2x+4)。

4. a⁴ + b⁴ = (a² + √2ab + b²)(a² - √2ab + b²)这是四次和公式,用于因式分解和的四次方。

例如,我们可以将x⁴+16分解为(x²+4√2x+4)(x²-4√2x+4)。

5. a⁴ - b⁴ = (a² - √2ab + b²)(a² + √2ab + b²)这是四次差公式,用于因式分解差的四次方。

例如,我们可以将x⁴-16分解为(x²-4√2x+4)(x²+4√2x+4)。

除了以上这些常用的因式分解公式外,还有一些其他形式的因式分解公式,以及一些特殊的因式分解技巧。

例如,对于一个二次方程式ax² + bx + c,我们可以使用求根公式x = (-b ± √(b² - 4ac)) / 2a 来因式分解。

根据求根公式,我们可以将二次方程ax² + bx + c 分解为两个因式的乘积 (x - x₁)(x - x₂),其中 x₁和 x₂是由求根公式得到的两个根。

因式分解的9种方法

因式分解的9种方法

因式分解的多种方法----知识延伸,向竞赛过度1. 提取公因式:这种方法比较常规、简单,必须掌握。

常用的公式:完全平方公式、平方差公式例一:0322=-x x解:x(2x-3)=0, x1=0,x2=3/2这是一类利用因式分解的方程。

总结:要发现一个规律:当一个方程有一个解x=a 时,该式分解后必有一个(x-a)因式,这对我们后面的学习有帮助。

2. 公式法常用的公式:完全平方公式、平方差公式。

注意:使用公式法前,部分题目先提取公因式。

例二:42-x 分解因式分析:此题较为简单,可以看出4=2 2,适用平方差公式a 2 -b 2 =(a+b)(a-b) 2解:原式=(x+2)(x-2)3. 十字相乘法是做竞赛题的基本方法,做平时的题目掌握了这个也会很轻松。

注意:它不难。

这种方法的关键是把二次项系数a 分解成两个因数a1,a2的积a1•a2,把常数项c 分解成两个因数c1,c2的积c1•c2,并使a1c2+a2c1正好是一次项b ,那么可以直接写成结果例三: 把3722+-x x 分解因式.分析:先分解二次项系数,分别写在十字交叉线的左上角和左下角,再分解常数项,分别写在十字交叉线的右上角和右下角,然后交叉相乘,求代数和,使其等于一次项系数.分解二次项系数(只取正因数): 2=1×2=2×1;分解常数项: 3=1×3=3×1=(-3)×(-1)=(-1)×(-3).用画十字交叉线方法表示下列四种情况:经过观察,第四种情况是正确的,这是因为交叉相乘后,两项代数和恰等于一次项系数-7.解 原式=(x-3)(2x-1).总结:对于二次三项式ax^2+bx+c(a≠0),如果二次项系数a 可以分解成两个因数之积,即a=a1a2,常数项c 可以分解成两个因数之积,即c=c1c2,把a1,a2,c1,c2,排列如下:a1 c1╳a2 c2a1c2+a2c1按斜线交叉相乘,再相加,得到a1c2+a2c1,若它正好等于二次三项式ax2+bx+c 的一次项系数b ,即a1c2+a2c1=b ,那么二次三项式就可以分解为两个因式a1x+c1与a2x+c2之积,即ax2+bx+c=(a1x+c1)(a2x+c2).这种方法要多实验,多做,多练。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5.把下列各式分解因式:
(1)(2x-1)2-(x+2)2; (2)4x2-12x+9.
解:(1)原式=(2x-1+x+2)(2x-1-x-2)=(3x+1)(x-3).
(2)原式=(2x)2-12x+32=(2x-3)2.
1、下列多项式中,是完全平方式的是( ) A、x 2-6x-9 B、a 2 -16a+3 C、x 2 -2xy+4y 2 D、4a2 -4a+1 2、下列多项式属于正确分解因式的是( ) A、1+4x 2 =(1+2x)2 B、6a-9-a 2 =-(a-3)2 C、1+4m-4m2 =(1-2m)2 D、x2 +xy+y 2 =(x+y) 2 3、分解因式: (1)a2 -10a+25 (2)-3x2 +6xy-3y2 4 (3) 3ax 2 +6axy+3ay 2 (4) (a+b) -12(a+b) 2 +36
)
分解因式必须 进行到每一个 (1)x4—y4; (2) a3b — ab. 多项式都不能 再分解为止 . 分析:(1)x4-y4写成(x2)2 - (y2)2的形式,
例4 分解因式:
这样就可以利用平方差公式进行因式分解了.
(2)a3b-ab有公因式ab,应先提出公因式, 再进一步分解.
解:(1) x4-y4
因式分解的一般步骤
例 3:分解因式: (1)x3-4x;
(2)36m2a-9m2a2-36m2. 思路导引:(1)中有公因式 x,先提公因式,剩下 x2-4 可用
平方差公式分解.(2)中有公因式-9m2,提出后剩下 a2-4a+4, 可用完全平方公式进行分解.
解:(1)x3-4x=x(x2-4)=x(x+2)(x-2).
例3 分解因式: (1) 4x2 – 9 ; (2) (x+p)2 – (x+q)2.
分析:在(1)中,4x2 = (2x)2,9=32,4x2-9 = (2x )2 –32, 即可用平方差公式分解因式. 在(2)中,把(x+p)和 (x+q)各看成一个整体, 设x+p=m,x+q=n,则原式化为m2-n2. (1) 4x2 –9 (2) (x+p)2 – (x+q) 2 = [ (x+p) +(x+q)] [(x+p) –(x+q)]
(2)36m2a-9m2a2-36m2=-9m2(a2-4a+4)=-9m2(a-2)2.
【规律总结】因式分解一般按下列步骤进行:
(1)一提.若有公因式,应先提取公因式. (2)二套.即套用公式,如果各项没有公因式,那么可以尝 试运用公式法来分解.若为二项式,考虑用平方差公式;若为
三项式,考虑用完全平方公式.
分解因式
(1) 16x 2 +24x+9
(2) -x 2 +4xy-4y 2
2 解:(1)原式=(4x) +2•4x•3+32 =(4x+3)2
(2)原式=-(x -4xy+4y ) 2 2 =-[x -2•x•2y+(2y) ] =-(x-2y)2
【规律总结】凡是符合完全平方公式左边特点的三项式, 都可以运用完全平方公式分解因式.
用平方差公式分解因式(重点 例 1:将下列各式分解因式:
(1)25m2-n2; (2)(x-y)2-1.
思路导引:可直接利用平方差公式分解因式.
解:(1)25m2-n2=(5m)2-n2=(5m+n)(5m-n). (2)(x-y)2-1=(x-y+1)(x-y-1). 【规律总结】凡是符合平方差公式左边特点的二项式,都 可以运用平方差公式分解因式.
15.4.2 思考:
公式法(2)
你能将多项式a2+2ab+b2 与a2-2ab+b2分解因 式吗?这两个多项式有什么特点?
(a+b)2=a2+2ab+b2, (a-b)2=a2-2ab+b2.
a2+2ab+b2=(a+b)2 a2-2ab+b2=(a-b)2
两个数的平方和加上(或减去)这两个数的 积的Hale Waihona Puke 倍,等于这两个数的和(或差)的平方.
=3a(x+y)2 .
=(a+b-6)2.
用完全平方公式分解因式(重点) 把整式乘法中的完全平方公式反过来,就得到 a2+2ab+b2 =(a+b)2;a2-2ab+b2=(a-b)2. 例 2:分解因式: (1)y2-4x(y-x);
(2)(a2+b2)2-4a2b2.
思路导引:(1)题将原式展开,再运用完全平方公式即可分 解;(2)题先运用平方差公式分解因式,然后将各个因式运用完
= (x2+y2)(x2-y2)
(2) a3b-ab
=ab(a2- 1) =ab(a+1)(a- 1).
= (x2+y2)(x+y)(x-y).
1. 计算:(1)
(x-1) 2
(2) (2y+3)2
2. 根据1题的结果分解因式: (1) x2 -2x+1
(2) 4y2 +12x+9
3.由以上1、2两题你发现了什么?
2
2
例6 分解因式: (1) 3ax2+6axy+3ay2;
(2) (a+b)2-12(a+b)+36.
(2)中将a+b看作一 个整体,设a+b=m, 则原式化为完全平 方式m2-12m+36.
分析:在(1)中有公因式3a,应先提出公 因式,再进一步分解. 解:(1)3ax2+6axy+3ay2 (2)(a+b)2-12(a+b)+36 =3a(x2+2xy+y2) =(a+b)2-2· (a+b)· 6+62
§15.4 .2 公式法
1. 计算:(1)
(x+1)(x-1)
(2) (y+4)(y-4)
2
2. 根据1题的结果分解因式: 2 (1) x -1 3.由以上1、2两题你发现了什么?
(2) y -16
思考
15.4.2
公式法(1)
你能将多项式x2-16 与多项式m 2-4n2分解 因式吗?这两个多项式有什么共同的特点吗? (a+b)(a-b) = a2-b2 a2-b2 =(a+b)(a-b)
全平方公式分解因式.
解:(1)y2-4x(y-x)=y2-4xy+4x2=(y-2x)2.
(2)(a2+b2)2-4a2b2=(a2+b2)2-(2ab)2 =(a2+b2+2ab)(a2+b2-2ab)=(a+b)2(a-b)2. 【规律总结】凡是符合完全平方公式左边特点的三项式, 都可以运用完全平方公式分解因式.
B.②④
3.把代数式 ax2-4ax+4a 分解因式,下列结果中正确的是 ( A ) A.a(x-2)2 C.a(x-4)2 B.a(x+2)2 D.a(x+2)(x-2)
4 . 把 多 项 式 2mx2 - 4mxy + 2my2分 解 因 式 的 结 果 是 2m(x-y)2 . ____________
1.下列运用平方差公式分解因式中,正确的是( A.x2+y2=(x+y)(x-y) B.x2-y2=(x+y)(x-y) C.-x2+y2=(-x+y)(-x-y)
B )
D.-x2-y2=-(x+y)(x-y)
2.下列代数式中,是完全平方式的有( A ) ①a2-4a+4; ④6x2+3x+1; A.①③ ②9a2+16b2-20ab; ⑤x2+4xy+2y2. C.③④ D.①⑤ ③4y2-4y+1;
= (2x)2 – 3 2
= (2x+3)(2x – 3). =(2x+p+q)(p–q).
1、下列多项式中,能用平方差分解因式的是( 2 A、x2 -xy B、x2 +xy C、x –y 2 D、x2 +y 2 2、分解因式: 2 2 2 2 (1)a -144b (2)16(x+y) -25(x-y)
例5 分解因式: (1) 16x2+24x+9; (2) –x2+4xy–4y2.
分析:在(1)中,16x2=(4x)2,9=32,24x= 2· 4x· 3,所以16x2+24x+9是一个完全平方式,即 16x2+24x+9=(4x)2+2· 4x· 3+32
a· b +b2 a2 + 2 ·
【规律总结】凡是符合完全平方公式左边特点的三项式, 都可以运用完全平方公式分解因式.
2.用完全平方公式分解因式
两个数的平方和加上(或减去)这两个数的积的 2 倍,等于这 和(或差)的平方 两个数的______________. (a+b)2 ; 用公式表示为 a2+2ab+b2=________ (a-b)2 a2-2ab+b2=________.
形如a2+2ab+b2或a2-2ab+b2的多项式 叫做完全平方式
通过本节课的学习,你有哪些收获和感悟?
1.把x -2x2 y2 +y 分解因式,结果是( ) A、 (x-y) 4 B (x 2 -y2 )4 C、 (x+y) 2 (x-y)2 D、 (x+y)2 (x-y) 2. 分解因式: 2 2 2 2 2 2 2 (1) (x +4y ) -16x y (2) a (a-b)+b (b-a) 3. 已知 x=-19, y=12, 求代数式4x2 +12xy+9y2
4
4
相关文档
最新文档