人教版初一数学第七章单元测试
第七章平面直角坐标系单元测试卷2022-2023学年人教版七年级数学下册

第七章平面直角坐标系单元测试卷2022-2023学年人教版七年级数学下册一、选择题(共10小题,每小题3分,满分30分)1、点A(﹣2,1)在()A.第一象限B.第二象限C.第三象限D.第四象限2、下列能够确定位置的是()A.甲地在乙地北偏东30°的方向上B.一只风筝飞到距A地20米处C.影院座位位于一楼二排D.某市位于北纬30°,东经120°3、已知点A(1,2),过点A向y轴作垂线,垂足为M,则点M的坐标为()A.2 B.(2,0)C.(0,1)D.(0,2)4、点P(a,b),ab>0,a+b<0,则点P在()A.第一象限B.第二象限C.第三象限D.第四象限5、若点P(一m,3)与点Q(-5,m)关于y轴对称,则m,n的值分别为( )A.-5,3B.5,3C.5,-3D.-3,56、北京市为了促进全民健身,举办“健步走”活动,朝阳区活动场地位于奥林匹克公园(路线:森林公园一玲珑塔一国家体育场一水立方).如图,体育局的工作人员在奥林匹克公园设定玲现塔的坐标为(-1,0),森林公园的坐标为(-2,2),则终点水立方的坐标为( )A.(-2,-4)B.(-1,-4)C.(-2,4)D.(-4,-1)7、已知点A(a,b)为第二象限的一点,且点A到x轴的距离为4,且|a+1|=4,则√b−b=()A.3 B.±3 C.﹣3 D.√38、若点P(2a﹣5,4﹣a)到两坐标轴的距离相等,则点P的坐标是()A.(1,1)B.(﹣3,3)C.(1,﹣1)或(﹣3,3)D.(1,1)或(﹣3,3)9、如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角(∠AOM=∠BOM),当点P第2022次碰到矩形的边时,点P的坐标为()A.(0,3)B.(5,0)C.(1,4)D.(8,3)10、如图,一个粒子从(1,0)出发,每分钟移动一次,运动路径为(1,0)→(1,1)→(2,0)→(2,1)→(2,2)→(3,1)→(4,0)→…,即第1分钟末粒子所在点的坐标为(1,1),第2分钟末粒子所在点的坐标为(2,0),…,则第2022分钟末粒子所在点的坐标为()A.(991,41)B.(947,42)C.(947,41)D.(991,42)二、填空题(每小题3分,共18分)11、如图,若在象棋棋盘上建立平面直角坐标系,使“兵”位于点(1,﹣1),“炮”位于点(﹣1,0),则“马”位于点.12、在象限内x轴下方的一点A,到x轴距离为12,到y轴的距离为13,则点A的坐标为.13、线段MN是由线段EF经过平移得到的,若点E(﹣1,3)的对应点M(﹣4,7),则点F(﹣3,﹣2)的对应点N的坐标是.14、已知点M(﹣1,3),点N为x轴上一动点,则MN的最小值为.15、在平面直角坐标系中,点O为坐标原点,点A、B、C的坐标分别为(m﹣1,n),(m﹣1,n+6),(5,t),若△ABO的面积为△ABC面积的3倍,则m的值为.16、在平面直角坐标系中,已知A(﹣a,3a+2),B(2a﹣3,a+2),C(2a﹣3,a﹣2)三个点,下列四个命题:①若AB∥x轴,则a=2;②若AB∥y轴,则a=﹣1;③若a=1,则A,B,C三点在同一条直线上;④若a>1,三角形ABC的面积等于8,则点C的坐标为(73,23).其中真命题有(填序号).三、解答题(共8小题,共72分)17、(6分)已知:P(4x,x﹣3)在平面直角坐标系中.(1)若点P在第三象限的角平分线上,求x的值;(2)若点P在第四象限,且到两坐标轴的距离之和为9,求x的值.18、(6分)如图所示是某市区几个旅游景点的平面示意图.(1)选取一个景点为坐标原点,建立平面直角坐标系:(2)在所建立的平面直角坐标系中,写出其余各景点的坐标19、(6分)在平面直角坐标系中,已知A(2x,3x+1)(1)点A在x轴下方,在y轴的左侧,且到两坐标轴的距离相等,求x的值.(2)若x=1,点B在x轴上,且S△AOB=6,求点B的坐标.20、(6分)在平面直角坐标系中(1)已知点P(2a-6,a+4)在y轴上,求点P的坐标;(2)已知两点A(-3,m-1),B(n+1,4),若AB∥x轴,点B在第一象限,求m的值,并确定n 的取值范围;(3)在(1)(2)的条件下,如果线段AB的长度是6,试判断以P,A,B为顶点的三角形的形状,并说明理由。
2022年最新人教版初中数学七年级下册第七章平面直角坐标系单元测试试题(含答案解析)

初中数学七年级下册第七章平面直角坐标系单元测试(2021-2022学年 考试时间:90分钟,总分100分)班级:__________ 姓名:__________ 总分:__________一、单选题(10小题,每小题3分,共计30分)1、如图所示,已知棋子“车”的坐标为(2-,1-),棋子“马”的坐标为(1,1-),则棋子“炮”的坐标为( )A .(3,2)B .(3-,2)C .(3,2-)D .(3-,2-)2、根据下列表述,能确定位置的是( )A .红星电影院2排B .北京市四环路C .北偏东30D .东经118︒,北纬40︒3、根据下列表述,不能确定具体位置的是( )A .电影院一层的3排4座B .太原市解放路85号C .南偏西30D .东经108︒,北纬53︒4、若点M 在第四象限,且M 到x 轴的距离为1,到y 轴的距离为2,则点M 的坐标为( )A .(1,-2)B .(2,1)C .(-2,1)D .(2,-1)5、点()2021,2022A --在( )A .第一象限B .第二象限C .第三象限D .第四象限6、如图,将一把直尺斜放在平面直角坐标系中,下列四点中,一定不会被直尺盖住的点的坐标是( )A .()2,1B .()2,1-C .()2,1--D .()2,1-7、点P (3+a ,a +1)在x 轴上,则点P 坐标为( )A .(2,0)B .(0,﹣2)C .(0,2)D .(﹣2,0)8、点P (−2,−3)向上平移3个单位,再向左平移1个单位,则所得到的点的坐标为( )A .()1,0-B .()1,6-C .()3,6--D .()3,0-9、若点(),5A a a +在x 轴上,则点A 到原点的距离为( )A .5B .C .0D .5-10、将点()4,3-先向右平移7个单位,再向下平移5个单位,得到的点的坐标是( )A .()3,2-B .()3,2-C .()10,2--D .()3,8二、填空题(5小题,每小题4分,共计20分)1、已知线段 AB =4,AB ∥x 轴,若点A 坐标为(-1,2),且点B 在第一象限,则B 点坐标为______.2、已知点()2,1P m m -在第二、四象限的角平分线上,则m 的值为______.3、已知点A 在x 轴上,且3OA =,则点A 的坐标为______.4、如图,动点P 从()0,3出发,沿所示方向运动,每当碰到长方形OABC 的边时反弹,反弹时反射角等于入射角,当点P 第2020次碰到长方形OABC 的边时,点P 的坐标为________.5、在平面直角坐标系中,将点P (-3,4)先向右平移1个单位长度,再向下平移2个单位长度后所得到的坐标为__________.三、解答题(5小题,每小题10分,共计50分)1、在直角坐标系中描出各组点,并将各组内的点用线段依次连接起来.①()2,5,()0,3,()4,3,()2,5;②()1,3,()2,0-,()6,0,()3,3;③()1,0,()1,6-,()3,6-,()3,0.(1)观察得到的图形,你觉得它像什么?(2)找出图象上位于坐标轴上的点,与同伴进行交流;(3)上面三组点分别位于哪个象限,你是如何判断的?(4)图形上一些点之间具有特殊的位置关系,找出几对,它们的坐标有何特点?说说你的发现.2、已知点A (3a +2,2a ﹣4),试分别根据下列条件,求出a 的值.(1)点A 在y 轴上;(2)经过点A (3a +2,2a ﹣4),B (3,4)的直线,与x 轴平行;(3)点A 到两坐标轴的距离相等.3、在平面直角坐标系中,点A 的坐标是(2x -,1y +)2(2)0y -=.求点A 的坐标.4、如图,把△ABC 向上平移4个单位,再向右平移2个单位长度得△A 1B 1C 1,解答下列各题:(1)在图上画出△A 1B 1C 1;(2)写出点A 1、B 1、C 1的坐标;(3)△A 1B 1C 1的面积是______.5、如图所示,在平面直角坐标系中,△ABC 的三个顶点分别为A (-1,-1),B (-3,3),C (-4,1).画出△ABC 关于y 轴对称的△A 1B 1C 1, 并写出点B 的对应点B 1的坐标.---------参考答案-----------一、单选题1、C【分析】先根据棋子“车”的坐标画出直角坐标系,然后写出棋子“炮”的坐标.【详解】解:如图,棋子“炮”的坐标为(3,−2).故选:C.本题考查了坐标确定位置:平面坐标系中的点与有序实数对一一对应;记住平面内特殊位置的点的坐标特征.2、D【分析】根据位置的确定需要两个条件对各选项分析判断即可.【详解】解:A、红星电影院2排,具体位置不能确定,不符合题意;B、北京市四环路,具体位置不能确定,不符合题意;C、北偏东30,具体位置不能确定,不符合题意;D、东经118︒,北纬40︒,很明确能确定具体位置,符合题意;故选:D.【点睛】本题考查了坐标确定位置,理解位置的确定需要两个条件是解题的关键.3、C【分析】根据有序实数对表示位置,逐项分析即可【详解】解:A. 电影院一层的3排4座,能确定具体位置,故该选项不符合题意;B. 太原市解放路85号,能确定具体位置,故该选项不符合题意;C. 南偏西30,不能确定具体位置,故该选项符合题意;D. 东经108︒,北纬53︒,能确定具体位置,故该选项不符合题意;【点睛】本题考查了有序实数对表示位置,理解有序实数对表示位置是解题的关键.4、D【分析】先判断出点M 的横、纵坐标的符号,再根据点M 到x 轴、y 轴的距离即可得.【详解】 解:点M 在第四象限,∴点M 的横坐标为正数,纵坐标为负数,点M 到x 轴的距离为1,到y 轴的距离为2,∴点M 的纵坐标为1-,横坐标为2,即(2,1)M -,故选:D .【点睛】本题考查了点坐标,熟练掌握各象限内的点坐标的符号规律是解题关键.5、C【分析】根据各象限内点的坐标特征解答.【详解】解:点()2021,2022A --的横坐标小于0,纵坐标小于0,点()2021,2022A --所在的象限是第三象限. 故选:C .【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).6、D【分析】根据点的坐标,判断出点所在的象限,进而即可求解.【详解】解:∵直尺没有经过第四象限,而()2,1-在第四象限,∴一定不会被直尺盖住的点的坐标是()2,1-,故选D .【点睛】本题主要考查点的坐标特征,掌握点所在象限和点的坐标特征,是解题的关键.7、A【分析】根据x 轴上点的纵坐标为0列式计算求出a 的值,然后求解即可.【详解】解:∵点P (3+a ,a +1)在x 轴上,∴a +1=0,∴a =-1,3+a =3-1=2,∴点P 的坐标为(2,0).故选:A .【点睛】本题考查了点的坐标,主要利用了x轴上点的纵坐标为0的特点.8、D【分析】根据平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减求解即可.【详解】解:将点P(-2,-3)向上平移3个单位,再向左平移1个单位,所得到的点的坐标为(-2-1,-3+3),即(-3,0),故选:D.【点睛】本题考查了坐标与图形变化-平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.9、A【分析】根据x轴上点的纵坐标为0列式求出a,从而得到点A的坐标,然后解答即可.【详解】解:∵点A(a,a+5)在x轴上,∴a+5=0,解得a=-5,所以,点A的坐标为(-5,0),所以,点A到原点的距离为5.故选:A.【点睛】本题考查了点的坐标,熟记x轴上点的纵坐标为0是解题的关键.10、A【分析】让点A 的横坐标加7,纵坐标减5即可得到平移后点的坐标.【详解】解:点()4,3A -先向右平移7个单位,再向下平移5个单位,得到的点坐标是(47,35)-+-,即(3,2)-, 故选A .【点睛】本题考查了坐标与图形变化-平移,解题的关键是掌握点的平移,左右平移只改变点的横坐标,左减右加;上下平移只改变点的纵坐标,上加下减.二、填空题1、(3,2)【解析】【分析】线段AB ∥x 轴,A 、B 两点纵坐标相等,又AB =4,B 点可能在A 点左边或者右边,根据距离确定B 点坐标.【详解】解:∵AB ∥x 轴,∴A 、B 两点纵坐标都为2,又∵AB =4,∴当B 点在A 点左边时,B (-5,2),B (-5,2)在第二象限,与点B 在第一象限,不相符,舍去;当B 点在A 点右边时,B (3,2);故答案为:(3,2).【点睛】本题考查了平行于x 轴的直线上的点纵坐标相等,再根据两点相对的位置及两点距离确定点的坐标.2、-1【解析】【分析】根据第二、四象限的角平分线上点的特点即可得到关于a 的方程,进行求解即可.【详解】解:点()2,1P m m -在第二、四象限的角平分线上,∴210m m +-=,解得:1m =-,故答案为:1-.【点睛】题目主要考查了二、四象限角平分线上点的特点,掌握象限角平分线上点的特点是解题的关键.3、(3,0)或(-3,0)##(-3,0)或(3,0)【解析】【分析】根据题意可得点A 在x 轴上,且到原点的距离为3,这样的点有两个,分别在x 轴的正半轴和负半轴,即可得出答案.【详解】解:根据题意可得:点A 在x 轴上,且到原点的距离为3,这样的点有两个,分别在x 轴的正半轴和负半轴,∴点A 的坐标为(3,0)或(-3,0),故答案为:(3,0)或(-3,0).【点睛】题目主要考查点在坐标系中的位置,理解点在坐标系中的距离分两种情况是解题关键.5,04、()【解析】【分析】根据反射角与入射角的定义作出图形,可知每6次反弹为一个循环组依次循环,用2020除以6,根据商和余数的情况确定所对应的点的坐标即可.【详解】解:如图,根据题意得:P0(0,3),P1(3,0),P2(7,4),P3(8,3),P4(5,0),P5(1,4),P6(0,3),P7(3,0),…,∴点P n的坐标6次一循环.经过6次反弹后动点回到出发点(0,3),∵2020÷6=336…4,∴当点P第2020次碰到矩形的边时为第336个循环组的第4次反弹,点P的坐标为(5,0).故答案为:(5,0).【点睛】此题主要考查了点的坐标的规律,作出图形,观察出每6次反弹为一个循环组依次循环是解题的关键.5、()2,2-【解析】【分析】根据向右平移横坐标加,向下平移纵坐标减,计算即可得解.【详解】解:将点P (-3,4)先向右平移1个单位长度,再向下平移2个单位长度后所得到的坐标为()2,2-. 故答案为:()2,2-【点睛】本题考查了坐标与图形的变化—平移,熟记平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减是解题的关键.三、解答题1、(1)像一棵树;(2)x 轴上的点有:()2,0-,()1,0,()3,0,()6,0;y 轴上的点有:()0,3;(3)点()2,5,()4,3,()1,3,()3,3在第一象限内,因为它们的横坐标与纵坐标都是正实数;点()1,6-,()3,6-在第四象限内,因为它们的横坐标是正实数,纵坐标是负实数;(4)点()0,3与()3,3的纵坐标相同,它们的连线段与x 轴平行;点()1,3,()1,0,()1,6-的横坐标相同,它们的连线段与y 轴平行.【解析】【分析】(1)依此描出各组点的坐标,然后依此连接,由图象可进行求解;(2)根据图象可直接进行求解;(3)根据平面直角坐标系中象限的符号特点可直接进行求解;(4)根据图象可直接进行求解.解:(1)描出各组点的坐标并依此连接,如图所示:由图象可知:像一棵树;(2)x 轴上的点有:()2,0-,()1,0,()3,0,()6,0;y 轴上的点有:()0,3;(3)点()2,5,()4,3,()1,3,()3,3在第一象限内,因为它们的横坐标与纵坐标都是正实数;点()1,6-,()3,6-在第四象限内,因为它们的横坐标是正实数,纵坐标是负实数;(4)学生的发现可以多样.例如,点()0,3与()3,3的纵坐标相同,它们的连线段与x 轴平行;点()1,3,()1,0,()1,6-的横坐标相同,它们的连线段与y 轴平行.【点睛】本题主要考查平面直角坐标系,解题的关键是在平面直角坐标系中描出各点的坐标.2、(1)(0,163-)(2)(14,4)(3)(−16,−16)或(3.2,−3.2) 【解析】(1)根据y轴上的点的纵坐标等于零,可得方程,解方程可得答案;(2)根据平行于x轴直线上的点纵坐标相等,可得方程,解方程可得答案;(3)根据点A到两坐标轴的距离相等,可得关于a的方程,解方程可得答案.【详解】解:(1)依题意有3a+2=0,解得a=23 -,2a﹣4=2×(23-)﹣4=163-.故点A的坐标为(0,163 -);(2)依题意有2a−4=4,解得a=4,3a+2=3×4+2=14,故点A的坐标为(14,4);(3)依题意有|3a+2|=|2a−4|,则3a+2=2a−4或3a+2+2a−4=0,解得a=−6或a=0.4,当a=−6时,3a+2=3×(−6)+2=−16,当a=0.4时,3a+2=3×0.4+2=3.2,2a−4=−3.2.故点A的坐标为(−16,−16)或(3.2,−3.2).【点睛】本题考查了点的坐标,x轴上的点的纵坐标等于零;平行于x轴直线上的点纵坐标相等.【解析】【分析】2(2)0y -=得出30x +=,20y -=,解出x ,y 即可得出点A 的坐标.【详解】30x +≥,2(2)0y -≥2(2)0y -=,30x ∴+=,20y -=,解得:3x =-,2y =,2325x ∴-=--=-,1213y +=+=,(5,3)A ∴-.【点睛】本题考查非负数的性质,几个非负数之和等于零,则每一个非负数都为0.4、(1)见解析;(2)A 1、B 1、C 1的坐标分别为(0,6),(-1,2),(5,2);(3)12.【解析】【分析】(1)把△ABC 的各顶点向上平移4个单位,再向右平移2个单位,顺次连接各顶点即为△A 1B 1C 1;(2)利用各象限点的坐标特征写出点A 1、B 1、C 1的坐标;(3)根据三角形面积公式求解.【详解】解:(1)如图,△A 1B 1C 1为所作;(2)点A 1、B 1、C 1的坐标分别为(0,6),(-1,2),(5,2);×6×4=12,(3)△A1B1C1的面积=12故答案为:12.【点睛】本题考查了作图-平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.5、见解析,点B的对应点B1的坐标为(3,3)【解析】【分析】根据轴对称的性质画出图形并写出坐标即可.【详解】如图所示,B1的坐标为(3,3).【点睛】本题考查了作图−轴对称,属于基础题.关键是确定对称点的位置.。
【3套试题】人教版七年级数学下册 第七章平面直角坐标系单元测试题 (Word含答案)

人教版七年级数学下册第七章平面直角坐标系单元测试题 (Word含答案)一、选择题(每小题3分,共30分)1.课间操时,小华、小军、小刚的位置如图,小华对小刚说:“如果我的位置用(0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成()”A.(5,4)B.(4,5)C.(3,4)D.(4,3)第1题第4题2.在平面直角坐标系中,对于坐标P(2,5),下列说法错误的是() A、P(2,5)表示这个点在平面C、点P到x轴的距离是5D、它与点(5,2)表示同一个坐标3.在平面直角坐标系中,点(-1,m2+1)一定在( )A.第一象限B.第二象限C.第三象限D.第四象限4.如图,下列说法正确的是()A.A与D的横坐标相同B.C与D的横坐标相同C.B 与C的纵坐标相同D.B与D的纵坐标相同5.一个正方形在平面直角坐标系中三个顶点的坐标为(-2,-3),(-2,1),(2,1),则第四个顶点的坐标为()A.(2,2)B.(3,2)C.(2,-3)D.(2,3)6.下列坐标所表示的点中,距离坐标系的原点最近的是()A.(-1,1)B.(2,1)C.(0,2)D.(0,-2)7.在平面直角坐标系中,若以点A(0,-3)为圆心,5为半径画一个圆,则这个圆与y轴的负半轴相交的点坐标是()A.(8,0)B.(0,-8)C.(0,8)D.(-8,0)8.在平面直角坐标系中,将三角形各点的纵坐标都减去3,横坐标保持不变,所得图形与原图形相比()A、向右平移了3个单位B、向左平移了3个单位C、向上平移了3个单位D、向下平移了3个单位9.已知三角形的三个顶点坐标分别是(-1,4)、(1,1)、(-4,-1),现将这三个点先向右平移2个单位长度,再向上平移3个单位长度,则平移后三个顶点的坐标是()A.(-2,2),(3,4),(1,7)B.(-2,2),(4,3),(1,7)C.(2,2),(3,4),(1,7)D.(2,-2),(3,3),(1,7)10.一个质点在第一象限及x轴、y轴上运动,在第一秒钟,它从原点运动到(0,1),然后接着按图中箭头所示方向运动,且每秒移动一个单位,那么第2008秒时质点所在位置的坐标是()A.(16,16)B.(44,44)C.(44,16) D.(16,44)二、填空题(每小题3分,共24分)11.如果用(7,8)表示七年级八班,那么八年级七班可表示成.12.点(-2,3)先向右平移2个单位,再向下平移3个单位,此时的位置的坐标是.13.在平面直角坐标系中,点P(m,m-2)在第一象限内,则m的取值范围是.14.已知点P在第二象限,且横坐标与纵坐标的和为1,试写出一个符合条件的点P;15.点P到x轴的距离是2,到y轴的距离是3,且在y轴的左侧,则P点的坐标是.16.如图所示,进行“找宝”游戏,如果宝藏藏在(3,3)字母牌的下面,那么应该在字母的下面寻找.第16题第17题17.如图所示,A的位置为(2,6),小明从A出发,经(2,5)→(3,5)→(4,5)→(4,4)→(5,4)→(6,4),小刚也从A出发,经(3,6)→(4,6)→(4,7)→(5,7)→(6,7),则此时两人相距格.18. 如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序按图中“→” 方向排列,如(1,0),(2,0),(2,1),(1,1)(1,2),(2,2),…,根据这个规律,第2017个点的坐标为三、解答题(共96分)19.(8分)如果点A的坐标为(a2+1,-1-b2),那么点A在第几象限?为什么?20.(12分)如图,将三角形A BC向右平移2个单位长度,再向下平移3个单位长度,得到对应的三角形A1B1C1。
人教版初中七年级下册数学第七章单元测试卷(3)(附答案解析)

单元测验卷一.选择题.1.(3分)点P(3,﹣1)在第()象限.A.一B.二C.三D.四2.(3分)点A(0,2)在()A.第二象限B.x轴的正半轴上C.y轴的正半轴上D.第四象限3.(3分)如果点P(﹣3,b)在第三象限内,则b()A.是正数B.是负数C.是0 D.可以是正数,也可以是负数4.(3分)如果点A(2,﹣3)和点B关于原点对称,则点B的坐标为()A.(﹣2,3)B.(﹣2,﹣3)C.(2,﹣3)D.(2,3)5.(3分)点P(2,﹣5)到x轴、y轴的距离分别为()A.2、5 B.2、﹣5 C.5、2 D.﹣5、26.(3分)在第二、四象限内两坐标轴夹角的平分线上的点的横坐标和纵坐标()A.相等B.互为倒数C.之差为零D.互为相反数7.(3分)在平面直角坐标系中,将三角形各点的横坐标都减去3,纵坐标保持不变,所得图形与原图形相比()A.向右平移了3个单位B.向左平移了3个单位C.向上平移了3个单位D.向下平移了3个单位8.(3分)△DEF(三角形)是由△ABC平移得到的,点A(﹣1,﹣4)的对应点为D(1,﹣1),则点B(1,1)的对应点E,点C(﹣1,4)的对应点F的坐标分别为()A.(2,2),(3,4)B.(3,4),(1,7)C.(﹣2,2),(1,7)D.(3,4),(2,﹣2)9.(3分)一个长方形在平面直角坐标系中三个顶点的坐标为(﹣1,﹣1),(﹣1,2),(3,﹣1),则第四个顶点的坐标为()A.(2,2) B.(3,2) C.(3,3) D.(2,3)10.(3分)如图,下列说法正确的是()A.A与D的横坐标相同B.A与B的横坐标相同C.B与C的纵坐标相同 D.C与D的纵坐标相同11.(3分)将点A(﹣3,2)先向右平移3个单位,再向下平移5个单位,得到A′、将点B(﹣3,6)先向下平移5个单位,再向右平移3个单位,得到B′,则A′与B′相距()A.4个单位长度B.5个单位长度C.6个单位长度D.7个单位长度12.(3分)已知点A(m,n)在第二象限,则点B(|m|,﹣n)在()A.第一象限B.第二象限C.第三象限D.第四象限二.填空题.13.(3分)如果将一张“9排5号”的电影票简记为(9,5),那么(5,9)表示的电影票表示的是排号.14.(3分)平面直角坐标系中,原点O的坐标为,x轴上的点的坐标为0,y轴上的点的坐标为0.15.(3分)将点A(﹣2,3)向左平移2个单位长度后,所得点的坐标为;把A向下平移1个单位长度后,所得点的坐标为.16.(3分)已知|x﹣2|+(y+1)2=0,则点P(x,y)在第个象限,坐标为.三.解答题.17.在平面直角坐标系列中,标出下列各点:(1)点A在x轴的正半轴上,距离原点1个单位长度;(2)点B在y轴的负半轴上,距离原点2个单位长度;(3)点C在第四象限,距离x轴1个单位长度,距离y轴3个单位长度;(4)点D在第一象限,距离x轴1个单位长度,距离y轴4个单位长度.请用线段依次连接这些点,你能得到什么图形?18.若线段AB平行于x轴,AB的长为4,且A的坐标为(2,3),求点B的坐标.19.三角形ABC三个顶点的坐标分别为A(﹣2,﹣3)、B(3,2)、C(2,﹣1),如果将这个三角形三个顶点的横坐标都加3,同时纵坐标都减1,分别得到点A1、B1、C1,依次用线段连接A1、B1、C1所得三角形A1B1C1.(1)分别写出点A1、B1、C1坐标;(2)三角形A1B1C1与三角形ABC的大小、形状和位置上有什么关系?20.如图是网格图,每个小正方形的边长均为1.△ABC(“△”表示“三角形”)是格点三角形(即每个顶点都在小正方形的顶点上),它在坐标平面内平移,得到△PEF,点A平移后落在点P的位置上.(1)请你在图中画出△PEF,并写出顶点P、E、F的坐标;(2)说出△PEF是由△ABC分别经过怎样的平移得到的?21.如图是某台阶的一部分,如果A点的坐标为(0,0),B点的坐标为(1,1),(1)请建立适当的直角坐标系,并写出其余各点的坐标;(2)如果台阶有10级,请你求出该台阶的长度和高度;(3)若这10级台阶的宽度都是2m,单位长度为1m,现要将这些台阶铺上地毯,需要多少平方米?四、解答题(共1小题,满分0分)22.阅读理解:我们知道,任意两点关于它们所连线段的中点成中心对称,在平面直角坐标系中,任意两点P(x1,y1)、Q(x2,y2)的对称中心的坐标为.观察应用:(1)如图,在平面直角坐标系中,若点P1(0,﹣1)、P2(2,3)的对称中心是点A,则点A的坐标为;(2)另取两点B(﹣1.6,2.1)、C(﹣1,0).有一电子青蛙从点P1处开始依次关于点A、B、C作循环对称跳动,即第一次跳到点P1关于点A的对称点P2处,接着跳到点P2关于点B的对称点P3处,第三次再跳到点P3关于点C的对称点P4处,第四次再跳到点P4关于点A的对称点P5处,…则点P3、P8的坐标分别为、.拓展延伸:(3)求出点P2012的坐标,并直接写出在x轴上与点P2012、点C构成等腰三角形的点的坐标.参考答案与试题解析一.选择题.1.(3分)点P(3,﹣1)在第()象限.A.一B.二C.三D.四【考点】D1:点的坐标.【分析】根据各象限内点的坐标特征解答.【解答】解:点P(3,﹣1)在第四象限.故选D.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).2.(3分)点A(0,2)在()A.第二象限B.x轴的正半轴上C.y轴的正半轴上D.第四象限【考点】D1:点的坐标.【分析】根据象限的特点,判断出所求的点的横纵坐标的符号,进而判断点所在的象限.【解答】解:∵点A(0,2)的横坐标是0,纵坐标是正数,∴点A在平面直角坐标系y轴的正半轴上.故选C.【点评】本题考查了象限以及x轴、y轴的特点,难度适中.3.(3分)如果点P(﹣3,b)在第三象限内,则b()A.是正数B.是负数C.是0 D.可以是正数,也可以是负数【考点】D1:点的坐标.【专题】11 :计算题.【分析】根据第三象限内点的坐标特点得到b<0.【解答】解:∵P(﹣3,b)在第三象限内,∴b<0.故选B.【点评】本题考查了点的坐标:直角坐标系中点与有序实数对一一对应;在x轴上点的纵坐标为0,在y轴上点的横坐标为0;记住各象限点的坐标特点.4.(3分)如果点A(2,﹣3)和点B关于原点对称,则点B的坐标为()A.(﹣2,3)B.(﹣2,﹣3)C.(2,﹣3)D.(2,3)【考点】R6:关于原点对称的点的坐标.【分析】根据关于原点对称的点的横坐标与纵坐标都互为相反数解答即可.【解答】解:∵点A(2,﹣3)和点B关于原点对称,∴点B的坐标为(﹣2,3).故选A.【点评】本题考查了关于原点对称的点的坐标,熟记关于原点的对称点的横坐标、纵坐标都相反数是解题的关键.5.(3分)点P(2,﹣5)到x轴、y轴的距离分别为()A.2、5 B.2、﹣5 C.5、2 D.﹣5、2【考点】D1:点的坐标.【分析】求得﹣5的绝对值即为点P到x轴的距离,求得2的绝对值即为点P到y轴的距离.【解答】解:∵|﹣5|=5,|2|=2,∴点P到x轴的距离为5,到y轴的距离为2.故选:C.【点评】本题考查了点的坐标的几何意义:点到x轴的距离为点的纵坐标的绝对值,到y轴的距离为点的横坐标的绝对值.6.(3分)在第二、四象限内两坐标轴夹角的平分线上的点的横坐标和纵坐标()A.相等B.互为倒数C.之差为零D.互为相反数【考点】D5:坐标与图形性质.【分析】根据角平分线上的点到角的两边的距离相等以及第二、四象限内点的横坐标与纵坐标的符号相反解答.【解答】解:∵角平分线上的点到角的两边的距离相等,第二、四象限内点的横坐标与纵坐标的符号相反,∴第二、四象限内两坐标轴夹角的平分线上的点的横坐标和纵坐标互为相反数.故选D.【点评】本题考查了坐标与图形,熟记平面直角坐标系与各象限内点的符号特点是解题的关键.7.(3分)在平面直角坐标系中,将三角形各点的横坐标都减去3,纵坐标保持不变,所得图形与原图形相比()A.向右平移了3个单位B.向左平移了3个单位C.向上平移了3个单位D.向下平移了3个单位【考点】Q3:坐标与图形变化﹣平移.【分析】根据平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减,可得答案.【解答】解:将三角形各点的横坐标都减去3,纵坐标保持不变,所得图形与原图形相比向左平移了3个单位.故选:B.【点评】此题主要考查了坐标与图形变化﹣平移,关键是掌握点的变化规律.8.(3分)△DEF(三角形)是由△ABC平移得到的,点A(﹣1,﹣4)的对应点为D(1,﹣1),则点B(1,1)的对应点E,点C(﹣1,4)的对应点F的坐标分别为()A.(2,2),(3,4)B.(3,4),(1,7)C.(﹣2,2),(1,7)D.(3,4),(2,﹣2)【考点】Q3:坐标与图形变化﹣平移.【分析】直接利用平移中点的变化规律求解即可.【解答】解:点A的对应点D,是横坐标从﹣1到1,说明是向右移动了1﹣(﹣1)=2个单位,纵坐标是从﹣4到﹣1,说明是向上移动了﹣1﹣(﹣4)=3个单位,那么其余两点移运转规律也如此,即横坐标都加2,纵坐标都加3.故点E、F的坐标为(3,4)、(1,7).故选B.【点评】本题考查了平移中点的变化规律,横坐标右移加,左移减;纵坐标上移加,下移减.左右移动改变点的横坐标,上下移动改变点的纵坐标.9.(3分)一个长方形在平面直角坐标系中三个顶点的坐标为(﹣1,﹣1),(﹣1,2),(3,﹣1),则第四个顶点的坐标为()A.(2,2) B.(3,2) C.(3,3) D.(2,3)【考点】D5:坐标与图形性质;LB:矩形的性质.【分析】本题可在画出图后,根据矩形的性质,得知第四个顶点的横坐标应为3,纵坐标应为2.【解答】解:如图可知第四个顶点为:即:(3,2).故选:B.【点评】本题考查学生的动手能力,画出图后可很快得到答案.10.(3分)如图,下列说法正确的是()A.A与D的横坐标相同B.A与B的横坐标相同C.B与C的纵坐标相同 D.C与D的纵坐标相同【考点】D5:坐标与图形性质;L5:平行四边形的性质.【分析】由图意得BC∥x轴,那么B与C的纵坐标相同.【解答】解:因为AD∥x,BC∥x,所以A、D纵坐标相同,B、C纵坐标相同,根据选项可知C正确,故选C.【点评】本题用到的知识点为:平行于x轴的直线上的点的纵坐标都相等.11.(3分)将点A(﹣3,2)先向右平移3个单位,再向下平移5个单位,得到A′、将点B(﹣3,6)先向下平移5个单位,再向右平移3个单位,得到B′,则A′与B′相距()A.4个单位长度B.5个单位长度C.6个单位长度D.7个单位长度【考点】Q3:坐标与图形变化﹣平移.【分析】根据向右平移横坐标加,向下平移纵坐标减求出点A′的坐标,再求出点B′的坐标,然后解答即可.【解答】解:∵点A(﹣3,2)先向右平移3个单位,再向下平移5个单位,∴点A′(0,﹣3),∵点B(﹣3,6)先向下平移5个单位,再向右平移3个单位,∴点B′(0,1),∴A′与B′相距4个单位.故选A.【点评】本题考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.12.(3分)已知点A(m,n)在第二象限,则点B(|m|,﹣n)在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】D1:点的坐标.【分析】点在第二象限的条件是:横坐标是负数,纵坐标是正数,即可确定出m、n的正负,从而确定|m|,﹣n的正负,即可得解.【解答】解:∵点A(m,n)在第二象限,∴m<0,n>0,则可得|m|>0,﹣n<0,∵点B的坐标为(|m|,﹣n),∴点B在第四象限.故选D.【点评】本题考查了各象限内点的坐标的符号特征以及解不等式,熟记各象限内点的坐标的符号是解题的关键.二.填空题.13.(3分)如果将一张“9排5号”的电影票简记为(9,5),那么(5,9)表示的电影票表示的是5排9号.【考点】D3:坐标确定位置.【分析】由于9排5号的电影票简记为(9,5),则(5,9)的电影票表示的是5排9号.【解答】解:∵“9排5号”的电影票简记为(9,5),∴(5,9)的电影票表示为5排9号.故答案为5,9.【点评】本题考查了坐标确定位置:直角坐标平面内点的位置由有序实数对确定,有序实数对与点一一对应.14.(3分)平面直角坐标系中,原点O的坐标为(0,0),x轴上的点的纵坐标为0,y轴上的点的横坐标为0.【考点】D1:点的坐标.【分析】直接根据坐标系中各个象限内及坐标轴上的点的坐标特点可求解.【解答】解:平面直角坐标系中,原点O的坐标为(0,0),x轴上的点的纵坐标为0,y轴上的点的横坐标为0.故各空依次填(0,0)、纵、横.【点评】要掌握平面直角坐标系中各个部位上的点的坐标特点,只有掌握住了,在解题的过程中才能准确而迅速的解题.15.(3分)将点A(﹣2,3)向左平移2个单位长度后,所得点的坐标为(﹣4,3);把A向下平移1个单位长度后,所得点的坐标为(﹣2,2).【考点】Q3:坐标与图形变化﹣平移.【分析】根据平移规律,左右移,纵不变,横减加;上下移,横不变,纵加减.【解答】解:将点A(﹣2,3)向左平移2个单位长度后,所得点的坐标为(﹣2﹣2,3),即(﹣4,3);把A向下平移1个单位长度后,所得点的坐标为(﹣2,3﹣1),即(﹣2,2).故答案为:(﹣4,3),(﹣2,2).【点评】本题主要考查点坐标的平移变换.关键是熟练掌握点平移的变化规律:左减右加,上加下减.16.(3分)已知|x﹣2|+(y+1)2=0,则点P(x,y)在第四个象限,坐标为(2,﹣1).【考点】D1:点的坐标;16:非负数的性质:绝对值;1F:非负数的性质:偶次方.【分析】根据非负数的性质列式求出x、y的值,然后根据各象限内点的坐标特征解答.【解答】解:由题意得,x﹣2=0,y+1=0,解得x=2,y=﹣1,∴点P(x,y)在第四象限,坐标为(2,﹣1).故答案为:四,(2,﹣1).【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).三.解答题.17.在平面直角坐标系列中,标出下列各点:(1)点A在x轴的正半轴上,距离原点1个单位长度;(2)点B在y轴的负半轴上,距离原点2个单位长度;(3)点C在第四象限,距离x轴1个单位长度,距离y轴3个单位长度;(4)点D在第一象限,距离x轴1个单位长度,距离y轴4个单位长度.请用线段依次连接这些点,你能得到什么图形?【考点】D5:坐标与图形性质.【分析】根据平面直角坐标系与点的坐标的确定找出点A、B、C、D的位置,然后顺次连接即可.【解答】解:如图所示,用线段依次连接这些点,得到一个平行四边形.【点评】本题考查了坐标与图形的性质,熟练掌握在平面直角坐标系中确定点的位置的方法是解题的关键.18.若线段AB平行于x轴,AB的长为4,且A的坐标为(2,3),求点B的坐标.【考点】D5:坐标与图形性质.【分析】根据平行于x轴的点的纵坐标相同求出点B的纵坐标,再分点B在点A 的左边与右边两种情况讨论求解.【解答】解:∵线段AB平行于x轴,A的坐标为(2,3),∴点B的纵坐标是3,∵AB=4,∴点B在点A的左边时,横坐标为2﹣4=﹣2,点B在点A的右边时,横坐标为2+4=6,∴点B的坐标为(6,3)或(﹣2,3).【点评】本题考查了坐标与图形性质,熟记平行于x轴的点的纵坐标相同,难点在于要分情况讨论.19.三角形ABC三个顶点的坐标分别为A(﹣2,﹣3)、B(3,2)、C(2,﹣1),如果将这个三角形三个顶点的横坐标都加3,同时纵坐标都减1,分别得到点A1、B1、C1,依次用线段连接A1、B1、C1所得三角形A1B1C1.(1)分别写出点A1、B1、C1坐标;(2)三角形A1B1C1与三角形ABC的大小、形状和位置上有什么关系?【考点】Q3:坐标与图形变化﹣平移.【分析】(1)根据题意进行计算即可;(2)根据坐标与图形的变化规律:横坐标,右移加,左移减;纵坐标,上移加,下移减.【解答】解:(1)A1(1,﹣4),B1(6,1),C1(5,﹣2);(2)三角形A1B1C1的大小、形状与三角形ABC的大小、形状完全一样,仅是位置不同,三角形A1B1C1是将三角形ABC沿x轴方向向右平移3个单位,再沿y 轴方向向下平移1个单位得到的.【点评】此题主要考查了坐标与图形的变化,关键是掌握平移后点的坐标的变化规律.把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.20.如图是网格图,每个小正方形的边长均为1.△ABC(“△”表示“三角形”)是格点三角形(即每个顶点都在小正方形的顶点上),它在坐标平面内平移,得到△PEF,点A平移后落在点P的位置上.(1)请你在图中画出△PEF,并写出顶点P、E、F的坐标;(2)说出△PEF是由△ABC分别经过怎样的平移得到的?【考点】Q4:作图﹣平移变换.【分析】(1)根据A点平移到P点的方法,分别找到B、C两点平移后的对应点,再写出坐标即可;(2)根据图中△ABC和△PEF的位置进行描述即可.【解答】解:(1)如图所示:P(﹣3,﹣3),E(﹣2,0),F(﹣1,﹣1);(2)先把△ABC向左平移3个单位长度,再把它向下平移2个单位长度(或先向下平移2个单位长度,再向左平移3个单位长度).【点评】此题主要考查了作图﹣﹣平移变换,作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.21.如图是某台阶的一部分,如果A点的坐标为(0,0),B点的坐标为(1,1),(1)请建立适当的直角坐标系,并写出其余各点的坐标;(2)如果台阶有10级,请你求出该台阶的长度和高度;(3)若这10级台阶的宽度都是2m,单位长度为1m,现要将这些台阶铺上地毯,需要多少平方米?【考点】D5:坐标与图形性质.【专题】11 :计算题.【分析】(1)以点A为坐标原点建立平面直角坐标系,然后写出各点的坐标即可;(2)根据平移的性质求横向与纵向的长度,即为台阶的长度和高度;(3)根据(2)求出地毯的长度,然后乘以台阶的宽度计算即可得解.【解答】解:(1)建立平面直角坐标系如图所示,C(2,2),D(3,3),E(4,4),F(5,5);(2)台阶的长度:1×(10+1)=11,高度:1×10=10;(3)∵单位长度为1m,∴地毯的长度为:(11+10)×1=21m,∵台阶的宽度都是2m,∴地毯的面积为21×2=42m2,答:将这些台阶铺上地毯,需要42平方米.【点评】本题考查了坐标与图形性质,主要利用了平面直角坐标系的定义和在平面直角坐标系中确定点的坐标的方法,平移的性质.四、解答题(共1小题,满分0分)22.阅读理解:我们知道,任意两点关于它们所连线段的中点成中心对称,在平面直角坐标系中,任意两点P(x1,y1)、Q(x2,y2)的对称中心的坐标为.观察应用:(1)如图,在平面直角坐标系中,若点P1(0,﹣1)、P2(2,3)的对称中心是点A,则点A的坐标为(1,1);(2)另取两点B(﹣1.6,2.1)、C(﹣1,0).有一电子青蛙从点P1处开始依次关于点A、B、C作循环对称跳动,即第一次跳到点P1关于点A的对称点P2处,接着跳到点P2关于点B的对称点P3处,第三次再跳到点P3关于点C的对称点P4处,第四次再跳到点P4关于点A的对称点P5处,…则点P3、P8的坐标分别为(﹣5.2,1.2)、(2,3).拓展延伸:(3)求出点P2012的坐标,并直接写出在x轴上与点P2012、点C构成等腰三角形的点的坐标.【考点】D5:坐标与图形性质;R4:中心对称.【专题】16 :压轴题;21 :阅读型.【分析】(1)直接利用题目所给公式即可求出点A的坐标;(2)首先利用题目所给公式求出P2的坐标,然后利用公式求出对称点P3的坐标,依此类推即可求出P8的坐标;(3)由于P1(0,﹣1)→P2(2,3)→P3(﹣5.2,1.2)→P4(3.2,﹣1.2)→P5(﹣1.2,3.2)→P6(﹣2,1)→P7(0,﹣1)→P8(2,3),由此得到P7的坐标和P1的坐标相同,P8的坐标和P2的坐标相同,即坐标以6为周期循环,利用这个规律即可求出点P2012的坐标,也可以根据图形求出在x轴上与点P2012、点C 构成等腰三角形的点的坐标.【解答】解:(1)(1,1);(2)P3、P8的坐标分别为(﹣5.2,1.2),(2,3);(3)∵P1(0,﹣1)→P2(2,3)→P3(﹣5.2,1.2)→P4(3.2,﹣1.2)→P5(﹣1.2,3.2)→P6(﹣2,1)→P7(0,﹣1)→P8(2,3);∴P7的坐标和P1的坐标相同,P8的坐标和P2的坐标相同,即坐标以6为周期循环.∵2012÷6=335…2.∴P2012的坐标与P2的坐标相同,为P2012(2,3);在x轴上与点P2012、点C构成等腰三角形的点的坐标为.【点评】此题是一个阅读材料的题目,读懂题目,利用题目所给公式是解题的关键,利用公式可以解决后面的所有问题。
(完整)七年级数学上册第七章单元测试题及答案,推荐文档

第七章 可能性单元测试卷班级 姓名 学号 得分一、填空题:(每小题2分,共20分)1. 生活中有些事情发生的机会介于0和100%之间,这些事情称为___________.2. 文具盒里有4支圆珠笔,3支铅笔,则选取圆珠笔的概率是__________.3. 在a 件产品中有b 件次品,则抽到正品的可能性为__________.4. 对于a ≥a 是___________事件.5. 从1~10这十个数中,第一次摸到数7且不放回去,第二次摸到奇数的可能性是__________.6. 从家到学校有三种方法:步行、骑车、坐公共汽车. 则不坐公共汽车的可能性为___________.7. 一道数学天中有A 、B 、C 、D 四个选项,并且只有一个正确的结果,某同学不看题就选A ,你认为他做对的可能性是_______________.8. 如图15-1是一个被分成6等分的转盘,任意转动两次,转出最大两位数的可能性是______________.9. 用1、2、3组成一个三位数(不重复出现某个数字),其中偶数有___________个.10. 已知一个边长为a 的正方形纸片,在四个角上剪去四个边长为b (a b 21<)的小正方形,把余下的部分做成一个无盖的长方体,那么这个无盖长方体的容积是_______________.二、选择题:(每小题3分,共30分)11. 若∠A 与∠B 都是锐角,则∠A +∠B =( )A. 锐角B. 直角C. 钝角D. 都有可能12. 如果a 、b 表示同一类量的两个数,则a 、b 之间的关系是( )A. b a >B. b a <C. b a =D. 都有可能13. 下列事件为必然事件的有( )A. 在一个标准大气压下,20℃的水结成冰B. 抛出一枚硬币,落地后正面朝上C. 长为a ,宽为b 的长方形面积为abD. 在满分为100分的考试中,第一名的成绩是105分14. 一副扑克牌,任意抽取一张,抽到梅花8的可能性是( ) A. 541 B. 271 C. 272 D. 131图15-115. 一个袋子中有15个红球,5 个白球,每个球除颜色外都相同,任意摸出一个球,摸到( )球的可能性较大A. 红球B. 蓝球C. 白球D. 都一样16. 柜子里有5双鞋,任意取出一只,是右脚穿的鞋的概率是( )A. 10%B. 20%C. 50%D. 都有可能17. 下列事件是不可能事件的是( )A. 太阳东升西落B. 今天停电C. 蜡烛在真空中燃烧D. 从袋中摸到一个白球18. 下列说法正确的是( )A. 如果一件事发生的可能性为十万分之一,说明此事不可能发生B. 若一事件发生的机会达到99.9%,说明此事必然发生C. 不确定事件没有规律可循D. 如果一件事是不可能事件,则这一事件是确定事件19. 掷两个普通的正方体骰子,把正面朝上的点数相加,下列是必然事件的是( )A. 和为2B. 和不小于2C. 和大于2D. 都不对20. 给定下列5个数:2-,3-,5-,7,8,再放入一个数后,平均数将增加1,这个数是( )A. 1B. 5C. 6D. 7三、解答题:(共50分)21. (6分)纸片上写有0~100的所有偶数,任意摸出一张纸片,数字是2的倍数与数字是4的倍数的可能性哪个大?为什么?22. (7分)教室里有3名学生,试说明这3名学生是男生或女生的各种可能性情况.23. (7分)A 、B 、C 三个盒子里装有一定数量的球,小明每个盒子里摸10次:A 盒10次摸到红球;B 盒10次摸到白球;C 盒4次摸到红球,6次摸到白球. 试对A 、B 、C 三盒球的颜色作出判定.24.(8分)下列事件,哪些是必然事件?哪些是不可能事件?哪些是确定事件?哪些是不确定事件?①早晨,太阳从东方升起;②打开电视,正在播广告;③南极洲地面温度在30℃以上;④小明买彩票中头奖.25.(7分)某如有红、白、蓝三条长裤,他拿一件衬衫一条长裤,正好是相同颜色的一套衣服的概率是多少?26.(7分)请设计一个转盘,当转盘停止转动时,指针落在红色区域的可能性是50%,蓝色区域的可能性是20%,其余的是白色区域.27.(8分)在8张卡片上分别标有1~8这8个数,从中任意抽取2张,其数字之和是奇数的可能性与偶数的可能性哪个大?为什么?第七章 可能性 参 考 答 案1. 确定事件2. 743. a b a -4. 确定事件5. 946. 327. 25%8. 669. 210. b b a 2)2(- 11. D 12. D 13. C 14. A 15. A 16. C 17. C 18. D 19. B20. D21. 2的倍数的可能性100%,4的倍数的可能性50%.22. 四种:3个男生;3个女生;2男1女;1男2女.23. A 盒可能都是红球,B 盒可能都是白球,C 盒一定既有红球又有白球.24. ①必然事件;③不可能事件;①③确定事件;②④不能确定事件. 25. 31. 26. 略.27. 奇数的可能性大,有16个;偶数的可能性小,有12个.。
【3套精选】人教版七年级下册数学第七章平面直角坐标系单元测试卷(含答案)

人教版七年级下册数学单元同步练习卷:第七章平面直角坐标系一、填空题1.如图,在平面直角坐标系中:A(1,1),B(-1,1),C(-1,-2),D(1,-2),现把一条长为2 018个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A→B→C→D→A→…的规律紧绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是(1,-1).2.平面直角坐标系内有一点P(x,y),若点P在横轴上,则y=0;若点P在纵轴上,则x =0;若点P为坐标原点,则x=0且y=0.3.如图是某学校的示意图,若综合楼在点(-2,-1),食堂在点(1,2),则教学楼在点(-4,1).4.如图,小刚在小明的北偏东60°方向的500 m处,则小明在小刚的南偏西60°方向的500 m处.(请用方向和距离描述小明相对于小刚的位置)5.将点A(1,1)先向左平移2个单位长度,再向下平移3个单位长度得到点B,则点B的坐标是(-1,-2).6.如图,动点P在平面直角坐标系中按图中箭头所示的方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过2 019次运动后,动点P的坐标为(2__019,2).二、选择题7.用7和8组成一个有序数对,可以写成( D )A.(7,8) B.(8,7) C.7,8或8,7 D.(7,8)或(8,7)8.如图,一个方队正沿着箭头所指的方向前进,A的位置为三列四行,表示为(3,4),那么C的位置是( D )A.(4,5) B.(5,4) C.(4,2) D.(4,3)9.平面直角坐标系中,点(1,-2)在( D )A.第一象限B.第二象限C.第三象限D.第四象限10.如图是某游乐城的平面示意图,用(8,2)表示入口处的位置,用(6,-1)表示球幕电影的位置,那么坐标原点表示的位置是( D )A.太空秋千B.梦幻艺馆C.海底世界D.激光战车11.在平面直角坐标系中,将点P(3,-2)向下平移4个单位长度,得到点P的坐标为( B )A.(-1,-2) B.(3,-6) C.(7,-2) D.(3,-2)12.点N(-1,3)可以看作由点M(-1,-1)( A )A.向上平移4个单位长度所得到的B.向左平移4个单位长度所得到的C.向下平移4个单位长度所得到的D.向右平移4个单位长度所得到的13.如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序为(1,0),(2,0),(2,1),(1,1),(1,2),(2,2),…,根据这个规律,第2 018个点的坐标为( C )A.(45,9) B.(45,11) C.(45,7) D.(46,0)14.王宁在班里的座位号为(2,3),那么该同学所坐的位置是( D )A.第2排第3列B.第3排第2列C.第5排第5列D.不好确定15.在平面直角坐标系中,点(0,-10)在( D )A.x轴的正半轴上B.x轴的负半轴上C.y轴的正半轴上D.y轴的负半轴上三、解答题16.五子连珠棋和象棋、围棋一样,深受广大棋友的喜爱,其规则是:在15×15的正方形棋盘中,由黑方先行,轮流弈子,在任一方向上连成五子者为胜.如图是两个五子棋爱好者甲和乙的对弈图(甲执黑子先行,乙执白子后走),观察棋盘思考:若A点的位置记作(8,4),甲必须在哪个位置上落子,才不会让乙在短时间内获胜?为什么?解:甲必须在(1,7)或(5,3)处落子.因为若甲不首先截断以上两处之一,而让乙在(1,7)或(5,3)处落子,则不论截断何处,乙总有一处落子可连成五子,乙必胜无疑.17.在如图所示的平面直角坐标系中,描出下列各点,并将各点用线段依次连接起来. (0,-4),(3,-5),(6,0),(0,-1),(-6,0),(-3,-5),(0,-4). 解:如图.18.如图,A(-1,0),C(1,4),点B 在x 轴上,且AB =3.(1)求点B 的坐标;(2)求三角形ABC 的面积;(3)在y 轴上是否存在点P ,使以A ,B ,P 三点为顶点的三角形的面积为10?若存在,请直接写出点P 的坐标;若不存在,请说明理由. 解:(1)当点B 在点A 的右边时,点B 的坐标为(2,0);当点B 在点A 的左边时,点B 的坐标为(-4,0).所以点B 的坐标为(2,0)或(-4,0).(2)三角形ABC 的面积为12×3×4=6. (3)设点P 到x 轴的距离为h ,则12×3h=10,解得h =203.①当点P 在y 轴正半轴时,点P 的坐标为(0,203); ②当点P 在y 轴负半轴时,点P 的坐标为(0,-203). 综上所述,点P 的坐标为(0,203)或(0,-203). 19.如图是某动物园平面示意图的一部分(图中小正方形的边长代表100米),请问:(1)在大门东南方向有哪些景点?(2)从大门向东走300米,再向北走200米,到达哪个景点?(3)以大门为坐标原点,向东方向为x 轴正方向,向北方向为y 轴正方向建立平面直角坐标系,写出蛇山、水族馆及大象馆的坐标.解:(1)猴山,大象馆.(2)蛇山.(3)如图,蛇山的坐标为(300,200),水族馆的坐标为(500,0),大象馆的坐标为(300,-300).20.如图,点A ,B 的坐标分别为(1,0),(0,2),若将线段AB 平移到A 1B 1,点A 1,B 1的坐标分别为(2,a),(b ,3),试求a 2-2b 的值.解:∵A(1,0),A 1(2,a),B(0,2),B 1(b ,3),∴平移方法为向右平移1个单位长度,向上平移1个单位长度.∴a=0+1=1,b =0+1=1.∴a 2-2b =12-2×1=1-2=-1.21.如图,三角形ABC的三个顶点的坐标分别是A(4,0),B(-2,0),C(2,4),求三角形ABC的面积.人教版七年级下册数学第七章平面直角坐标系达标检测卷一、选择题(每题3分,共30分)1.如果(7,3)表示电影票上“7排3号”,那么3排7号就表示为() A.(7,3) B.(3,7)C.(-7,-3) D.(-3,-7)2.在平面直角坐标系中,点(5,-2)所在的象限为()A.第一象限B.第二象限C.第三象限D.第四象限3.将三角形ABC的三个顶点的纵坐标都加上3,横坐标不变,表示将该三角形()A.沿x轴的正方向平移了3个单位长度B.沿x轴的负方向平移了3个单位长度C.沿y轴的正方向平移了3个单位长度D.沿y轴的负方向平移了3个单位长度4.如图,在平面直角坐标系中,三角形ABC的顶点都在方格纸的格点上,如果将三角形ABC先向右平移4个单位长度,再向下平移1个单位长度,得到三角形A1B1C1,那么点A的对应点A1的坐标为()A.(4,3) B.(2,4) C.(3,1) D.(2,5)(第4题)5.已知点P在x轴上,且点P到y轴的距离为1,则点P的坐标为()A.(0,1) B.(1,0)C.(0,1)或(0,-1) D.(1,0)或(-1,0)6.在下列各点中,与点A(-2,-4)的连线平行于y轴的是()A.(2,-4) B.(-2,4) C.(-4,2) D.(4,-2)7.已知点A(-3,2m-4)在x轴上,点B(n+3,4)在y轴上,则m+n的值是()A.1 B.0 C.-1 D.78.如图,长方形ABCD的长为8,宽为4,分别以两组对边中点的连线为坐标轴建立平面直角坐标系,下列哪个点不在长方形上()A.(4,-2) B.(-2,4) C.(4,2) D.(0,-2)9.已知点A(1,0),B(0,2),点P在x轴上,且三角形P AB的面积为5,则点P 的坐标是()A.(-4,0) B.(6,0)C.(-4,0)或(6,0) D.(0,12)或(0,-8)10.如图,点A,B的坐标分别为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为()(第8题) (第10题)A.2 B.3 C.4 D.5二、填空题(每题3分,共24分)11.点P(3,-4)到x轴的距离为________.12.若点P(a,b)在第四象限,则点Q(-a,-b)在第________象限.13.已知点M(x,y)与点N(-2,-3)关于x轴对称,则x+y=________.14.在平面直角坐标系中,点A(1,2a+3)在第一象限,且该点到x轴的距离与到y轴的距离相等,则a=________.15.已知A(a,-3),B(1,b),线段AB∥x轴,且AB=3.若a<1,则a+b=________.16.如图,点A,B的坐标分别为(1,2),(2,0),将三角形AOB沿x轴向右平移,得到三角形CDE,若DB=1,则点C的坐标为__________.(第16题)(第17题)(第18题)17.如图,在平面直角坐标系中,已知长方形ABCD的顶点坐标A(-1,-1),B(3,1.5),D(-2,0.5),则C点坐标为__________.18.如图,已知A1(1,0),A2(1,1),A3(-1,1),A4(-1,-1),A5(2,-1),…,则点A2 019的坐标为____________.三、解答题(19,20,22题每题10分,21题8分,其余每题14分,共66分)19.如图,已知单位长度为1的方格中有一个三角形ABC.(1)请画出三角形ABC向上平移3格再向右平移2格所得的三角形A′B′C′;(2)请以点A为坐标原点建立平面直角坐标系(在图中画出),然后写出点B,B′的坐标:B(____,____),B′(____,____).20.在如图所示的平面直角坐标系中,描出点A(-2,1),B(3,1),C(-2,-2),D(3,-2).(1)线段AB,CD有什么关系?并说明理由.(2)顺次连接A,B,C,D四点组成的图形,你认为它像什么?21.张超设计的广告模板草图如图所示(单位:m),张超想通过电话征求李强的意见.假如你是张超,你如何把这个草图告诉李强呢?(提示:建立平面直角坐标系)22.如图,三角形DEF是三角形ABC经过某种变换得到的图形,点A与点D、点B与点E、点C与点F分别是对应点,观察点与点的坐标之间的关系,解答下列问题:(1)分别写出点A与点D、点B与点E、点C与点F的坐标,并说说对应点的坐标有哪些特征;(2)若点P(a+3,4-b)与点Q(2a,2b-3)也是通过上述变换得到的对应点,求a,b的值.23.如图,四边形ABCO在平面直角坐标系中,且A(1,2),B(5,4),C(6,0),O(0,0).(1)求四边形ABCO的面积;(2)将四边形ABCO四个顶点的横坐标都减去3,同时纵坐标都减去2,画出得到的四边形A′B′C′O′,你能从中得到什么结论?(3)直接写出四边形A′B′C′O′的面积.24.如图,正方形ABCD和正方形A1B1C1D1的对角线(正方形相对顶点之间所连的线段)BD,B1D1都在x轴上,O,O1分别为正方形ABCD和正方形A1B1C1D1的中心(正方形对角线的交点称为正方形的中心),O为平面直角坐标系的原点.OD=3,O1D1=2.(1)如果O1在x轴上平移时,正方形A1B1C1D1也随之平移,其形状、大小没有改变,当中心O1在x轴上平移到两个正方形只有一个公共点时,求此时正方形A1B1C1D1各顶点的坐标;(2)如果O在x轴上平移时,正方形ABCD也随之平移,其形状、大小没有改变,当中心O在x轴上平移到两个正方形公共部分的面积为2个平方单位时,求此时正方形ABCD各顶点的坐标.第7章达标测试卷参考答案一、1.B 2.D 3.C 4.D 5.D 6.B 7.C8B9.C10.B二、11.412.二13.114.-115.-516.(2,2)17.(2,3)18.(-505,505)点拨:由题图知,A4n的坐标为(-n,-n),A4n-1 人教版七年级数学下册第七章平面直角坐标系单元综合测试题及答案一、(本大题共10小题,每题3分,共30分. 在每题所给出的四个选项中,只有一项是符合题意的.把所选项前的字母代号填在题后的括号内. 相信你一定会选对!)1.根据下列表述,能确定位置的是()A.红星电影院2排B.北京市四环路C.北偏东30°D.东经118°,北纬40°2.点P(3,4)向上平移2个单位,向左平移3个单位,得到点P'的坐标是()A.(5,1)B.(5,7)C.(0,2)D.(0,6)3.象棋在中国有着三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏,如图,若表示棋子“馬”和“車”的点的坐标分别为(3,2),(-3,0),则表示棋子“炮”的点的坐标为( )A.(1,2)B.(0,2)C.(2,1)D.(2,0)4.若点A(m,n)在第三象限,则点B(|m|,n)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限5.过点A(-3,2)和点B(-3,5)作直线则直线AB()A. 平行于Y轴B. 平行于X轴 C .与Y轴相交 D. 与y轴垂直6.在坐标系中,已知A(2,0),B(−3,−4),C(0,0),则△ABC的面积为()A.4B.6C.8D.37.在方格纸上有A、B两点,若以B点为原点建立直角坐标系,则A点坐标为(2,5),若以A点为原点建立直角坐标系,则B点坐标为().A.(-2,-5)B.(-2,5)C.(2,-5)D.(2,5)8.P点横坐标是-3,且到x轴的距离为5,则P点的坐标是()A.(5,-3)或(-5,-3)B.(-3,5)或(-3,-5)C.(-3,5)D.(-3,-5)9.在平面直角坐标系内,A 、B 、C 三点的坐标分别是(0,0),(4,0),(3,2),以A 、B 、C 三点为顶点画平面四边形,则第四个顶点不可能在( )A .第一象限B .第二象限C .第三象限D .第四象限10.如图,已知三角形ABC 在平面直角坐标系中的位置如图所示,将三角形ABC 先向下平移5个单位,再向左平移2个单位,则平移后C 点的坐标是( )A.(5,-2)B.(1,-2)C.(2,-1)D.(2,-2)二、细心填一填:(本大题共有8小题,每题3分,共24分.请把结果直接填在题中的横线上.只要你理解概念,仔细运算,积极思考,相信你一定会填对的!) 11.已知点A (0,1)、B (2,0)、C (0,0)、D (-1,0)、E (-3,0),则在轴上的点有 个。
2024年人教版七年级数学下册第七章单元复习题及答案

返回题型栏目导航
4.如果第二列第一行用有序数对(2,1)表示,那么数对(3,6)和(3,4)表
示的位置是 ( B )
A.同一行
B.同一列
C.同行同列
D.不同行不同列
1
2
3
4
5
6
7
8
9
10
11
12
13
14
第七章适应性评估卷
返回题型栏目导航
5.经过A(2,3),B(-4,3)两点作直线AB,则直线AB ( A )
坐标是( B )
A.-2
B.0
C.1
1
2
3
4
D.2
5
6
7
8
9
10
11
12
13
14
第七章适应性评估卷
返回题型栏目导航
二、填空题(共3题,15~16题每空2分,17题3分,共11分)
15.若第二象限内的点P(x,y)满足|x|=3,y2=25,则点P的坐标是
(-3,5) ;
若点P(沿水平或竖直方向)两次平移后与原点重合,则点P的平移方式可
为( D )
A.21
B.28
C.14
D.10.5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
第七章适应性评估卷
返回题型栏目导航
11.海平面上,有一个灯塔,测得海岛A在灯塔北偏东30°方向上,同时测
得海岛B在灯塔北偏东60°的方向上,则灯塔的位置可以是 ( A )
A.点O1
B.点O2
C.点O3
D.点O4
1
人教版七年级下册数学第7章测试题(附答案)

七下数学第七章《平面直角坐标系》单元测试一、选择题(共15小题)1.下列选项中能较为准确描述合肥市大蜀山位置的是()A.东经116°B.北纬32°C.北纬32°,东经116°D.在合肥的西边2.如果点A(﹣3,b)在第三象限,则b的取值范围是()A.b<0B.b≤0C.b≥0D.b>03.将点P(﹣2,3)先向下平移4个单位长度,再向右平移3个单位长度后得到点Q,则点Q的坐标是()A.(﹣6,6)B.(2,0)C.(1,﹣1)D.(﹣5,﹣1)4.若点P在x轴的下方,y轴的左方,到x轴的距离是3,到y轴的距离是2.则点P的坐标为()A.(﹣3,2)B.(﹣2,3)C.(﹣3,﹣2)D.(﹣2,﹣3)5.如图,△ABC的顶点坐标分别为A(1,4),B(﹣1,1),C(2,2),如果将△ABC 先向左平移2个单位,再向上平移1个单位得到△A′B′C′,那么点B的对应点B'的坐标是()A.(﹣3,0)B.(0,3)C.(﹣3,2)D.(l,2)6.已知点M(2x﹣3,3﹣x),在第一、三象限的角平分线上,则M点的坐标为()A.(﹣1,﹣1).B.(﹣1,1)C.(1,1)D.(1,﹣1)7.已知点A(2a+1,b﹣2)在第三象限,则点B(﹣a,3﹣b)在()A.第一象限B.第二象限C.第三象限D.第四象限8.如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动一个单位,依次得到点P1(0,1);P2(1,1);P3(1,0);P4(1,﹣1);P5(2,﹣1);P6(2,0)……,则点P2019的坐标是()A.(672,0)B.(673,1)C.(672,﹣1)D.(673,0)9.点P(﹣3,2)到x轴的距离为()A.﹣3B.﹣2C.3D.210.已知点A(m+1,﹣2)和点B(3,m﹣1),若直线AB∥x轴,则m的值为()A.﹣1B.﹣4C.2D.311.将点(﹣3,4)向右平移3个单位、向下平移2个单位后的坐标为()A.(﹣6,0)B.(6,0)C.(0,﹣2)D.(0,2)12.若点P(a,b)满足a2b>0,则点P所在的象限为()A.第一象限或第二象限B.第一象限或第四象限C.第二象限或第三象限D.第三象限或第四象限13.如图,若将线段AB平移至A1B1,则a+b的值为()A.﹣3B.3C.﹣2D.014.若点A(m,n)在平面直角坐标系的第三象限,则点B(mn,0)在()A.x轴的正半轴B.x轴的负半轴C.y轴的正半轴D.y轴的负半轴15.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次运动到点(2,0),第3次运动到点(3,﹣1),…,按照这样的运动规律,点P第17次运动到点()A.(17,1)B.(17,0)C.(17,﹣1)D.(18,0)二、填空题(共6小题)16.某会场座位号将“7排4号”记作(7,4),那么“3排5号”记作.17.已知点P(m+2,2m﹣1)在y轴上,则m的值是.18.已知P(m,n)在第二象限,则Q(﹣n,m)在第象限.19.如图是两人正在玩的一盘五子棋,若白棋A所在点的坐标是(﹣3,2),黑棋B所在点的坐标是(﹣1,4),现在轮到黑棋走,黑棋放到点C的位置就获得胜利,点C的坐标是.20.已知点P(3,﹣2),MP∥y轴,MP=5,则点M的坐标为.21.如图,A,B的坐标为(2,0),(0,1)若将线段AB平移至A1B1,则a+b的值为.三.解答题(共5小题)22.如果点B(m﹣1,3m+5)到x轴的距离与它到y轴的距离相等,求点B的坐标.23.已知A(m,6)和点B(3,m2﹣3),直线AB平行于x轴,求m的值.24.在平面直角坐标系中,有A(﹣2,a+2),B(a﹣3,4)C(b﹣4,b)三点.(1)当AB∥x轴时,求A、B两点间的距离;(2)当CD⊥x轴于点D,且CD=3时,求点C的坐标.25.如图,在直角坐标系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)求△ABC的面积;(2)若把△ABC向下平移2个单位,再向右平移5个单位得到△A′B′C′,并写出C′的坐标.26.如图,△ABC是由△A1B1C1向右平移3个单位,再向下平移1个单位所得.已知A(2,1),B(5,3),C(3,4).(1)直接写出△A1B1C1三个顶点的坐标.(2)求△ABC的面积.参考答案一、选择题(共15小题)1.下列选项中能较为准确描述合肥市大蜀山位置的是()A.东经116°B.北纬32°C.北纬32°,东经116°D.在合肥的西边【分析】根据坐标确定位置的方法逐一判断即可得.【解答】解:能较为准确描述合肥市大蜀山位置的是北纬32°,东经116°,故选:C.2.如果点A(﹣3,b)在第三象限,则b的取值范围是()A.b<0B.b≤0C.b≥0D.b>0【分析】第三象限内横纵坐标均为负数,从而可得答案.【解答】解:∵点A(﹣3,b)在第三象限,∴b<0,故选:A.3.将点P(﹣2,3)先向下平移4个单位长度,再向右平移3个单位长度后得到点Q,则点Q的坐标是()A.(﹣6,6)B.(2,0)C.(1,﹣1)D.(﹣5,﹣1)【分析】根据向右平移横坐标加,向下平移纵坐标减列式计算即可得解.【解答】解:将点P(﹣2,3)先向下平移4个单位长度,再向右平移3个单位长度后得到点Q,则点Q的坐标为(﹣2+3,3﹣4),即(1,﹣1).故选:C.4.若点P在x轴的下方,y轴的左方,到x轴的距离是3,到y轴的距离是2.则点P的坐标为()A.(﹣3,2)B.(﹣2,3)C.(﹣3,﹣2)D.(﹣2,﹣3)【分析】根据点P的位置确定P点坐标即可.【解答】解:∵点P在x轴的下方,到x轴的距离是3,∴P点纵坐标为﹣3,∵P在y轴的左方,到y轴的距离是2,∴P点横坐标为﹣2,∴P(﹣2,﹣3),故选:D.5.如图,△ABC的顶点坐标分别为A(1,4),B(﹣1,1),C(2,2),如果将△ABC 先向左平移2个单位,再向上平移1个单位得到△A′B′C′,那么点B的对应点B'的坐标是()A.(﹣3,0)B.(0,3)C.(﹣3,2)D.(l,2)【分析】将点B的横坐标减去2,纵坐标加上1即可得到点B'的坐标.【解答】解:∵将△ABC先向左平移2个单位,再向上平移1个单位得到△A′B′C′,B(﹣1,1),∴点B的对应点B'的坐标是(﹣1﹣2,1+1),即(﹣3,2),故选:C.6.已知点M(2x﹣3,3﹣x),在第一、三象限的角平分线上,则M点的坐标为()A.(﹣1,﹣1).B.(﹣1,1)C.(1,1)D.(1,﹣1)【分析】直接利用角平分线上点的坐标特点得出2x﹣3=3﹣x,进而得出答案.【解答】解:∵点M(2x﹣3,3﹣x),在第一、三象限的角平分线上,∴2x﹣3=3﹣x,解得:x=2,故2x﹣3=1,3﹣x=1,则M点的坐标为:(1,1).故选:C.7.已知点A(2a+1,b﹣2)在第三象限,则点B(﹣a,3﹣b)在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】直接利用平面直角坐标内点的坐标特点得出a,b的取值范围进而得出答案.【解答】解:∵点A(2a+1,b﹣2)在第三象限,∴2a+1<0,b﹣2<0,解得:a<﹣,b<2,∴﹣a>0,3﹣b>0,则点B(﹣a,3﹣b)在第一象限.故选:A.8.如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动一个单位,依次得到点P1(0,1);P2(1,1);P3(1,0);P4(1,﹣1);P5(2,﹣1);P6(2,0)……,则点P2019的坐标是()A.(672,0)B.(673,1)C.(672,﹣1)D.(673,0)【分析】由P3、P6、P9可得规律:当下标为3的整数倍时,横坐标为,纵坐标为0,据此可解.【解答】解:由P3、P6、P9可得规律:当下标为3的整数倍时,横坐标为,纵坐标为0,∵2019÷3=673,∴P2019(673,0)则点P2019的坐标是(673,0).故选:D.9.点P(﹣3,2)到x轴的距离为()A.﹣3B.﹣2C.3D.2【分析】由平面内点的坐标特点可知,点到x轴的距离是该点纵坐标的绝对值.【解答】解:点P(﹣3,2)到x轴的距离是该点纵坐标的绝对值,即2,故选:D.10.已知点A(m+1,﹣2)和点B(3,m﹣1),若直线AB∥x轴,则m的值为()A.﹣1B.﹣4C.2D.3【分析】AB∥x轴,可得A和B的纵坐标相同,即可求出m的值.【解答】解:∵点A(m+1,﹣2)和点B(3,m﹣1),且直线AB∥x轴,∴﹣2=m﹣1∴m=﹣1故选:A.11.将点(﹣3,4)向右平移3个单位、向下平移2个单位后的坐标为()A.(﹣6,0)B.(6,0)C.(0,﹣2)D.(0,2)【分析】直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【解答】解:把点(﹣3,4)向右平移3个单位,再向下平移2个单位后所得的点的坐标为:(﹣3+3,4﹣2),即(0,2),故选:D.12.若点P(a,b)满足a2b>0,则点P所在的象限为()A.第一象限或第二象限B.第一象限或第四象限C.第二象限或第三象限D.第三象限或第四象限【分析】根据a2b>0>0可得b>0,可得a>0或a<0,再根据平面直角坐标系中各象限内点的坐标特征可判断出P点所在象限.【解答】解:∵a2b>0,∴b>0,a>0或a<0,当a>0,b>0时,点P所在的象限为第一象限;当a<0,b>0时,点P所在的象限为第二象限;故选:A.13.如图,若将线段AB平移至A1B1,则a+b的值为()A.﹣3B.3C.﹣2D.0【分析】先利用点A平移到A1得到平移的规律,再按此规律平移B点得到B1,从而得到B1点的坐标,于是可求出a、b的值,然后计算a+b即可.【解答】解:∵点A(0,1)向下平移2个单位,得到点A1(a,﹣1),点B(2,0)向左平移1个单位,得到点B1(1,b),∴线段AB向下平移2个单位,向左平移1个单位得到线段A1B1,∴A1(﹣1,﹣1),B1(1,﹣2),∴a=﹣1,b=﹣2,∴a+b=﹣1﹣2=﹣3.故选:A.14.若点A(m,n)在平面直角坐标系的第三象限,则点B(mn,0)在()A.x轴的正半轴B.x轴的负半轴C.y轴的正半轴D.y轴的负半轴【分析】根据点的坐标特点来确定点所在位置.【解答】解:因为点A(m,n)在平面直角坐标系的第三象限,所以m<0,n<0,所以mn>0,所以点B(mn,0)横坐标是正数,纵坐标是0,符合点在x轴的正半轴上的条件.故选:A.15.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次运动到点(2,0),第3次运动到点(3,﹣1),…,按照这样的运动规律,点P第17次运动到点()A.(17,1)B.(17,0)C.(17,﹣1)D.(18,0)【分析】令P点第n次运动到的点为P n点(n为自然数).列出部分P n点的坐标,根据点的坐标变化找出规律“P4n(4n,0),P4n+1(4n+1,1),P4n+2(4n+2,0),P4n+3(4n+3,﹣1)”,根据该规律即可得出结论.【解答】解:令P点第n次运动到的点为P n点(n为自然数).观察,发现规律:P0(0,0),P1(1,1),P2(2,0),P3(3,﹣1),P4(4,0),P5(5,1),…,∴P4n(4n,0),P4n+1(4n+1,1),P4n+2(4n+2,0),P4n+3(4n+3,﹣1).∵17=4×4+1,∴P第17次运动到点(17,1).故选:A.二、填空题(共6小题)16.某会场座位号将“7排4号”记作(7,4),那么“3排5号”记作(3,5).【分析】由于将“7排4号”记作(7,4),根据这个规定即可确定3排5表示的点坐标.【解答】解:∵“7排4号”记作(7,4),∴3排5号记作(3,5).故答案为:(3,5).17.已知点P(m+2,2m﹣1)在y轴上,则m的值是﹣2.【分析】直接利用y轴上点的坐标特点得出m+2=0,进而得出答案.【解答】解:∵点P(m+2,2m﹣1)在y轴上,∴m+2=0,解得:m=﹣2.故答案为:﹣2.18.已知P(m,n)在第二象限,则Q(﹣n,m)在第三象限.【分析】直接利用第二象限内点的坐标特点得出m,n的符号,进而得出答案.【解答】解:∵P(m,n)在第二象限,∴m<0,n>0,∴﹣n<0,∴Q(﹣n,m)在第三象限.故答案为:三.19.如图是两人正在玩的一盘五子棋,若白棋A所在点的坐标是(﹣3,2),黑棋B所在点的坐标是(﹣1,4),现在轮到黑棋走,黑棋放到点C的位置就获得胜利,点C的坐标是(2,3).【分析】根据题意可以画出相应的平面直角坐标系,从而可以得到点C的坐标.【解答】解:由题意可得,如右图所示的平面直角坐标系,故点C的坐标为(2,3),故答案为:(2,3).20.已知点P(3,﹣2),MP∥y轴,MP=5,则点M的坐标为(3,3)或(3,﹣7).【分析】先根据平行于y轴的直线上任意两点横坐标相同得出点M的横坐标是3,再根据MP=5求出点M的纵坐标.【解答】解:∵点P(3,﹣2),MP∥y轴,∴点M的横坐标与点P的横坐标相同,是3,又∵MP=5,∴点M的纵坐标为为﹣2+5=3,或﹣2﹣5=﹣7,∴点M的坐标为(3,3)或(3,﹣7).故答案为(3,3)或(3,﹣7).21.如图,A,B的坐标为(2,0),(0,1)若将线段AB平移至A1B1,则a+b的值为2.【分析】由图可得到点B的纵坐标是如何变化的,让A的纵坐标也做相应变化即可得到b 的值;看点A的横坐标是如何变化的,让B的横坐标也做相应变化即可得到a的值,相加即可得到所求.【解答】解:由题意可知:a=0+(3﹣2)=1;b=0+(2﹣1)=1;∴a+b=2.三.解答题(共5小题)22.如果点B(m﹣1,3m+5)到x轴的距离与它到y轴的距离相等,求点B的坐标.【分析】坐标平面内的点到两轴的距离实际上就是该点两坐标的绝对值.【解答】解:根据题意得,m﹣1=3m+5或m﹣1=﹣(3m+5),解得:m﹣1=3m+5,得m=﹣3,∴m﹣1=﹣4,点B的坐标为(﹣4,﹣4),解得:m﹣1=﹣(3m+5),得m=﹣1,∴m﹣1=﹣2,点B的坐标为(﹣2,2),∴点B的坐标为(﹣4,﹣4)或(﹣2,2).23.已知A(m,6)和点B(3,m2﹣3),直线AB平行于x轴,求m的值.【分析】根据直线平行于x轴的特点解答.【解答】解:∵直线AB平行于x轴,∴点A的纵坐标与点B的纵坐标相等相等,∴m2﹣3=6,m=3或m=﹣3,∵A.B是两个点.∴m≠3,即m=﹣3.24.在平面直角坐标系中,有A(﹣2,a+2),B(a﹣3,4)C(b﹣4,b)三点.(1)当AB∥x轴时,求A、B两点间的距离;(2)当CD⊥x轴于点D,且CD=3时,求点C的坐标.【分析】(1)利用与x轴平行的直线上点的坐标特征得到a+2=4,求出a得到A、B点的坐标,然后计算它们的横坐标之差得到A、B两点间的距离;(2)利用与x轴垂直的直线上点的坐标特征得|b|=3,解得b=3或b=﹣3,从而得到C点坐标.【解答】解:(1)∵AB∥x轴,∴A点和B的纵坐标相等,即a+2=4,解得a=2,∴A(﹣2,4),B(﹣1,4),∴A、B两点间的距离为﹣1﹣(﹣2)=1;(2)∵当CD⊥x轴于点D,CD=3,∴|b|=3,解得b=3或b=﹣3,∴当b=3时,b﹣4=﹣1;当b=﹣3时,b﹣4=﹣7,∴C点坐标为(﹣1,3)或(﹣7,﹣3).25.如图,在直角坐标系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)求△ABC的面积;(2)若把△ABC向下平移2个单位,再向右平移5个单位得到△A′B′C′,并写出C′的坐标.【分析】(1)根据三角形面积求法得出即可;(2)根据已知将△ABC各顶点向下平移2个单位,向右平移5个单位得到各对应点,即可作图;进而得出点C′的坐标.【解答】解:(1)△ABC的面积是:×3×5=7.5;(2)作图如下:∴点C′的坐标为:(1,1).26.如图,△ABC是由△A1B1C1向右平移3个单位,再向下平移1个单位所得.已知A(2,1),B(5,3),C(3,4).(1)直接写出△A1B1C1三个顶点的坐标.(2)求△ABC的面积.【分析】(1)根据平移规律即可得到结论,(2)根据三角形的面积公式即可得到结论.【解答】解:(1)因为△ABC是由△A1B1C1向右平移3个单位,再向下平移1个单位所得所以,△A1B1C1是由△ABC向左平移3个单位,再向上平移1个单位所得A1(﹣1,2),B1(2,4),C1(0,5);(2)如图,△ABC的面积=3×3﹣×1×3﹣×1×2﹣×2×3=3.5.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版初一数学第七章单元测试
一、选择题(共10小题)
1. 在平面直角坐标系中,点的坐标为,将点向右平移个单位长度后得到
的坐标是
A. B. C. D.
2. 下列数据不能确定物体位置的是
A. C 区号
B. 上新街号
C. 东经度、北纬度
D. 北偏西度
3. 在平面直角坐标系中,点所在的象限是
A. 第一象限
B. 第二象限
C. 第三象限
D. 第四象限
4. 在平面直角坐标系中,已知点,则点在
A. 第一象限
B. 第二象限
C. 第三象限
D. 第四象限
5. 如果点在轴上,则点的坐标为
A. B. C. D.
6. 如果点在直线上,点的坐标是,点的坐标是,那么三角形
的面积
A. 等于
B. 大于
C. 小于
D. 无法确定
7. 在平面直角坐标系中,已知点,,将线段平移后得线段,若点
的坐标为,则点的坐标为
A. B. C. D.
8. 在平面直角坐标系中,若点坐标为,点坐标为,则三角形的面
积为
A. B. C. D.
9. 将点向右平移个单位长度,再向下平移个单位长度,则平移后点的坐标是
A. C.
10. 在某台风多影响地区,有互相垂直的两条主干线,以这两条主干线为轴建立直角坐标系,单位长
为万米.最近一次台风的中心位置是,其影响范围的半径是万米,则下列四个位置中受到了台风影响的是
A. B. C. D.
二、填空题(共6小题)
11. 将点沿轴向左平移个单位长度,再沿轴向上平移个单位长度后得到的点
的坐标为.
12. 已知点的坐标为,那么点到轴的距离为.
13. 已知和两点,且直线与坐标轴围成的三角形面积等于,则的值
是.
14. 图中,两点的坐标分别为,,则的坐标为.
15. 如图,图中点用表示,点用表示,若“左一进二”表示将点向左平移一个
单位长度,再向上平移两个单位长度,此时点到达点,则点为.若将点
“右二进三”到达点,点的位置可表示为.
16. 的各顶点坐标为,,,则的面积为.
三、解答题(共9小题)
17. 如图,四边形各个顶点的坐标分别是,,,.求这个
四边形的面积.
18. 如图,在平面直角坐标系中,若每一个方格的边长代表一个单位.
(1)线段是线段经过怎样的平移得到的?
(2)若点的坐标是,点的坐标是,你能写出,两点的坐标吗?
(3)求平行四边形的面积.
19. 如图是游乐园的一角,图中一个单位长度表示.
(1)如果用表示蹦蹦床的位置,那么跷跷板用数对表示,碰碰车用数对表示,摩天轮用数对表示;
(2)秋千在大门以东,再往北处,请你在图中标出秋千的位置.
20. 如图,三个顶点的坐标分别为,,,将向左平移
个长度单位后再向下平移长度单位,可得到.
(1)请画出平移后的的图形;
(2)写出各个顶点的坐标;
(3)连接,求四边形的面积.
21. 已知:,,.
(1)在坐标系中描出各点,画出三角形;
(2)若三角形内有一点经平移后对应点为,将三角形作同样的平移得到三角形,画出平移后的三角形,并直接写出点,,的坐标;
(3)求三角形的面积.
22. 如图,在如图所示的平面直角坐标系中,已知,,,其中,,满足
.
(1)求,,的坐标和的面积;
(2)若在第二象限内有一点,请用含的式子表示四边形的面积;
(3)在()的条件下,是否存在点,使四边形的面积与的面积相等.若存在,求出的坐标,若不存在,请说明理由.
23. 如图,在平面直角坐标系中,点,的坐标分别为,,且,满足条件
.现同时将点,分别向上平移个单位,再向右平移个单位,分别得到点,的对应点,,连接,.
(1)求点,的坐标及四边形的面积.
(2)点是线段上的一个动点,连接,,当点在上移动时(不与,重合)给出下列结论:①的值不变,②的值不变,其中有且只有一个是正确的,请你找出这个结论并求其值.
(3)在坐标轴上是否存在一点,连接,,使,若存在这样一点,求出点的坐标;若不存在,试说明理由.
24. 下图中标明了小红家附近的一些地方,建立平面直角坐标系如图.
(1)写出游乐场和糖果店的坐标;
(2)某星期日早晨,小红同学从家里出发,沿着,,,的路线转了一下,又回到家里,写出路上她经过的地方.
25. 如图,在下面直角坐标系中,已知,,三点,其中,,满
足关系式,.
(1)求,,的值.
(2)如果在第二象限内有一点,请用含的式子表示四边形的面积.
(3)在()得条件下,是否存在点,使四边形的面积是四边形的面积的倍?若存在,求出点的坐标,若不存在,请说明理由.
答案
第一部分
1. D
2. D
3. A 【解析】点所在的象限是第一象限.
4. D
5. B
【解析】点在轴上,
,
,
解得:,
,
点的坐标为.
6. A
7. D
8. D
9. C
10. B
第二部分
11.
【解析】点沿轴向左平移个单位长度,再沿轴向上平移个单位长度后得到点,
点的横坐标为,纵坐标为,
的坐标为.
12.
13.
【解析】根据题意得,解得或.即的值为.
15.
16.
第三部分
17. 分别过点和点作轴和轴的平行线,如图,
则,
所以
18. (1)线段是由线段向上平移个单位长度,向右平移个单位长度得到的.
(2)点的坐标是,点的坐标是,
,.
(3)平行四边形的面积为:.
19. (1);;
(2)秋千的位置如图所示.
20. (1)略.
(2)略.
(3)略.
21. (1)如图所示:
(2)点经平移后对应点为,
点向左平移了个单位,向下平移了个单位,
,,
平移后的三角形如图所示.
(3)三角形的面积为:
,
故三角形的面积为.
22. (1)略.
(2)略.
(3)略.
23. (1)由题知,且,,
,即,
,
,,
将,分别向上平移个单位,再向右平移个单位,得,,
.
(2)①正确.
建立点作,
,
又,
,
,
又,
.
(3),
,,.
24. (1)游乐场的坐标是,糖果店的坐标是;
(2)由小红同学从家里出发,沿着,,的路线转了
一下,到学校公园姥姥家宠物店邮局.
25. (1)由已知,,
可得:,,,
解得:,,.
(2),,,
,,,
,,
,
,
.
(3)存在,
,
若,
则,
存在点,使四边形的面积是四边形的面积的倍.。