遥感数字影像处理
遥感图像处理色彩原理及数字影像基础

R
?
G
B
BIP(Band Interleaved by Pixel):将每个像元的n 个波段的亮度值按顺序排列在数据集中
二、光学处理原理
(一)、光学原理与光学处理
1. 色彩原理 2. 加色法与减色法
1 颜色概述
• 颜色的基本概念 • 颜色空间
1.1 颜色的基本概念
1.2 颜色的性质
——亮度、色调、饱和度
数值
地物辐射能量差 光电二极管
(模拟电信号)
(亮度值)
遥感图像数字化
• 连续的遥感图像变换 1. 采样 为离散的数字图像的 2. 量化 过程
传感器
采样 量化
g(x,y)
数字图像
地面站
I(x,y)
I(x,y)=f(g(x,y)) f:采样和量化函数
1 采样
• 按照一定的方法从连续的函数中提取离 散点数据的过程
为图像的应用提供必要的信息。
遥感数字图像的记录方式:
1. BSQ 2. BIL 3. BIP
BSQ(Band Sequential Format): 将每个波段的全部像元亮度值放在一个单独的文件中
BIL(Band Interleaved by Line): 将每行像元的n个波段的亮度值按顺序放置在数据集中
量化的级数2b常用b8光学影像的数字化2遥感数字图像处理?遥感数字图像的特点?便于计算机处理与分析?图像信息损失低?抽象性强2遥感数字图像处理?数字图像处理?对一个物体的数字表示施加一系列的操作以得到所期望结果的过程?数字图像分析?将一幅图像转化为一种非图像的表示如一个测量数据集或一个决策等2遥感数字图像处理?遥感数字图像处理?利用计算机图像处理系统对遥感图像中的象素进行系列操作的过程?主要内容?图像增强?图像校正?信息提取3遥感图像的存储?数据级别?元数据与数据格式1数据级别?0级产品
遥感数据处理与解译方法的综述与比较

遥感数据处理与解译方法的综述与比较引言:遥感技术作为一种重要的地球观测方法,在环境监测、资源调查、城市规划等领域发挥着不可替代的作用。
对于遥感数据的处理与解译方法的研究和比较,旨在提高数据的有效性和准确性,促进遥感技术的进一步应用和发展。
一、遥感数据处理方法1. 数字图像处理数字图像处理是遥感数据处理中最基本的方法之一。
它通过对遥感影像进行灰度拉伸、图像增强、滤波等处理,可以改善图像的质量和分辨率,提取出有用的地物信息。
常用的数字图像处理软件有ENVI、ERDAS等。
2. 特征提取与分类特征提取和分类是遥感数据处理中的关键环节。
特征提取通过采用不同的算法和方法,将地物进行几何、光谱、纹理等多个维度的描述,并将其转化为可用于分类的特征向量。
分类则是将提取的特征向量与事先定义好的地物类别进行匹配,以实现不同地物的自动识别和分类。
3. 数据融合数据融合是将多源数据进行集成和融合,以获得更全面和准确的地物信息。
常见的数据融合方法包括像素级融合、特征级融合和决策级融合等。
数据融合能够充分利用不同源数据的优势,提高地物分类和解译的准确性。
二、遥感数据解译方法1. 监督分类监督分类是一种基于已有样本训练的分类方法。
它通过使用事先标记好的样本数据进行训练,并根据样本数据的特征对整个遥感影像进行分类。
监督分类的精度较高,但需要大量的标记样本数据,且对选取的样本数据质量要求较高。
2. 非监督分类非监督分类是一种无需事先标记样本的分类方法。
它通过对遥感影像进行聚类分析,将图像中相似的像素聚在一起形成多个类别。
非监督分类的优势在于可以发现图像中的隐含信息和相似性,但分类结果的准确性较低。
3. 目标检测目标检测是遥感数据解译中的另一重要方法。
它通过对遥感影像中的特定地物目标进行识别和提取,比如建筑物、道路、植被等。
目标检测通常需要结合地物的形状、纹理等特征进行分析,以提高检测的准确性和稳定性。
三、遥感数据处理与解译方法的比较1. 精度比较从数据处理的角度来看,数字图像处理是最基础的方法,可以对图像进行增强和滤波,但并不能提供地物的精确分类信息。
遥感数字图像处理影像校正ppt课件

-1-
大气影响辐射纠正
精确的校正公式需要找出每个波段像元亮度值 与地物反射率的关系。为此需得到卫星飞行时 的大气参数,以求出透过率Tθ、Tφ等因子。如 果不通过特别的观测,一般很难得到这些数据, 所以,常常采用一些简化的处理方法,只去掉 主要的大气影响,使影像质量满足基本要求。
-1-
第二讲 影像校正
1 数字影像的性质和特点 2 影像校正
-1-
1 数字影像的性质与特点
1.1模拟影像与数字影像 1.2 数字影像的特点 1.3 多波段数字影像的数据格式
-1-
1 数字影像的性质与特点
1.1模拟影像与数字影像 – 模拟影像:普通像片那样的灰度级及颜色连续变化 的影像 – 数字影像:把模拟影像分割成同样形状的小单元, 以各个小单元的平均亮度值或中心部分的亮度值作 为该单元的亮度值进行数字化的影像。
-1-
2.2 大气校正
进入大气的太阳辐射会发生反射、折射、吸收、散 射和透射。其中对传感器接收影响较大的是吸收和散射。 为消除由大气的吸收、散射等引起失真的辐射校正,称 作大气校正。
-1-
2.2.1 影响遥感影像辐射失真的大气因素
(1)大气的消光(吸收和散射) (2)天空光(大气散射)照射 (3)路径辐射
-1-
大气影响的回归分析法纠正
假定某红外波段,存在程辐射为主的大气影响,且亮 度增值最小,接近于零,设为波段a。现需要找到其他 波段相应的最小值,这个值一定比a波段的最小值大一 些,设为波段b,分别以a,b波段的像元亮度值为坐标, 作二维光谱空间,两个波段中对应像元在坐标系内用 一个点表示。由于波段之间的相关性,通过回归分析 在众多点中一定能找到一条直线与波段b的亮度Lb轴相 交,且
遥感数字图像处理(ERDAS)

• 色彩变换(RGB-IHS)
– 将图像从红绿蓝彩色空间转换到以亮度、色度、 饱和度为定位参数的彩色空间,以便使图像颜 色与人眼看到的更接近。
• 指数计算
– 应用一定的数学方法,将遥感图像中不同波段 的灰度值进行各种组合运算,计算反映矿物及 植被等的常用比率和指数(植被指数,裸露指 数等)
傅立叶变换
植被指数: 水体指数: 建筑指数:
专题制图输出
根据工作需要和制图区域的地别特点,进行地图四面的整体设计,设计内 容也括图幅大小尺寸、图面布置方式、地图比例尺、图名及图例说明等; 需要淮备专题制图输出的数据层,也就是要在窗口中打开有关的图像或图 形文件; 启动地图编辑器,正式开始制作专题地图; 确走地图的内图框,同时确定输出地图所也含的实际区域范围,生成基本 的的制图输出图面内容: 在主要图面内容周围,放置图廓线、格网线、坐标注记,以及图名、图例、 比例尺、指北针等图廓外要素; 设首打印机,打印输出地图。
20 20
250/500/1000
产品
蓝
绿
红
近红外
短波红外
中波红外
热红外
全色
Landsat-7
1
1
1
1
2
1
1
Landsat-5
1
1
1
1
2
1
Spot-4
1
1
1
1
1
Spot-5
1
1
1
1
1
QuickBird
1
1
1
1
1
Modis
36
产品
多光谱数据
PAN数据
备注
全景范围
SPOT-2/4
遥感卫星影像处理与遥感数据应用

遥感卫星影像处理与遥感数据应用遥感卫星影像处理与遥感数据应用是一项利用遥感技术获取和处理卫星影像数据,并应用这些数据进行地理信息分析、资源评估、环境监测等方面的研究与应用任务。
遥感卫星是指运行在地球轨道上的一种卫星,它搭载有遥感传感器,可以通过感应地球表面反射、辐射的电磁波,并将其转化为数字图像数据。
这些遥感卫星影像数据可以提供高分辨率、广覆盖率的地球表面信息,对于地理空间分析具有重要意义。
遥感卫星影像处理是指基于遥感卫星获取的数字图像数据,通过一系列的图像预处理、影像纠正、特征提取、分类分类等一系列操作,将原始影像数据转化为可用于地理信息系统分析的矢量或光栅数据。
这些数据可以被用于生成地形图、土地利用分类图、植被盖度研究等目的。
首先,遥感卫星影像处理的第一步是图像预处理。
图像预处理包括辐射校正、大气校正、几何校正等步骤,以确保获取到的影像数据具备一致性和可比性。
通过辐射校正,可以将原始影像数据从数值上可比较,并将其转换为反射率或亮度值。
大气校正则移除了大气对影像的影响,减少由于大气散射和吸收而引起的信息噪声。
几何校正则纠正影像中的位置、角度等几何失真,以保证影像数据准确地反映地球表面的特征。
其次,遥感卫星影像处理的下一步是影像纠正。
影像纠正是指通过对影像进行投影变换、边缘匹配、波段匹配等处理,使得图像在空间尺度和角度上比较准确地与地理实体匹配。
通过影像纠正,可以使影像数据受到形变、旋转、尺度变化等因素的影响较小,为后续的地理信息分析提供准确的基础。
第三,遥感卫星影像处理的关键步骤是特征提取。
特征提取是指从遥感卫星影像数据中提取出与地理实体相关的特征信息。
常见的特征包括植被指数、土地利用类型、水体信息等。
通过采用不同的光谱拓谱和纹理特征的计算方法,可以提取出不同类型地物的特征信息。
特征提取是遥感卫星影像处理的重要环节,为后续的分类和分析提供了基础。
最后,遥感卫星影像处理的最终目标是分类分析。
分类分析是利用遥感卫星影像数据,对地球表面的特征进行分割、分类和识别。
遥感数字图像处理

遥感数字图像处理1. 概述遥感数字图像处理是指利用遥感技术获取的各种遥感数据,如航空影像、卫星影像等,进行数字化处理和分析的过程。
遥感数字图像处理在地理信息系统(GIS)领域有着广泛的应用,能够提取出地表覆盖类型、地形和植被等丰富的地理信息,为环境监测、资源管理、农业和城市规划等领域提供重要的数据支持。
2. 遥感数字图像处理的步骤遥感数字图像处理主要包括以下几个步骤:2.1 数据获取数据获取是遥感数字图像处理的第一步,通过卫星、航拍等遥感设备获取地理信息数据。
这些数据以数字图像的形式存在,包括多光谱、高光谱、雷达和激光雷达等数据。
2.2 数据预处理数据预处理是为了消除图像中的噪声和伪影,以及纠正图像的几何和辐射畸变。
常见的数据预处理方法包括辐射校正、几何校正、大气校正等。
2.3 图像增强图像增强是为了使图像更加清晰,突出地物的特征。
常用的图像增强方法包括直方图均衡化、滤波、锐化等。
2.4 特征提取特征提取是为了从图像中提取出具有区别性的特征,以便进行后续的分类和识别。
常见的特征提取方法包括纹理特征、形状特征、频域特征等。
2.5 图像分类图像分类是将图像中的像素划分为不同的类别。
常用的图像分类方法包括基于像元的分类、基于对象的分类、基于深度学习的分类等。
2.6 图像分割图像分割是将图像划分为不同的区域或对象。
常用的图像分割方法包括阈值分割、边缘分割、区域生长等。
2.7 地物提取地物提取是从图像中提取出感兴趣的地物或地物属性。
常见的地物提取方法包括目标检测、目标识别、地物面积计算等。
2.8 结果评价结果评价是对处理结果进行准确性和可靠性的评估。
常用的结果评价方法包括混淆矩阵、精度评定、误差矩阵等。
3. 遥感数字图像处理的应用遥感数字图像处理在各个领域都有广泛的应用,主要包括以下几个方面:3.1 环境监测遥感数字图像处理可以用于环境监测,如水质监测、土壤污染监测等。
通过遥感图像,可以获取水体和土地的信息,分析水质和土壤的污染程度。
遥感技术中遥感影像的处理方法详解

遥感技术中遥感影像的处理方法详解遥感技术是利用遥感设备获取地球上的图像和数据,以了解地球表面的各种特征和现象。
遥感影像是遥感技术的核心输出,它通过对地球表面进行高分辨率的拍摄和记录,提供了丰富的地理信息。
在遥感技术中,遥感影像的处理方法至关重要。
正确的处理方法可以提取出影像中有价值的信息,帮助我们深入了解地球表面的特征和变化。
下面将详细介绍几种常用的遥感影像处理方法。
1. 遥感影像的预处理遥感影像在传输和记录过程中可能会受到一些噪声和干扰的影响,因此需要进行预处理。
预处理的目标是去除噪声、调整图像的对比度和亮度,使得影像更适合进行后续的处理和分析。
常见的预处理方法包括数字滤波、辐射定标和大气校正等。
2. 遥感影像的几何校正遥感影像获取时可能会受到地球表面形变、传感器姿态等因素的影响,导致影像出现几何失真。
几何校正的目标是将影像的几何特征恢复到真实地面情况下的状态,使得影像能够准确地反映地面特征。
常见的几何校正方法包括地面控制点的定位和影像配准等。
3. 遥感影像的分类遥感影像的分类是将影像中的像素按照一定的特征进行划分和归类的过程。
根据不同的应用需求,遥感影像的分类可以包括地物类别的划分、植被覆盖度的估计、土地利用类型的分析等。
常见的分类方法包括基于像素的分类、基于对象的分类和基于深度学习的分类等。
4. 遥感影像的变化检测遥感影像的变化检测是指比较不同时段的遥感影像,分析地表特征在时间上的变化情况。
变化检测可以用于监测自然灾害、城市扩张、森林砍伐等方面的变化。
常见的变化检测方法包括像素级变化检测和基于对象的变化检测等。
5. 遥感影像的数据融合遥感影像的数据融合是将多源、多光谱或多分辨率的遥感影像进行融合,以提高遥感影像的空间和光谱分辨率。
数据融合可以增强遥感影像的细节信息,改善遥感影像的可视化效果,提高遥感影像在各种应用中的精度和效果。
常见的数据融合方法包括主成分分析、小波变换和多尺度分析等。
6. 遥感影像的特征提取遥感影像的特征提取是从遥感影像中提取出目标物体的特征信息的过程。
测绘技术使用教程之遥感影像处理与解译方法

测绘技术使用教程之遥感影像处理与解译方法遥感影像是一种通过遥感技术获取的地球表面信息的图像数据,其广泛应用于测绘、地理信息系统、环境监测等领域。
在测绘技术使用教程中,遥感影像的处理与解译方法是一个重要的内容。
首先,遥感影像的处理包括预处理和后处理两个方面。
预处理主要包括影像的几何校正和辐射校正两个步骤。
几何校正是将遥感影像与地面坐标系对应起来,使得影像上的每个像素点都能与地表上的一个实际位置相对应。
辐射校正是对影像进行辐射定标,将数字值转化为实际的辐射亮度值,以便后续的解译分析。
接下来是遥感影像的解译方法。
遥感影像的解译可以分为目视解译和机器解译两种方法。
目视解译是根据影像上的各种特征,如颜色、形状、纹理等,进行人工的目视判断。
机器解译则是利用计算机技术对遥感影像进行自动解译,通过像元分类的方法将影像中的不同地物类型进行识别。
目视解译适用于复杂地物类型和精细地物边界的识别,而机器解译适用于大范围的地物分类和统计分析。
在目视解译中,根据影像的不同波段和特征,可以采用不同的解译方法。
常用的解译方法包括目视解译、图象比对、化色解译、特征解译等。
目视解译是根据影像的直观特征,如颜色、亮度等进行人工判断的方法,可以快速识别出地物的大致分布状况。
图象比对是将不同波段的影像进行对比,通过对比分析来判断地物类型的方法。
化色解译则是将不同波段的影像按照一定的比例叠加在一起,形成彩色影像,利用颜色差异进行地物类型的识别。
特征解译是根据地物的形状、纹理等特征进行判断的方法,适用于复杂地物类型的解译。
机器解译主要依靠计算机技术进行,包括图像分类、目标检测和变化检测等方法。
图像分类是根据影像的统计特征和分类模型,将影像中的不同地物类型进行自动识别和分类的方法。
目标检测是在图像中寻找特定目标的方法,如建筑物、车辆等。
变化检测是通过对比两个或多个时间点的遥感影像,分析影像变化的方法,适用于环境监测、城市规划等领域。
总之,遥感影像处理与解译方法是测绘技术中重要的内容。