自感现象及其应分析

合集下载

第四章第六节互感和自感

第四章第六节互感和自感

第六节 互感和自感[学习目标] 1.了解互感现象及其应用. 2.能够通过电磁感应的有关规律分析通电自感和断电自感现象. 3.了解自感电动势的表达式E =L ΔI Δt ,知道自感系数的决定因素. 4.了解自感现象中的能量转化.[学生用书P 29]一、互感现象(阅读教材第22页第1段至第3段)1.互感:两个线圈之间并没有导线相连,但当一个线圈中的电流变化时,它所产生的变化的磁场会在另一个线圈中产生感应电动势.这种现象叫做互感,这种感应电动势叫做互感电动势.2.互感的应用:利用互感现象可以把能量由一个线圈传递到另一个线圈,如变压器就是利用互感现象制成的.3.互感的危害:互感现象能发生在任何两个相互靠近的电路之间,互感现象有时会影响电路的正常工作.▏拓展延伸►———————————————————(解疑难)1.互感现象是一种常见的电磁感应现象,也满足法拉第电磁感应定律.2.互感能不通过导线相连来传递能量.3.变压器是利用互感制成的,而影响正常工作的互感现象要设法减小.1.(1)两线圈相距较近时,可以产生互感现象,相距较远时,不产生互感现象.( )(2)在实际生活中,有的互感现象是有害的,有的互感现象可以利用.( ) (3)只有闭合的回路才能产生互感.( )提示:(1)× (2)√ (3)×二、自感现象和自感系数(阅读教材第22页第4段至第24页第3段)1.自感:当一个线圈中的电流自身发生变化时,它产生的变化的磁场不仅在邻近的电路中激发出感应电动势,同样也在它本身激发出感应电动势的电磁感应现象.2.自感电动势:由于自感现象而产生的感应电动势.E =L ΔI Δt,其中L 是自感系数,简称自感或电感. 3.自感系数(1)单位:亨利,符号H.(2)决定自感系数大小的因素:与线圈的圈数、大小、形状以及有无铁芯等因素有关. ▏拓展延伸►———————————————————(解疑难)1.自感电动势的作用:总是阻碍导体中原电流的变化,即总是起着推迟电流变化的作用.2.自感电动势的方向:自感电动势总是阻碍导体中原来电流的变化,当原来电流增大时,自感电动势的方向与原来电流方向相反;当原来电流减小时,自感电动势的方向与原来电流方向相同.也遵循“增反减同”的规律.3.自感系数是由线圈本身性质决定的,是表征线圈产生自感电动势本领大小的物理量,数值上等于通过线圈的电流在1 s 内改变1 A 时产生的自感电动势的大小.4.线圈的长度越长,截面积越大,单位长度上匝数越多,线圈的自感系数越大,线圈有铁芯比无铁芯时自感系数大得多.2.(1)线圈的自感系数与电流大小无关,与电流的变化率有关.()(2)线圈自感电动势的大小与自感系数L有关,反过来,L与自感电动势也有关.()(3)线圈中电流最大的瞬间可能没有自感电动势.()(4)自感现象中,感应电流一定与原电流方向相反.()(5)一个线圈中的电流均匀增大,自感电动势也均匀增大.()提示:(1)×(2)×(3)√(4)×(5)×三、磁场的能量(阅读教材第24页第4段至第7段)1.线圈中电流从无到有时:磁场从无到有,电源的能量输送给磁场,储存在磁场中.2.线圈中电流减小时:磁场中的能量释放出来转化为电能.▏拓展延伸►———————————————————(解疑难)在自感现象中电能转化为线圈内的磁场能或线圈内的磁场能转化为电能,因此自感现象遵循能量守恒定律.3.断电自感的实验中,为什么开关断开后,灯泡的发光会持续一段时间?试从能量的角度加以解释.提示:开关断开后,线圈中储存的能量释放出来转化为电能,故灯泡发光会持续一段时间.对自感现象的理解[学生用书P30]自感现象的分析思路1.明确通过自感线圈的电流的变化情况(增大或减小).2.根据“增反减同”,判断自感电动势的方向.3.分析阻碍的结果:电流增大时,由于自感电动势的作用,线圈中的电流逐渐增大,与线圈串联的元件中的电流也逐渐增大;电流减小时,由于自感电动势的作用,线圈中的电流逐渐减小,与线圈串联的元件中的电流也逐渐减小.———————————(自选例题,启迪思维)1. 如图所示的电路中,电源电动势为E,内阻r不能忽略.R1和R2是两个定值电阻,L 是一个自感系数较大的线圈.开关S原来是断开的,从闭合开关S到电路中电流达到稳定为止的时间内,通过R1的电流I1和通过R2的电流I2的变化情况是()A.I1开始较大而后逐渐变小B.I1开始很小而后逐渐变大C.I2开始很小而后逐渐变大D.I2开始较大而后逐渐变小[思路探究](1)闭合开关S瞬间,线圈中的电流是如何变化的?线圈中自感电动势如何阻碍电流变化?(2)电阻R1两端电压如何变化?[解析]闭合开关S时,由于L是一个自感系数较大的线圈,产生反向的自感电动势阻碍电流的变化,所以开始I2很小,随着电流达到稳定,自感作用减小,I2开始逐渐变大.闭合开关S时,由于线圈阻碍作用很大,路端电压较大,随着自感作用减小,路端电压减小,所以R1上的电压逐渐减小,电流I1逐渐减小,故选AC.[答案]AC2. 如图所示,带铁芯的电感线圈的电阻与电阻器R的阻值相同,A1和A2是两个完全相同的电流表,则下列说法中正确的是()A.闭合S瞬间,电流表A1的示数小于A2的示数B.闭合S瞬间,电流表A1的示数等于A2的示数C.断开S瞬间,电流表A1的示数大于A2的示数D.断开S瞬间,电流表A1的示数等于A2的示数[解析]闭合开关时,线圈中产生与电流反向的自感电动势起到阻碍作用,所以电流表A1的示数小于电流表A2的示数,A对、B错;断开开关时,线圈中产生与原电流同向的自感电动势,并与R组成临时回路,电流表A1与电流表A2示数相等,C错、D对.[答案]AD3. 如图所示是一种延时装置的原理图,当S1闭合时,电磁铁F将衔铁D吸下,C线路接通;当S1断开时,由于电磁感应作用,D将延迟一段时间才被释放.则() A.由于A线圈的电磁感应作用,才产生延时释放D的作用B.由于B线圈的电磁感应作用,才产生延时释放D的作用C.如果断开B线圈的开关S2,无延时作用D.如果断开B线圈的开关S2,延时将变化[解析]线圈A中的磁场随开关S1的闭合而产生,随S1的断开而消失.当S1闭合时,线圈A中的磁场穿过线圈B,当S2闭合,S1断开时,线圈A在线圈B中的磁场变弱,线圈B中有感应电流,B中电流的磁场继续吸引D而起到延时的作用,所以B正确、A错误;若S2断开,线圈B中不产生感应电流而起不到延时作用,所以C正确、D错误.[答案]BC[名师点评](1)电流变化时,电感线圈对电流的变化有阻碍作用.(2)电流稳定时,电感线圈相当于一段导体,阻值即为直流电阻.通、断电自感中灯泡亮度变化分析[学生用书P31]1.通电自感如图甲所示,线圈产生的自感电动势阻碍电流的增加,使线圈的电流从通电瞬间的0逐渐增大到正常值,所以与线圈串联的灯泡的亮度是逐渐亮起来.甲乙2.断电自感如图乙所示,正常工作时线圈和电灯的电流分别为I L和I A.断电后,线圈产生自感电动势,线圈与灯泡组成回路,线圈起到电源作用.线圈产生的自感电动势阻碍电流的减小,使线圈中的电流由I L逐渐减小到0,因此灯泡中的电流也由断电前的I A突变为I L,然后逐渐减小到0,亮度也是逐渐变小到熄灭,当然灯泡中的电流方向由断电前的d→c突变为c→d.若I L>I A,灯泡闪亮一下再逐渐熄灭若I L≤I A,灯泡逐渐熄灭,不闪亮.——————————(自选例题,启迪思维)1. (2015·南京师大附中高二测试)如图所示的电路中,a、b、c为三盏完全相同的灯泡,L是一个自感系数很大、直流电阻为零的自感线圈,E为电源,S为开关.关于三盏灯泡,下列说法正确的是()A.合上开关,c、b先亮,a后亮B.合上开关一会后,a、b一样亮C.断开开关,b、c同时熄灭,a缓慢熄灭D.断开开关,c马上熄灭,b闪一下后和a一起缓慢熄灭[思路探究](1)合上开关时L产生的自感电动势有什么作用?a灯的亮度如何变化?(2)断开开关后L产生的自感电动势有什么作用?b灯闪亮吗?a灯闪亮吗?[解析]闭合开关S时,由于线圈L的自感作用,流过a灯的电流逐渐增大,所以a灯后亮,b、c灯与电源构成回路,所以b、c灯先亮,故A正确.合上开关一会后,电路稳定,L是一个直流电阻为零的自感线圈,可视为导线,a、b灯完全相同,并联电压相同,故a、b灯一样亮,故B正确.断开开关瞬间,a、b灯与线圈构成闭合回路.由于L的自感作用,a、b灯的电流要逐渐减小,故c灯马上熄灭,a、b灯缓慢熄灭,C错误.由于电路稳定时,a、b灯中电流相同,故b灯无闪亮现象,D 错误.[答案]AB2. 如图所示,L为一纯电感线圈(即电阻为零),L A是一灯泡,下列说法正确的是()A.开关S接通瞬间,无电流通过灯泡B.开关S接通后,电路稳定时,无电流通过灯泡C.开关S断开瞬间,无电流通过灯泡D.开关S接通瞬间,灯泡中有从a到b的电流,而在开关S断开瞬间,灯泡中有从b到a的电流[解析]L的直流电阻为0是指电路稳定后相当于短路.当通电瞬间,L相当于断路,电流通过灯泡且电流从a到b,稳定后,灯泡被短路熄灭.断电后,L和L A组成回路,L A 闪亮一下再逐渐熄灭,所以B、D正确.[答案]BD[名师点评](1)分析通、断电自感灯泡的亮度变化的关键是弄清电路的连接情况,根据自感线圈的自感电动势的方向进行具体分析.(2)断电自感时灯泡是否闪亮一下再熄灭的判断方法是通过比较断电前的线圈的电流和灯泡的电流的大小来确定.[学生用书P32]思想方法——自感现象中图象问题的解决方法1.明确研究对象及所研究的问题.2.分析所研究对象在电路中的位置,与电源、线圈等的关系及其电流、电压在某一段时间内的大小、方向和变化情况.3.看是否规定正方向,若没有说明,可只考虑其数值.4.结合题意和已知条件,利用自感知识和电路知识等进行分析和计算,从而确定出不同时间内某物理量随时间的变化规律.[范例]如图所示电路中,L为自感系数很大、电阻为R L的线圈,A为一阻值为R A的小灯泡,已知R L>R A,电源的电动势为E,内阻不计,某物理实验小组的同学们把S闭合一段时间后开始计时,记录各支路的电流,测得流过L的电流为i1,流过灯A的电流为i2,并在t1时刻将S断开,画出了通过灯泡A的电流随时间变化的图象,你认为正确的是()[解析]当S闭合时,由于R L>R A,故开始一段时间内,各支路电流之间的关系为i2>i1,流过灯A的电流方向从左向右,S断开时,由于L的自感作用,流经L的电流方向从左向右不变,大小由原来的i1逐渐减小,它与灯A构成闭合回路,由此可知灯A的电流方向与原来相反,大小与L中电流相同,即由i1逐渐减小,故A、B、C错,D对.[答案] D如图所示的电路中,电源的电动势为E,内阻为r,电感L的电阻不计,电阻R的阻值大于灯泡D的阻值.在t=0 时刻闭合开关S,经过一段时间后,在t=t1时刻断开S.下列表示A、B两点间电压U AB随时间t变化的图象中,正确的是()解析:选B.闭合开关S 后,灯泡D 直接发光,电感L 的电流逐渐增大,电路中的总电流也将逐渐增大,电源内电压增大,则路端电压U AB 逐渐减小;断开开关S 后,灯泡D 中原来的电流突然消失,电感L 中的电流通过灯泡形成的闭合回路逐渐减小,所以灯泡D 中电流将反向,并逐渐减小为零,即U AB 反向逐渐减小为零,故选B.[学生用书P 33][随堂达标]1.下列说法正确的是( )A .当线圈中电流不变时,线圈中没有自感电动势B .当线圈中电流反向时,线圈中自感电动势的方向与线圈中原电流的方向相反C .当线圈中电流增大时,线圈中自感电动势的方向与线圈中电流的方向相反D .当线圈中电流减小时,线圈中自感电动势的方向与线圈中电流的方向相反解析:选AC.由法拉第电磁感应定律可知,当线圈中的电流不变时,不产生自感电动势,A 正确;当线圈中的电流反向时,相当于电流减小,线圈中自感电动势的方向与线圈中原电流的方向相同,B 错误;当线圈中的电流增大时,自感电动势阻碍电流的增大,线圈中自感电动势的方向与线圈中电流的方向相反,所以选项C 正确,同理可知选项D 错误.故选AC.2.关于线圈中自感电动势大小的说法中正确的是( )A .电感一定时,电流变化越大,自感电动势越大B .电感一定时,电流变化越快,自感电动势越大C .通过线圈的电流为零的瞬间,自感电动势为零D .通过线圈的电流为最大值的瞬间,自感电动势最大解析:选B.由自感电动势E =L ΔI Δt 得L 一定时,E 与ΔI Δt成正比,即电感一定时,电流变化越快,自感电动势越大.故A 错误,B 正确.通过线圈的电流为零的瞬间,电流变化率不一定为零,自感电动势不一定为零,通过线圈的电流为最大值的瞬间,电流变化率可能为零,自感电动势也可能为零,故C 、D 均错误.正确答案选B.3.如图所示,L 为自感系数较大的线圈,电路稳定后小灯泡正常发光,当断开开关S 的瞬间会有( )A .灯A 立即熄灭B .灯A 慢慢熄灭C.灯A突然闪亮一下再慢慢熄灭D.灯A突然闪亮一下再突然熄灭解析:选A.当开关S断开时,由于通过自感线圈的电流从有变到零,线圈将产生自感电动势,但由于线圈L与灯A串联,在S断开后,不能形成闭合回路,因此灯A在开关断开后,电源供给的电流为零,灯立即熄灭.故选A.4. (选做题)如图所示,电感线圈L的自感系数足够大,其直流电阻忽略不计,L A、L B 是两个相同的灯泡,且在下列实验中不会烧毁,电阻R2阻值约等于R1的两倍,则() A.闭合开关S时,L A、L B同时达到最亮,且L B更亮一些B.闭合开关S时,L A、L B均慢慢亮起来,且L A更亮一些C.断开开关S时,L A慢慢熄灭,L B马上熄灭D.断开开关S时,L A慢慢熄灭,L B闪亮一下后才慢慢熄灭解析:选D.由于灯泡L A与线圈L串联,灯泡L B与电阻R2串联,当S闭合的瞬间,通过线圈的电流突然增大,线圈产生自感电动势,阻碍电流的增加,所以L B先亮,A、B错误;由于L A所在的支路电阻阻值偏小,故稳定时电流大,即L A更亮一些,当S断开的瞬间,线圈产生自感电动势,两灯组成的串联电路中,电流从线圈中电流开始减小,即从I A 减小,故L A慢慢熄灭,L B闪亮一下后才慢慢熄灭,C错误、D正确.[课时作业]一、选择题1.关于线圈的自感系数,下面说法正确的是()A.线圈的自感系数越大,自感电动势就一定越大B.线圈中电流等于零时,自感系数也等于零C.线圈中电流变化越快,自感系数越大D.线圈的自感系数由线圈本身的性质及有无铁芯决定解析:选D.自感系数是由线圈的大小、形状、圈数、有无铁芯等因素决定的,故B、C 错,D对;自感电动势不仅与自感系数有关,还与电流变化快慢有关,故A错.2.(多选)无线电力传输目前已取得重大突破,在日本展出了一种非接触式电源供应系统.这种系统基于电磁感应原理可无线传输电力.两个感应线圈可以放置在左右相邻或上下相对的位置,原理示意图如图所示.下列说法正确的是()A.若A线圈中输入电流,B线圈中就会产生感应电动势B.只有A线圈中输入变化的电流,B线圈中才会产生感应电动势C.A中电流越大,B中感应电动势越大D.A中电流变化越快,B中感应电动势越大解析:选BD.根据产生感应电动势的条件,只有处于变化的磁场中,B线圈才能产生感应电动势,A错,B对;根据法拉第电磁感应定律,感应电动势的大小取决于磁通量变化率,所以C错,D对.3.如图所示,闭合电路中的螺线管可自由伸缩,螺线管有一定的长度,灯泡具有一定的亮度.若将一软铁棒从螺线管左边迅速插入螺线管内,则将看到()A.灯泡变暗B.灯泡变亮C.螺线管缩短D.螺线管长度不变解析:选A.当软铁棒插入螺线管中时,穿过螺线管的磁通量增加,故产生反向的自感电动势,使总电流减小,灯泡变暗,每匝线圈间同向电流吸引力减小,螺线管变长.4.(多选)如图所示的电路中,线圈L的自感系数足够大,其直流电阻忽略不计,A、B 是两个相同的灯泡,下列说法中正确的是()A.S闭合后,A、B同时发光且亮度不变B.S闭合后,A立即发光,然后又逐渐熄灭C.S断开的瞬间,A、B同时熄灭D.S断开的瞬间,A再次发光,然后又逐渐熄灭解析:选BD.线圈对变化的电流有阻碍作用,开关接通时,A、B串联,同时发光,但电流稳定后线圈的直流电阻忽略不计,使A被短路,所以A错误,B正确;开关断开时,线圈产生自感电动势,与A构成回路,A再次发光,然后又逐渐熄灭,所以C错误,D正确.5.如图所示为测定自感系数很大的线圈L直流电阻的电路,L的两端并联一个电压表,用来测量自感线圈的直流电压.在测量完毕后,将电路拆解时应()A.先断开S1B.先断开S2C.先拆除电流表D.先拆除电压表解析:选B.若先断开S1或先拆除电流表,线圈与电压表组成闭合回路,这时,流过电压表的电流与原来方向相反,电压表的指针将反向偏转,容易损坏电压表.按操作要求,应先断开开关S2,再断开开关S1,然后拆除器材.故选项B正确.6. 如图所示电路中,A、B是相同的两小灯泡.L是一个带铁芯的线圈,电阻可不计,调节R,电路稳定时两灯泡都正常发光,则在开关合上和断开时()A.两灯同时点亮、同时熄灭B.合上S时,B比A先到达正常发光状态C.断开S时,A、B两灯都不会立即熄灭,通过A、B两灯的电流方向都与原电流方向相同D.断开S时,A灯会突然闪亮一下后再熄灭解析:选B.闭合S时,由于L的自感作用,A灯逐渐变亮,B灯立即变亮,稳定时两灯一样亮,故A错B对;断开S时,由于L的自感作用,A、B两灯都不会立即熄灭,通过A灯的电流方向不变,但通过B灯的电流反向,故C错;又因通过A灯的电流不会比原来的大,故A灯不会闪亮一下再熄灭,故D错.7. 在如图所示的电路中,两个相同的小灯泡L1和L2分别串联一个带铁芯的电感线圈L 和一个滑动变阻器R.闭合开关S后,调整R,使L1和L2发光的亮度一样,此时流过两个灯泡的电流均为I.然后,断开S.若t′时刻再闭合S,则在t′前后的一小段时间内,正确反映流过L1的电流i1、流过L2的电流i2随时间t变化的图象是()解析:选B.闭合开关S后,调整R,使两个灯泡L1、L2发光的亮度一样,电流为I,说明R L=R.若t′时刻再闭合S,流过电感线圈L和灯泡L1的电流迅速增大,使电感线圈L产生自感电动势,阻碍了流过L1的电流i1增大,直至达到电流为I,故A错误,B正确;而对于t′时刻再闭合S,流过灯泡L2的电流i2立即达到电流I,故C、D错误.故选B.8.在如图所示的电路中,两个相同的电流表G1和G2的零点均在刻度盘中央,当电流从“+”接线柱流入时,指针向左摆;当电流从“-”接线柱流入时,指针向右摆.在电路接通后再断开开关S的瞬间,下列说法中正确的是()A.G1指针向右摆,G2指针向左摆B.G1指针向左摆,G2指针向右摆C.两表指针都向右摆D.两表指针都向左摆解析:选B.当开关S闭合时,流经电感线圈L的电流方向自左向右.当断开开关S的瞬间,通过线圈L的电流将变小,根据楞次定律可知,感应电流方向与原电流方向相同,也将是自左向右流,以阻碍原电流减小的变化.这样在由L、G2、R及G1组成的闭合电路中,感应电流将从G2的负接线柱流入,因而G2的指针向右偏;感应电流将从G1的正接线柱流入,因而G1的指针向左偏.9. (2015·天水一中高二检测)在制作精密电阻时,为了消除使用过程中由于电流变化而引起的自感现象,采用双线并绕的方法,如图所示.其道理是()A.当电路中的电流变化时,两股导线产生的自感电动势相互抵消B.当电路中的电流变化时,两股导线产生的感应电流相互抵消C.当电路中的电流变化时,两股导线中原电流的磁通量相互抵消D.以上说法都不对解析:选C.由于采用双线并绕的方法,当电流通过时,两股导线中的电流方向是相反的,不管电流怎样变化,任何时刻两股导线中的电流总是等大反向的,所产生的磁通量也是等大反向的,故总磁通量等于零,在该线圈中不会产生电磁感应现象,因此消除了自感,选项A、B错误,只有C正确.☆10. (多选)如图所示电路中,自感系数较大的线圈L其直流电阻不计,下列操作中能使电容器C的A板带正电的是()A.S闭合的瞬间B.S断开的瞬间C.S闭合电路稳定后D.S闭合、向右移动变阻器触头解析:选BD.S闭合电路稳定时,线圈两端没有电势差,电容器两板不带电;S闭合的瞬间,电流增大,线圈产生自感电动势的方向与电流方向相反,使B板带正电;S断开的瞬间或S闭合、向右移动变阻器触头时,电流减小,线圈产生自感电动势的方向与电流方向相同,使A板带正电,B、D项正确.二、非选择题11.如图所示,电流表的内阻不计,电阻R1=2.5 Ω,R2=7.5 Ω,电感线圈的直流电阻可以忽略.闭合开关S的瞬时,电流表的读数I1=0.2 A;线圈中的电流稳定后,电流表的读数I2=0.4 A,试求电池的电动势和内电阻.解析:S闭合瞬时,可认为由于线圈的自感作用使得线圈中没有电流;而线圈中的电流稳定时,认为线圈的电阻为零,电阻R2被短路,R2中的电流为零.设电池的电动势为E,内电阻为r,则S闭合的瞬时,由闭合电路欧姆定律得:E=I1(R1+R2+r)稳定后,由闭合电路欧姆定律得:E=I2(R1+r)联立代入数据解得E=3 V,r=5 Ω.答案:见解析☆12.如图甲所示为研究自感实验电路图,并用电流传感器显示出在t=1×10-3 s时断开开关前后一段时间内各时刻通过线圈L的电流(如图乙).已知电源电动势E=6 V,内阻不计,灯泡R1的阻值为6 Ω,电阻R的阻值为2 Ω.甲乙求:(1)线圈的直流电阻R L;(2)开关断开时,该同学观察到的现象是什么?并计算开关断开瞬间线圈产生的自感电动势是多少?解析:(1)由题图可知,开关S闭合电路稳定时流过线圈L的电流I0=1.5 A,由欧姆定律得I0=ER L+R解得R L=EI0-R=2.0 Ω.(2)电路稳定时流过小灯泡的电流I1=ER1=66A=1 A断开开关后,线圈L、电阻R和灯泡R1构成一闭合回路,电流由1.5 A逐渐减小,所以小灯泡会闪亮一下再熄灭.开关断开瞬间自感电动势为E′=I0(R+R L+R1)=15 V.答案:(1)2.0 Ω(2)灯泡闪亮一下后逐渐变暗,最后熄灭15 V。

苏州市实验高中2020人教版物理课件第四章电磁感应6互感和自感42

苏州市实验高中2020人教版物理课件第四章电磁感应6互感和自感42
电流方向不变
电路中稳态电流为I1、 I2 ①若I2≤I1,灯泡逐渐变 暗 ②若I2>I1,灯泡闪亮后 逐渐变暗 两种情况灯泡中电流方 向均改变
【典例示范】 (多选)如图,电灯的灯丝电阻为2 Ω,电池电动势为 2 V,内阻不计,线圈匝数足够多,其直流电阻为3 Ω, 先合上电键K,过一段时间突然断开K,则下列说法中错 误的是( )
(2)当一个线圈中的电流变化时,在另一个线圈中为什 么会产生感应电动势呢? 提示:当一个线圈中的电流变化时,穿过两个线圈的磁 通量都会变化。
【探究总结】 对互感现象的理解
(1)互感现象是一种常见的电磁感应现象,它不仅发生 于绕在同一铁芯上的两个线圈之间,而且可以发生于 任何相互靠近的电路之间。 (2)互感现象可以把能量由一个电路传到另一个电路。 变压器就是利用互感现象制成的。
(3)对电感线圈阻碍作用的理解: ①若电路中的电流正在改变,电感线圈会产生自感电 动势阻碍电路中电流的变化,使得通过电感线圈的电 流不能突变。 ②若电路中的电流是稳定的,电感线圈相当于一段导 线,其阻碍作用是由绕制线圈的导线的电阻引起的。
2.对通电自感和断电自感问题的三点理解: (1)通电时线圈产生的自感电动势阻碍电流的增加且 与原电流方向相反。 (2)断电时线圈产生的自感电动势与原来线圈中的电 流方向相同,且在与线圈串联的回路中,线圈相当于电 源,它提供的电流大小从原来的IL逐渐变小。
(1)重新接通电路。在闭合开关时,观察到两个灯泡的 发光情况是怎样的? 两灯泡的发光情况是_A_2_正__常__发__光__,_A_1比__A_2_亮__得__晚__。
(2)发生这种现象的原因是什么。 提示:电路接通时,电流由零开始增加,穿过L的磁通量 随之增加,在L中产生自感电动势阻碍磁通量(电流)的 增加,推迟了电流达到正常值的时间,所以A1灯比A2灯 晚亮。

生活中的自感现象

生活中的自感现象

浅谈生活中的自感现象科学与生活息息相关。

本文由平时大家常见的日光灯引入,其中详细对日光灯中的镇流器中利用自感现象做出解释,并以此为基础加以推广,介绍有关自感科学知识,继而介绍其他的有关自感现象的应用。

从而完成从生活发现问题,用科学解释问题,在探索中获得知识这一过程,加深对科学知识的认识和理解。

同时由此向其他知识拓展,明白科学在人类生活中应该有的地位。

关键字:自感镇流器启辉器感应圈正文:科学源于生活,科学促进生活。

科学与生活的关系是相互依存,没有科学的生活是混乱不堪的。

就以照明为例,人类社会因为有了火,才开始对黑夜的探索,才开始让生活更加有序。

时至今日,日光灯更是让千家万户在夜晚享受光明。

而日光灯中对科学知识最为突出的应用之一就是对自感现象及其相应知识的利用。

在介绍日光灯的知识之前首先对自感现象进行一下介绍。

当线圈中通有电流时,电流所产生的磁通量会通过线圈本身。

当电流,线圈形状或者周围的磁介质发生改变时,通过线圈自身的磁通量也会随之变化,从而在线圈中产生感应电动势,这种现象被称为自感现象。

相应的电动势被称为自感电动势。

假设线圈中的电流为I,根据毕奥-萨伐尔定律,该电流在空间任意一点的磁感应强度的大小与线圈中的电流强度I成正比。

因此通过线圈本身的全磁通也与电流成正比,即ψLI=(1)式中,比例系数L叫做线圈的自感系数,简称自感。

在国际单位制中,自感系数的单位与互感系数的单位相同,也为亨[利],毫亨(mH),微亨(μH)。

即当线圈中的电流为1A时,如果通过线圈本身的全磁通为1Wb,则该线圈的自感系数为1H。

实验表明,自感系数L与线圈的几何形状,大小,匝数及周围的磁介质的情况有关,与线圈中的电流无关(非铁磁质)。

对于确定的线圈和磁介质(非铁磁质),自感系数L为常数。

此时当线圈中的电流发生变化时通过线圈的磁通量也发生改变,根据法拉第电磁感应定律,线圈中产生的自感电动势为(2)式中,负号表示自感电动势ε的方向总是反抗线圈中电流的改变。

高中物理选择性必修二第二章第四节《互感和自感》

高中物理选择性必修二第二章第四节《互感和自感》
观察: 重新接通电路时,两个灯泡亮度变化情况。
实验一:
通 电 自 感
再看一遍
A1 A2
? 现象分析
实验一:

A1
电 自 感
A2
?
现象: 灯泡A2立刻正常发光,跟线圈L串联的灯泡A1
逐渐再亮看起一遍来。
现象分析
现象解?释:
S接通 穿过线圈的电流I 增大
? 过线圈的磁通量增大 ? ? 线圈产生感应电动势
------这种现象叫互感
一、互感现象
1、互感:当一个线圈中电流变化时,在另一个线圈中产 生感应电动势的现象,称为互感。
互感电动势:互感现象中产生的感应电动势,称为互 感电动势。
2、应用:利用互感现象可以把能量从一个线圈传递到另 一个线圈,因此在电工技术和电子技术中有广 泛应用。变压器就是利用互感现象制成的。
日光灯开始发光后,由于交变电流通过镇流器的线圈,线圈 中就会 产生自感电动势,它总是阻碍电流变化的,这时镇流器起 着降压限流的作用,保证日光灯正常工作。
镇流器的作用:
1、在日光灯启动时产生瞬时高压 2、在日光灯工作时可以降压限流
自感系数很大有时会产生危害:
线圈匝数很多,开关断开时产生很大的自感电动势,使 开关中的金属片之间产生电火花,烧蚀接触点,甚至会 引起人体伤害。 在这类电路中应采用特制的开关,可采用双线并绕来
日光灯的启动过程: 开关闭合后,电源的
电压加在启动器的两极之
间,使氖气电离而发生辉
光放电,辉光产生的热量
使U型动触片膨胀伸长,跟静触片接通,于是镇流器 线圈和灯管中 的灯丝就有电流通过。电路接通后,启动器中的氖气停止放电(启 动器分得电压变少、辉光放电无法进行,不再工作),U型动触片 冷却收缩,两个触片分离,电路 自动断开。在电路突然断开的瞬 间,镇流器电流急剧减小,会产生很高的自感电动势,方向与原来 的电压方向相同,这个自感电动势与电源电压加在一起,形成 一 个瞬时高压,加在灯管两端,使灯管中的惰性气体电离,气体离子 与汞原子碰撞,汞原子发出紫外线,紫外线照射荧光,发出白光。

高中物理选择性必修二 第二章 第四节 互感和自感

高中物理选择性必修二 第二章  第四节 互感和自感
现象.( × ) (2)自感现象中,感应电流一定与原电流方向相反.( × ) (3)线圈的自感系数与电流大小无关,与电流的变化率有关.( × )
(4)对于同一线圈,当电流变化较快时,线圈中的自感电动势也较大.
(√) (5)没有发生自感现象时,即使有磁场也不会储存能量.( × )
2.如图1所示,电路中电源内阻不能忽略,L的自感系数很大,其直流电 阻忽略不计,A、B为两个完全相同的灯泡,当S闭合时,A灯_缓__慢__变亮, B灯_立__即__变亮.当S断开时,A灯_缓__慢__熄灭,B灯_缓__慢__熄灭.(均选填“立 即”或“缓慢”)
例1 (多选)手机无线充电是比较新颖的充电方式.如图3所示,电磁感应
式无线充电的原理与变压器类似,通过分别安装在充电基座和接收能量
装置上的线圈,利用产生的磁场传递能量.当充电基座上的送电线圈通入
正弦式交变电流后,就会在邻近的受
电线圈中感应出电流,最终实现为手
机电池充电.在充电过程中
√A.送电线圈中电流产生的磁场呈周期性变化
非接触式电源供应系统.这种系统基于电磁感应原理可无线传输电力,两
个感应线圈可以放置在左右相邻或上下相对的位置,原理示意图如图所
示.利用这一原理,可以实现对手机进行无线充电.下列说法正确的是
A.只要A线圈中输入电流,B线圈中就会产生感应电动势
√B.只有A线圈中输入变化的电流,B线圈中才会产生感应
电动势
1234
2.(自感系数)关于线圈的自感系数,下列说法正确的是 A.线圈的自感系数越大,自感电动势就一定越大 B.线圈中电流等于零时,自感系数也等于零 C.线圈中电流变化越快,自感系数越大
√D.线圈的自感系数由线圈本身的因素及有无铁芯决定
解析 线圈的自感系数是由线圈本身的因素及有无铁芯决定的,与有无 电流、电流变化情况都没有关系,故选项B、C错误,D正确; 自感电动势的大小除了与自感系数有关,还与电流的变化率有关,故选 项A错误.

电机中电感,自感,互感,漏感之间的关系分析教程文件

电机中电感,自感,互感,漏感之间的关系分析教程文件

电机中电感,自感,互感,漏感之间的关系分

精品文档
电感:电感是导线内通过交流电流时,在导线的内部及其周围产生交变磁通,导线的磁通量与生产此磁通的电流之比。

其主要用于计算电磁感应原理中,也就是说,用于计算绕组因磁场变化而感应出来的反电动势。

自感:当导体中的电流发生变化时,它周围的磁场就随着变化,并由此产生磁通量的变化,因而在导体中就产生感应电动势,这个电动势总是阻碍导体中原来电流的变化,此电动势即自感电动势。

这种现象就叫做自感现象。

互感:当一线圈中的电流发生变化时,在临近的另一线圈中产生感应电动势,叫做互感现象。

互感现象是一种常见的电磁感应现象,不仅发生于绕在同一铁芯上的两个线圈之间,而且也可以发生于任何两个相互靠近的电路之间。

漏感:线圈所产生的磁力线不能都通过次级线圈,因此产生漏磁的电感称为漏感。

指变压器初次级在耦合的过程中漏掉的那一部份磁通。

那么在电机数学模型中,采用的电感的意思又是指什么呢?
答案是:在电机数学模型中,采用电感这个参数主要是为了计算电机的输出电压。

那么总的电感值为自感,互感和漏感之和,根据自感,互感和漏感感应的反电动势方向决定其极性。

收集于网络,如有侵权请联系管理员删除。

什么是电磁感应的自感电动势如何应用它解决问题

什么是电磁感应的自感电动势如何应用它解决问题

什么是电磁感应的自感电动势如何应用它解决问题电磁感应的自感电动势及其应用电磁感应是指当磁场发生变化时,在磁场中的导体中会产生感应电动势的现象。

其中,自感电动势是一种特殊的电动势,是由自感现象引起的。

本文将介绍电磁感应的自感电动势的原理以及它在解决问题中的应用。

一、自感电动势的原理自感电动势是指当电流变化时,在电路中的导体中会产生感应电动势的现象。

根据楞次定律,电流的变化会产生磁场的变化,从而导致自感电动势的产生。

自感电动势的大小与电流的变化率成正比,而其方向则遵循右手螺旋定则。

二、自感电动势的应用1. 电磁感应现象在发电机中的应用发电机是一种将机械能转化为电能的装置,利用电磁感应的原理实现了这一过程。

通过在磁场中旋转导线圈,导线圈中的导线就会受到磁场的变化,从而产生自感电动势。

进一步通过导线连接,将这部分电动势输出,即可得到电能。

2. 自感电动势在电感元件中的应用电感是一种储存磁场能量的元件,根据自感电动势的原理,我们可以利用电感元件来解决一些特定的问题。

例如,在直流电路中,当开关突然断开时,电流的变化率非常大,导致产生一股较大的自感电流,这可能会对电子设备产生损害。

为了避免这种情况发生,我们可以在电感元件两端串联一个二极管,通过二极管的反向导电特性来保护电子设备。

3. 自感电动势在传感器中的应用传感器是一种可以感知外部环境并将其转化为电信号的装置。

利用自感电动势的原理,我们可以设计一些特定的传感器来解决实际问题。

例如,利用感应线圈与磁场的相互作用,可以设计出磁力传感器用于检测磁场的变化;利用感应线圈与金属材料的相互作用,可以设计出金属检测传感器,用于检测金属材料的位置和性质。

三、总结电磁感应的自感电动势是一种重要的物理现象,通过自感电动势的应用,我们可以解决许多实际问题。

从发电机到电感元件,再到各种传感器,都离不开自感电动势的原理。

因此,深入了解和应用电磁感应的自感电动势,对于推动科学技术的发展具有重要意义。

电磁感应中的自感与互感现象

电磁感应中的自感与互感现象

电磁感应中的自感与互感现象电磁感应是电磁学中的重要概念之一,它描述了磁场和电场之间的相互作用。

在电磁感应中,自感和互感是两个重要的现象。

本文将探讨自感和互感的概念、原理以及其在实际应用中的重要性。

一、自感的概念与原理自感是指电流在变化时所产生的电动势。

当电流通过一个线圈时,线圈本身就会产生一个磁场。

当电流发生变化时,磁场也会发生变化,从而产生一个自感电动势。

自感电动势的大小与电流的变化速率成正比,而与线圈的形状和材料有关。

自感现象可以用法拉第定律来描述,即自感电动势等于自感系数乘以电流的变化率。

自感系数取决于线圈的形状和材料,通常用亨利(H)来表示。

自感系数越大,线圈的自感效应越强。

二、互感的概念与原理互感是指两个或多个线圈之间通过磁场相互作用而产生的电动势。

当一个线圈中的电流变化时,它所产生的磁场会穿过附近的另一个线圈,从而在另一个线圈中产生一个互感电动势。

互感电动势的大小与电流变化率以及线圈之间的耦合系数有关。

互感现象可以用法拉第定律来描述,即互感电动势等于互感系数乘以电流的变化率。

互感系数取决于线圈之间的物理距离、线圈的形状和材料,通常用亨利(H)来表示。

互感系数越大,线圈之间的互感效应越强。

三、自感与互感的应用自感和互感在电磁学中有着广泛的应用。

其中一个重要的应用是变压器。

变压器利用互感现象将交流电能从一个线圈传输到另一个线圈。

当一个线圈中的电流变化时,它所产生的磁场会穿过另一个线圈,从而在另一个线圈中产生一个互感电动势。

通过合理设计线圈的匝数比例,可以实现电压的升降。

另一个重要的应用是感应电动机。

感应电动机利用自感和互感现象将电能转化为机械能。

当电流通过线圈时,线圈本身会产生一个磁场,这个磁场会与定子产生的磁场相互作用,从而产生一个力矩,驱动电动机转动。

此外,自感和互感还应用于电子设备中的滤波器、变频器等电路中。

通过合理设计线圈的参数,可以实现对电流和电压的调节和控制。

总结电磁感应中的自感和互感是两个重要的现象。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

自感现象及其应用分析
自感现象是电磁感应现象中的一种特殊情形——是在导体本身的电
足够大。

即自感线圈要长,匝数要多,截面积要大,并要有铁心。

同时,也要注意线圈不能有过大的电阻,否则也会使自感电流过小而自感现象不明显。

方法一
器材自制线圈,2.2V小电珠2个,50Ω滑动变阻器,2V铅蓄电池3个,电键,导线等。

线圈的制作方法
铁芯选用22mmEI型硅钢片(图a),叠厚40mm左右。

用绝缘纸板做一个与铁芯相配合的绕线框架(图b)。

用φ为0.40mm左右的漆包线在绕线框架上绕800匝,抽一个头,再绕400匝。

然后将硅钢片交叉插入,制成一个有铁芯的线圈(图c)。

操作
(1)按图(d)连接电路,线圈的1200匝全部用上,电源用6V。

(2)合上电键K,调节变阻器R2,使小灯A1和A2的明亮程度相同。

调节R1,使A1、A2正常发光。

然后断开K。

(3)合上K,可见到A2立刻正常发光,而A1却是逐渐亮起来。

说明L
的自感现象。

(4)按图(e)连接电路,L用400匝,电源用4V。

(5)合上电键K,调节R,使小灯A比正常发光稍暗一些。

(6)断开K,可看到A灯突然更亮一下才熄灭,这是L的自感电动势引起的。

方法二
目的断电自感现象的演示。

器材自感线圈(也可用日光灯镇流器,规格是15—40W任意一种),直流电源(3—4V),氖泡(日光灯启动器或试电笔中的氖泡S),电键,导线等。

操作
(1)接通K,氖泡不亮。

(一般氖泡需几十V以上的最低电压才能放电)。

(2)断开K,因自感线圈(日光灯镇流器)产生的自感电动势可达200V 左右,使氖管起辉。

(3)如果把电键快速反复接通和断开,可看到氖泡连续发光。

为了操作方便,可以用一个金属导体和齿轮簧片式电路断续器K′,代替电键K,只要旋转电路断续器,氖泡即可较稳定地发亮。

可长时间观察瞬间断电自感现象。

说明实验时,如果两手同时接触日光灯镇流器两端,断开电键时会受到较强烈的电击,因时间极短暂,无害人体,但却可使学生有更深刻的印象。

方法三
器材带铁芯线圈(可用2只40W日光灯镇流器串联),发光二极管3只(红色发光二极管2只:D1、D2;绿色发光二极管1只:D3),滑动变阻器(0—300φ),定值电阻器(20φ、1/2W),电池组(3V),导线等。

操作
(1)将(a)图中的器材安装在示教板上,将滑动变阻器W的滑动片放在阻值最大的位置。

(2)闭合电键K,则D1、D2发出红色光,调整滑动变阻器W的滑动片位置,使D1和D2的亮度相近。

(3)每次闭合电键K时,D2比D1延迟发光。

以此验证通电时的自感现象。

(4)每次断开K时,D1、D2熄灭,D3发出绿光,以此验证断电时的自感现象。

注意
(1)带铁芯线圈的选择是本实验的关键,线圈的自感系数不能太小,否则D2的发光延迟时间将难以分辨。

(2)电源电压大于2V就能工作,正常工作电压为3V,以两节干电池串联较好。

如用稳压电源时,不能用稳压电源的电源开关代替电路中的电键K,因为稳压电源的输出端接有滤波电解电容器,在稳压电源开关切断交流电源后仍有逐渐减小的电流供给电路,使线圈中的电流
不是突然减小,无法使D3在断电时发光。

说明本实验也可以用如图(b)所示的电路。

L可用40W日光灯镇流器,S1、S2、S3是三只白炽灯,D1、D2用两只2D2系列二极管。

方法四
器材日光灯和镇流器(15—40W),发光二极管2只(绿色发光二极管D1,红色发光二极管D2),定值电阻1只R(100—200φ),电源(3V),电键,导线等。

操作按图接通电路,K闭合,D1发光;K断开,D1熄灭,D2被线圈L的自感电动势点亮发光。

说明
(1)利用发光二极管正常发光时工作电流极小(小于20mA)的特点,容
易做成断电自感现象的实验。

(2)根据发光二极管D2的正向导通方向,可以判别感应电流的方向。

方法五
器材晶体管收音机输出变压器(用初级),检流计,电阻(R为15Ω、R′为61Ω),电键,电池,导线若干、滑动变阻器(56Ω),导线等。

操作
(1)按图连接电路。

闭合电键K,调节变阻器W使检流计的指针在中间零点的位置,然后去掉保护电阻R′,进一步调好平衡。

(2)断开电键的瞬间,见到检流计的指针偏转一下,说明断电时的自感现象,并可断定自感电动势的方向。

(3)闭合电键的瞬间,见到检流计的指针向相反方向偏转一下,说明通电时的自感现象,也可以断定自感电动势的方向。

方法六
器材变压器原理说明器,教学示波器,单刀开关,蓄电池组,导线等。

操作
(1)将J2425型变压器原理说明器中的线圈套在铁芯上(0—400匝线圈)构成有较大自感的有铁芯线圈L,再将小灯泡(6.3V、0.15A)和蓄电池组(电压4V)、单刀开关及教学用示波器如图(a)连接。

(2)调节示波器,使输入开关置于“DC”档,“y衰减”旋钮旋到“1000”档,“y增益”旋钮旋到适当位置,“扫描频率”旋钮旋到“100—1KHz”档,“扫描微调”旋钮在任何位置均可。

用“垂直位移”旋钮将扫描线调到荧光屏的中央d位置。

调节“辉度”与“聚焦”旋钮,使水平扫描线清晰并有适当亮度。

(3)合上开关K瞬间,可见水平扫描线先跳至b位置,随即回到a位置(图b)。

说明在接通瞬间,L上有较大的自感电动势,电源路端电压较大。

正常导通以后,L的直流电阻较小,电源路端电压降低。

(4)当切断电源时,可见水平扫描线先跳至c位置,随即回到d位置。

cd间的距离远大于ab之间的距离。

说明在切断电源瞬间,线圈中产生了方向与线圈中原电流方向相同,大小远大于U的自感电动势。

相关文档
最新文档