04_无功电能表的工作原理和接线方式解读
电能表接线ppt课件

U gICOS 30o UgI COS30oCOS ¡n CB
⑴更正系数和更正率
①更正系数
K A A K 更正系数 p 或 Q 等于真实耗电量 P(有功电量)或 (Q 无功电量)
A A 与错误接线情况下电能表计量出来的电量
功电量),之比
即:
′P(有功电量)或
′(无 Q
有功电量更正系数:
Kp
Ap AP
P P
无功电量更正系数:
KQ
AQ AQ
Q Q
31
式中:
KP、KQ
• g)互感器二次回路的连接导线应采用铜质单芯绝缘线。对电流二次回 路。连接导线截面积应按电流互感器的额定二次负荷计算确定,至少 应不小于4mm2。对电压二次回路。连接导线截面积应按允许的电压 降计算确定,至少应不小于2.5mm2。
• h)互感器实际二次负荷应在25%-100%额定二次负荷范围内;电流 互感器额定二次负荷的功率因数应为0.8-1.0;电压互感器额定二次功 率因数应与实际二次负荷的功率因数接近。
•Ⅳ类电能计量装置
•负荷容量为315kVA及以下的及费用户、发供电企业内部经济 技术指标分析、考核用的电能计量装置。
•Ⅴ类电能计量装置
•单相供电的电力用户计费用电能计量装置。
4
• 四、电能计量装置的接线方式
• a)接入中性点绝缘系统的电能计量装置,应采用三相三线有 功、无功电能表接入,非中性点绝缘系统的电能计量装置,应 采用三相四线有功、无功电能表或3只感应式无止逆单相电 能表。
无功: AQ ε QXAˊ Q
35
三相三线两元件有功电能表电压、电流线错误接线所计功率分析
36
37
电能表接线原理

电能表接线原理电能表呀,就像家里用电的小管家,默默地记录着我们用了多少电呢。
今天呀,咱们就来唠唠电能表接线的原理,可有趣啦!电能表一般有四个接线端子,这就像是电能表的四个小触角,每个都有它独特的使命哦。
咱们先来说说最常见的单相电能表接线。
你看啊,电能表的接线是有一定规矩的。
其中有一根线是从电源来的火线,这根火线就像一个精力充沛的小快递员,带着电的能量呢。
它要接到电能表的一个特定端子上,这个端子就像是专门为它准备的小房间。
一旦它住进去了,电能表就能感受到它带来的电能量啦。
然后呢,还有一根零线,零线就像是火线的小跟班,总是安安静静的。
它也要接到电能表相应的端子上。
这一火一零两根线接进电能表,就好像是给电能表注入了活力源泉。
电能表就开始工作啦,它会精确地计算通过这两根线的电量。
再说说三相电能表的接线,这可就稍微复杂一点啦。
三相电能表有好多个接线端子呢。
三相电就像是三个活力小子,分别从不同的线路过来。
这三相电的接线顺序和连接方式那都是有严格要求的。
如果接错了呀,电能表就会像一个被搞糊涂的小迷糊,要么读数不准确,要么就干脆不工作了呢。
就好比这三相电是三个小伙伴一起去电能表家做客,它们得按照规定的门牌号(接线端子)进入才行。
而且呀,三相电能表的接线还涉及到相序的问题。
相序就像是小伙伴们排队的顺序,如果顺序乱了,整个用电的系统可能都会受到影响。
这就像小伙伴们排队玩游戏,顺序错了游戏就玩不好啦。
电能表接线的原理其实就是让电能够有序地通过电能表,这样电能表才能准确地测量出我们使用的电量。
你想啊,如果接线乱七八糟的,电就像一群乱跑的小蚂蚁,电能表都不知道该怎么数清楚这些小蚂蚁(电量)啦。
而且呀,正确的接线还关系到用电的安全呢。
要是接线不对,可能就会出现漏电或者短路的情况。
这就像是家里的小电路们在闹脾气,要是它们闹起来,那可不得了,可能会把家里的电器都给弄坏呢。
在实际接线的时候啊,电工师傅们可都是小心翼翼的。
他们就像对待自己心爱的小宝贝一样对待电能表的接线工作。
兆欧表、电能表工作原理及接线

兆欧表手摇式兆欧表的原理电路如图1所示。
图中G为手摇发电机,发电机组件由摇柄、防逆转系统、传动齿轮、离心式摩擦调速系统、发电机等组成;电路系统由倍压整流电路及测量装置磁电式双动圈流比计组成,仪表的指针固定在双动圈上。
仪表的三个接线柱分别是:线路端L、接地端E、屏蔽端G。
其工作原理如下:图1 手摇式兆欧表原理电路图顺时针摇动兆欧表手柄时,手柄使棘轮、齿轮、离心摩擦调速等机构转动,并带动发电机转子以5倍于手柄的转速旋转,定子线圈输出交流电压。
棘轮系统是防止转子逆转,离心摩擦调速系统防止转子超速。
手柄以额定转速转动时,定子线圈将输出的交流电压,经二极管V1、V2,电容C1、C2倍压整流后,在A、B两端输出直流高压。
测量时被测电阻Rx接于兆欧表的“线路端L”与“接地端E”之间。
电流线圈L1、电阻R C和被测电阻R X相串联,电压线圈L2和电阻R V相串联,然后再并联接至A、B两端。
设线圈L1电阻为r1,线圈L2电阻为r2,当摇动手摇发电机时,兆欧表将输出直流高电压U,则两个线圈通过的电流分别为:两式相除得:式中的r1、r2、R C、R V均为定值,仅R X为变量,所以改变R X会引起比值I1/I2的变化。
由于线圈L1与线圈L2绕向相反,流入电流I1和I2在永久磁场作用下,在两个线圈上分别产生两个方向相反的转矩T1和T2,由于气隙磁场不均匀,因此T1和T2既与对应的电流成正比又与其线圈所处的角度有关。
当T1≠T2时指针发生偏转,直到T1=T2时,指针停止。
指针偏转的角度只决定于I1和I2的比值,此时指针所指的刻度是被测设备的绝缘电阻值。
当E端与L端短接时,I1为最大,指针顺时针方向偏转到最大位置,即“0”位置;当E、L端未接被测电阻时,R X趋于无穷大,I1=0,指针逆时针方向转到“∞”位置。
电能表1、单相电表工作原理:单相有功电度表(简称:单相电度表)由接线端子、电流线圈、电压线圈、计量转盘、计数器构成。
功率表的原理和接线分析

(1)当用于直流电路的功率测量时,通过定圈的电流I1与被测电路电流相等,即I1=I,而动圈中的电流I2可由欧姆定律得到,即I2=U/R2,由于电流线圈两端的电压降远小于负载两端的电压U,故可以认为电压支路两端的电压与负载U是相等的。上式中R2是电压支路总电阻,它包括动圈电阻和附加电阻Rfj,对于一个已制成的功率表来说,R2是一常数。由前面公式α∝I1·I2可得
由前式α∝I1·I2·COSO可得α∝UI·COSO=P即电动系功率表用于交流电路的功率测量时,其可动部分的偏转角与被测电路的有功功率P成正比。虽然这一结论是在正弦交流电路的情况下得出的,但它对非正弦交流电路同样适用。
综上所述,电动系功率表不论用于直流或交流电路的功率测量,其可动部分偏转角均与被测电路的功率成正比。因此电动系仪表的标度尺刻度是均匀的。
2.3.1电压线圈前接法适用于负载电阻远比电流线圈电阻大得多的情况,因为此时电流线圈中的电流虽然等于负载电流,但电压支路两端的电压包含负载电压和电流线圈两端的电压,即功率表的读数中多出了电流线圈的功率消耗I2R1(I是负载电流,R1是电流线圈中的电阻)。如果负载电阻远比R1大,则I2R1对读数所引起的误差就比较小。
在我公司的各种外购产品中,各种方表、槽表、模拟型或越来越多的数字式测量仪表占有一定的数量。下面对常用有功功率表和无功功率表的原理及接线方式作以简要的介绍。
1、结构和工作原理
在电力系统中,虽然用于测量功率的表计种类很多,但它们都同属于电动系仪表。这种仪表有两个线圈:固定线圈(又称定圈)和可动线圈(又称动圈)。定圈分为两个部分平行排列,这使得定圈两部分之间的磁场比较均匀。动圈与转轴连接,一起放置在定圈的两部分之间。
参考文献
1.《电气测量》神建机电学校主编
电能表的工作原理及接线

单相有功电度表/三相四线制有功电度表/电子式电能表的工作原理及接线——图文JW原创一、机械式电度表的型号及其含义。
电度表型号是用字母和数字的排列来表示的,内容如下:类别代号+组别代号+设计序号+派生号。
如我们常用的家用单相电度表:DD862-4型、DDS97l型、DDSY97l型等。
1、类别代号: D--电度表2、组别代号表示相线:D--单相;S--三相三线;T--三相四线。
表示用途的分类:D--多功能;S--电子式;X--无功;Y--预付费;F--复费率。
3、设计序号用阿拉伯数字表示。
每个制造厂的设计序号不同,如长纱希麦特电子科技发展有限公司设计生产的电度表产品备案的序列号为971,正泰公司的为666等。
综合上面几点:DD--表示单相电度表:如DD971型 DD862型DS--表示三相三线有功电度表:如DS862,DS97l型DT--表示三相四线有功电度表:如DT862、DT971型DX--表示无功电度表:如DX97l、DX864型DDS--表示单相电子式电度表:如DDS97l型,DDS156型电子式单相电能表DTS--表示三相四线电子式有功电度表:如DTS97l型DDSY--表示单相电子式预付费电度表:如DDSY97l型DTSF--表示三相四线电子式复费率有功电度表:如DTSF97l型DSSD--表示三相三线多功能电度表:如DSSD97l型4、基本电流和额定最大电流基本电流是确定电度表有关特性的电流值,额定最大电流是仪表能满足其制造标准规定的准确度的最大电流值。
如 5(20)A 即表示电度表的基本电流为5A,额定最大电流为20A,对于三相电度表还应在前面乘以相数,如 3x5(20)A。
5、参比电压指的是确定电度表有关特性的电压值对于三相三线电度表以相数乘以线电压表示,如3x380V。
对于三相四线电度表则以相数乘以相电压或线电压表示,如3x220/380V。
对于单相电度表则以电压线路接线端上的电压表示,如220V。
电能表原理及使用方法

J-接地保护
ABC
a bc
两台单相电压互感器典型V/V接线
3、二次回路的作用
电能表的原理及使用方法 公用工程项目部
电压二次回路是指电压互感器、电能表的电压线圈 以及 连接二者的导线所构成的回路。由于连接导线阻抗等因 素的影响,电能表电压线圈上实际获得的电压值往往都 小于额定值(220V、380V、100V),二次电压回路电 降的大小直接影响电能计量的准确度。
电能表的原理及使用方法 公用工程项目部
电能表的分类
• 1、 按照所测不同电流种类可分为:直流式和交流式二种。 • 2、 按照电能表的用途可分为:(1)单相电能表、(2)三相有功电
能表(3)三相无功电能表(4)最大需量表(5)复费率电能表(6) 损耗电能表。 • 3、按照电能表的接线可分为(1)单相有功电能表(2)三相三线有 功电能表(3)三相四线有功电能表(4)三相三线(60°)无功电能 表(5)三相四线(90°)无功电能表。 • 4、按照电能表的等级划分为:普通有功电能表(0.2或0.2S级、0.5 或0.5S级、1.0级、2.0级),普通无功电能表(2.0级、3.0级)。标 准电能表分为(0.5级、0.2级、0.05级、0.02级、0.01级)。 • 5.按结构原理分为:感应式和电子式两种。 • 虽然电能表的型号、类别不同,但是它们的基本结构都是相似的,是 由测量机构、补偿调整装置和辅助部件所组成。下面我们主要学习感 应式电能表的结构及原理。
电能表的原理及使用方法 公用工程项目部
电能表的分类
• 电能表就是专门用于计量某一时间段电能 累计值的仪表称为电能表,又叫电度表。 它有感应式电能表和电子式电能表。作为 测量电能的专用仪表,在电力系统的发电、 供电和用电等各个环节中广泛应用。 根据 电能表的用途、结构形式、工作原理、准 确度等级、测量对象的不同,以及所接的 电源性质和接入方式、付款方式的不同等 等,可将电能表分成若干类别。
介绍电能计量装置的接线方式

电能表旳电流线圈必须与电源相线串联,电压线圈应跨接 在电源端旳相线与零线之间,电压线圈标有黑点“· ” 旳一端应与电源端旳相线连接。当负载电流和流经电压线 圈旳电流都由标有黑点旳一端流入相应旳线圈时,电能表 才干正转(逆时针方向)。黑点旳标志称为同名端标志。
四、三相有功电能表和无功电能表旳联合接线
三相电路中,假如有功和无功功率旳输送方向随时可能 变化, 采用两套电能表旳联合接线如图6-22所示。
五、变电站中互感器旳配置
电压、电流互感器在一次回路和二次回路中所要求旳图形符号不 相同,以上图示都是二次回路旳表达方式,而他们在变电站旳 一次回路中旳图形符号和配置图如图6-23所示。
一、单相电路有功电能旳测量
按图6-1所示旳电能表接线,测得旳有功功率为
P UI cos
而电能表旳驱动力矩MQ由相量图得到
M Q K I U sin
一、单相电路有功电能旳测量
若有一种线圈极性接反,例如电流线圈(如图6-2 (α)所示),则流入电能表电流线圈中旳电流 方向与图6-1中相反,故产生旳电流磁通方向也相 反,如图6-2(b)所示。
所以三相三线电能表旳驱动力矩为
M Q K I U 3 cos K 3UI cos KP
第二节 交流无功电能表旳接线方式
一、正弦型无功电能表 二、跨相90o型无功电能表 三、60o型无功电能表
国家对电力顾客实施了根据功率因数旳高下调整电费旳 方法,以鼓励顾客采用措施,提升功率因数。
假如负载功率因数低,意味着无功功率增长,则将产 生下列后果:
一、单相电路有功电能旳测量
国产直接接入式电能表应按单进双出措施接线,即单数 接线柱接电源,偶数接线柱接负载,第一接线柱接相线 (火线)。单相电能表实际接线图如图6-4所示。
电能表的接线原理

第三节 电能表的测量接线 电能表的测量接线根据被测线路分为单相、三相三线和三相四线,并依据被测负荷的大小和计费方式分为直接接入式、经电流互感器接入式、经电压互感器和电流互感器接入式、有功无功联合接线等形式。
电能表的接线正确与否,不仅影响电能的正确计量,还影响用电安全,因此,选择、使用标准的接线方式十分重要。
在进行接线之前,必须看明白接线图(图中圆圈部分表示一组驱动元件,较粗的横线表示电流线圈,较细的竖线表示电压线圈,线圈的进线端在旁边加点注明),分清电流线圈和电压线圈的接线端子及进线与出线端子。
配套使用TA、TV时,必须正确识别互感器的极性,电流互感器的一次与二次进出线分别以L1、L2与K1、K2表示,电压互感器的一次与二次接线端分别以大写U、V、W(或A、B、C)与小写u、v、w(或a、b、c)表示。
接线时,注意接线螺丝必须压紧导线,以免接触不良导致过热烧毁接线端子;TA、TV二次侧均应可靠接地,以保证人身及设备的安全;接线完毕必须复核所接线路,完全无误方可送电。
1 单相电能表测量接线 单相电能表的接线使用最多,特别注意一点,即必须将相线(火线)连接电流线圈进线端子(一般是第一个接线端子)。
(1)单相直接接入式。
这种接线适用于城乡居民生活用电,见图3-1(a)。
图3-1 单相电能表测量接线图 (2)单相经TA接入式。
这种接线适用于单相负荷较大的厂房、车间、矿区的照明以及居民用电的总表等,见图3-1(b)。
有的电工为了接线省事一点,将电源L1与TA二次接线端子K1连接,利用电流二次导线到电能表的电流接线端子,通过连片或挂勾将电压送到电压接线端子,见图3-1(c)。
这种接线虽然也能正确计量电能,但TA二次侧不能可靠接地(如果接地等于相线直接接地),一旦TA二次侧开路,则会因产生的高电压威胁人身与设备安全,所以不提倡使用。
2 三相三线电能表测量接线 三相三线接线方式适用于三相负荷较平衡电能的测量,动力、照明在同一回路、三相负荷严重不平衡时,不宜采用此种接线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
cos
WP WP WQ
2 2
无功功率公式
无功功率: Q UI sin 三相电路的无功功率:
QS QA QB QC U A I A sin A U B I B sin B UC I C sin C
三相电压对称时:
U A U B UC U P QS U P ( I A sin A I B sin B I C sin C )
Q2 U CA I B cos(uCA iB ) U CA I B cos(900 B ) U CA I B sin B Q3 U AB I C cos(u AB iC ) U AB I C cos(900 C ) U AB I C sinC
当三相电压对称时:U AB U BC UCA Ul 3U P
M 2 K IC UAC sin( 21 0 C ) K IC UAC sin( 3 0 C )
当三相电压对称时,电能表的总驱动力矩为:
M Q M1 M 2 KUl [ I A sin( 30 A ) I C sin( 30 C )]
三:60 °型无功电能表原理
这种无功电能表的结构与三相三线有功电能表相似,区 别在于电能表的内相角ß (u与Φ u的相位差角) 有功电能表的内相角ß 为: β = φ +α I+ψ =900+α 若а I=0 则β =900
I
(φ +ψ =900 )
(正弦型无功电能表β = α I) 无功电能表在电压线圈中串接了一个电阻R,并加大电
目前较少采用
二、跨相90°型无功电能表
这种无功电能表的结构与三相四线有功电能表完全
相同,有三组电磁元件,区别在于内部接线不同。
用以测量电压对称的三相三线和三相四线电路中的
无功电能。
第一元件接入:
第二元件接入: 第三元件接入:
u BC i A
uCA iB
u AB iC
1:跨相90°型三相无功电能表原理接线和向量图
压工作磁通磁路的空气气隙,来降低电压线圈的感抗,从而
使β 减小,由有功表的β =900 +а 若а I=0 则β =600
I
,降到β =600 +а
I
1:两元件60°型无功电能表接线及向量图
UBC UAC
U
A
IA U
AC
RU
RU
ΦA
IA
Ψ1=150°-ΦA 60° 60°
U BC
U CA
U AB
U AB
U IC
ΦC
A
ΦA
IA
ΦB
A
U BC
A B C N
IA
IB
C
IC
UC
U CA
I B UB B
每组电磁元件上的电压线圈(如UBC)的相位滞 后对应电流线圈(如IA)所接相 的电压(如UA)相 位90°。
U AB
课
题:无功电能表及无功电能的测量
目的要求:掌握无功电能的计量方法
重 点:接线方式
国家对电力用户实行了依据功率因数的高低 调整电费的办法,以鼓励用户采取措施, 提高功率因数。如果负载功率因数低,意 味着无功功率增加,则将产生下列后果: (1)发、供电设备的容量不能充分利用。 当发、供电设备的容量一定时,在额 定电压和额定电流下,负载的功率因数越 低,则发、供电设备发出的有功功率减少, 无功功率增大,发、供电设备的容量就不 能充分利用。
6:正弦型单向无功电能表原理(容性负载)
I2
R2
U
U
I
A
I
PJ Z(容性) RU
Φ Ψ=Φ β
U
N
I1
IU
I
I1
αI
IU
0°型无功电度表:φ=0 °时,接入电度表的两磁通为0 ° 测量容性无功时,不必改变电压或电流的极性。
MQ K 'Φ IΦ U sin KUI sin KQ
A相电流,BC相电压和他们夹角的余弦是有功功率 的公式。所以,利用有功电能表可以测量A相无功电能, 接线是A相电流,BC相电压。但测量值要除以 3
2:跨相90°型三相无功电能表各元件测量功率
Q1 U BC I A cos(uBC i A ) U BC I A cos(900 A ) U BC I A sin A
U
A
ΦA
IA
ΦB
A
U BC
QA U A I A sin A QA U A I A cos (90 A)
C C IΦ
C
UC
U CABiblioteka I B UB B
QA U A I A cos(U BC I A )
1 QA U BC I A cos(U BC I A ) 3
(2)增加输电线路损耗和电压降。 从 P UI cos 公式得到,当负载的 功率P和电压U确定后,则
cos I P I R
2
cos I U U
通过电压表、电流表和功率表的指示值,可以 计算出功率因数,或用功率因数表进行监视, 但是这只能测量到某一时刻功率因数的瞬时 值,而用户的功率因数是随着有功负载和无 功负载的变化而变化的。为了测量用户在一 个月的平均功率因数,规定以用户在一个月 内有功和无功负载的累积量来计算,它等于
Q Q1 Q2 Q3 3U P ( I A sin A I B sin B I C sin C ) 3QS
利用三元件三相有功电能表,测量无功,读数除以 3 或改造有功表,将电流或电压线圈减少 读数
3 倍即可直接
3、跨相90°型三相无功电能表适用范围:
按跨相90°原理制成的三元件三相无功电能表, 只在完全对称或简单不对称的三相三线和三相 四线电路中才能实现正确计量。
UB
UC
U
A
UC
IB B IC
A C N
IA
UA
ΦA
RU
RU
RU
IC
UC
IC
ΦC
IA
ΦB
IA
UA
UB
UB IB
IB
例如:其中一电磁元件接线IA和UB ,根据60°相角 原理,使φUB滞后UB 60° ,则ψ=180 °-φA
适用范围:三相电压对称的三相四线电路 的无功电能。
7:正弦型两元件三相无功电能表
R1 R1
UAB
UCB
U
AB
U
ΦA
A
IA
IC
IA
A B C
RU
IC
RU
U CB I CΦ
150°-ΦA
UC
C
210°-ΦC
I A
UB
实际上是两只单相正弦型无功电能表的组合体
8:正弦型三元件三相无功电能表 三元件三相正弦型无功电能表实际上是三只 单相正弦型无功电能表的组合体,其接线原则与 三相四线有功电能表相同。 正弦型无功电能表优点:适用范围广,单相和三 相电路均可采用,三相电路电压是否对称、负载 是否平衡均能正确计量。 正弦型无功电能表缺点:成本高,功耗 大,准确度难以提高。
60o型无功电能表中,每个元件电压 回路的电抗与电阻之间有下列关系
X tg 60 RU R
o
X X RU R R o tg 60 3
2:有功电能表电压线圈串电阻
A
UU U
U
PJ
Z β
U UR U
IU UR U
RU
UU
IU
I
N
电源电压U不变,电能表阻抗不变,改变RU, 就能改变UU和URU大小和方向,从而改变电压工 作磁通φU和U的夹角β。(上图向量分析忽略电压 元件的各种损耗)
3:正弦型单向无功电能表原理
A B
I A I B IC
IC I C
Ψ2=210°-ΦC ΦC
UAC
UC
UBC
UB
U BC
假设电流元件的损耗角为0,调节R,使φUBC 滞后UBC 60 ° ,ΦUAC 滞后UAC 60 °
ψ1=150 °-φA
2:驱动力矩
电能表两组元件的驱动力矩分别为:
M 1 K IA UBC sin( 15 0 A) K IA UBC sin( 3 0 A )
I2
R2
I
A
U
U
Φ
U
N
I1
IU
PJ Z(感性) RU
β
IU
I
αI
Ψ=Φ
I
I1
调整φU和φI的角度, 使sinψ=sinφ( ψ=φ )
4:正弦型单向无功电能表原理(电流反极性)
I2
R2
U
U
Φ
I
A
180-φ