光电子速度比较

合集下载

光电效应(含解析)

光电效应(含解析)

• • •光电效应1. 知识详解:知识点1光电效应和波粒二象性1.光电效应的实验规律(1)存在着饱和电流:对于一定颜色的光,入射光越强,单位时间发射的光电子数越多,饱和光电流越大.(2)存在着遏止电压和截止频率:光电子的能量只与入射光的频墜有关,而与入射光的强弱无关.当入射光的频率低丁•截止频率时不发生光电效应.使光电流减小到零的反向电圧叫遏止电压.(3)光电效应具有瞬时性:当频率超过截止频率时,无论入射光怎样微弱,儿乎在照到金属时立即产生光电流,时间不超过10 ®s.2.光子说爱因斯坦提出:空间传播的光不是连续的,而是一份一份的,每一份称为一个光子,光子具有的能量E=hv f其中力=6.63x10、4J・s.3.光电效应方程(1)表达式:hv=E k+W()或E严加一%(2)物理意义:金属中的电子吸收一个光子获得的能量是尿,,这些能量的一部分用來克服金属的逸出功瞅),剩下的表现为逸出后电子的最大初动能E k=^mv2.4.光的波粒二象性(1)波动性:光的干涉、衍射、偏振现象证明光具有泌性.(2)粒子性:光电效应、康普顿效应说明光具有粒土性.(3)光既具有波动性,乂具有粒子性,称为光的波粒二象性.5.物质波(1)概率波光的干涉现象是大量光子的运动遵守波动规律的表现,亮条纹是光子到达概率木的地方,暗条纹是光子到达概率尘的地方,因此光波又叫概率波.(2)物质波任何一个运动着的物体,小到微观粒子大到宏观物体都有一种波与它对应,其波长2=眷,"为运动物体的动量,〃为普朗克常量.易错判断(1)光子说中的光子,指的是光电子.(x)(2)只要光足够强,照射时间足够长,就一定能发生光电效应.(X)(3)极限频率越大的金属材料逸出功越大.W)知识点2 a粒子散射实验与核式结构模型1.实验现象绝大多数a粒子穿过金箔后,基本上仍沿原來的方向前进,但少数a粒子发生了大角度偏转, 极少数a 粒子甚至被撞了回來.如图所示.a粒子散射实验的分析图2.原子的核式结构模型在原子中心有一个很小的核,原子全部的正电荷和儿乎全部质量都集中在核里,带负电的电子在核外空间绕核旋转.易错判断(1)原子核集中了原子全部的正电荷和质量.(x)(2)原子中绝大部分是空的,原子核很小.W)(3)核式结构学说是卢瑟福在a粒子散射实验的基础上提出的.W)知识点3氢原子光谱和玻尔理论1.光谱(1)光谱:用光栅或棱镜可以把光按波长展开,获得光的竝(频率)和强度分布的记录,即光谱.(2)光谱分类:①线状谱光谱是一条条的亮线.②连续谱光谱是连在一起的光带.(3)氢原子光谱的实验规律:巴耳末线系是氢原子光谱在可见光区的谱线,其波长公式士=二*)(”=3,4,5,…),R是里徳伯常量:,/?=1.10xl0'm *, ”为量子数.2.玻尔理论(1)定态:原子只能处于一系列不连续的能量状态中,在这些能量状态中原子是稳定的,电子虽然绕核运动,但并不向外辐射能量.(2)跃迁:原子从一种定态跃迁到另一种定态时,它辐射或吸收一定频率的光子,光子的能量由这两个定态的能量差决定,即hv=E,n—En(h是普朗克常量,力=6.63x10 * J.S).(3)轨道:原子的不同能量状态跟电子在不同的圆周轨道绕核运动相对应.原子的定态是不连续他,因此电子的可能轨道也是不连续的.3. 氢原子的能级、能级公式(1) 氢原子的能级图能级图如图所示.(2) 氢原子的能级公式匕=右£心=1,2,3,…),其中&为基态能量,其数值为 E\ = — 13.6_eV.(3) 氢原子的半径公式尸”=也(”=1,2,3, ...)»其中门为基态半径,乂称玻尔半 径,其数值为 ri=O.53xlO-,o m.易错判断(1) 在玻尔模型中,原子的状态是不连续的.W )(2) 发射光谱可能是连续光谱,也可能是线状谱.W)(3) 玻尔理论成功地解释了氢原子光谱,也成功地解释了氨原子光谱.(X )2. 题型分析:一、对光电效应的理解1. 与光电效应有关的五组概念对比(1) 光子与光电子:光子指光在空间传播时的每一份能量,光子不带电:光电子是金属表而受到光照射时 发射出来的电子,其本质是电子.光子是因,光电子是果.(2) 光电子的动能与光电子的最大初动能:只有金属表而的电子直接向外飞出时,只需克服原子核的引力 做功的情况,才具有最大初动能.(3) 光电流和饱和光电流:金属板飞岀的光电子到达阳极,回路中便产生光电流,随着所加正向电压的增 大,光电流趋于一个饱和值,这个饱和值是饱和光电流,在一定的光照条件下,饱和光电流与所加电压 大小无关.(4) 入射光强度与光子能疑:入射光强度指单位时间照射到金属表而单位面积上的总能量.(5) 光的强度与饱和光电流:频率相同的光照射金属产生光电效应,入射光越强,饱和光电流越大,但不 是简单的正比关系.2. 两条对应关系:入射光强度大T 光子数目多-发射光电子多-光电流大:光子频率高T 光子能疑大-光电子的最大初动能大.A7c V例1.关于光电效应和康普顿效应的规律,下列说确的是()A.光电效应中,金属板向外发射的光电子又可以叫作光子B.康普顿效应说明光具有波动性C.对于同种金属而言,遏止电压与入射光的频率无关D.石墨对X射线散射时,部分X射线的散射光波长会变长,这个现象称为康普顿效应D [光电效应中,金属板向外发射的电子叫光电子,光子是光量子的简称,A错误;根据光电效应方程hv=Wo+eU c可知,对于同种金属而言(逸出功一样),入射光的频率越大,遏止电压也越大,即遏止电压与入射光的频率有关,C错误;在石墨对X射线散射时,部分X射线的散射光波长会变长的现象称为康普顿效应,康普顿效应说明光具有粒子性,B错误,D正确.]例2.(多选)光电效应的实验结论是:对某种金属()A.无论光强多强,只要光的频率小于极限频率就不能产生光电效应B.无论光的频率多低,只要光照时间足够长就能产生光电效应C.超过极限频率的入射光强度越弱,所产生的光电子的最大初动能就越小D.超过极限频率的入射光频率越高,所产生的光电子的最大初动能就越大AD [每种金属都有它的极限频率w,只有入射光子的频率大于极限频率vo时,才会发生光电效应,选项A正确,B错误;光电子的初动能与入射光的强度无关,随入射光频率的增加而增大,选项D正确,C错误.]二、爱因斯坦的光电效应方程及应用1.三个关系(1)爱因斯坦光电效应方程Ek=hv-Wo.(2)光电子的最大初动能5可以利用光电管用实验的方法测得,即E S其中0•是遏I匕电压. (3)光电效应方程中的附)为逸岀功,它与极限频率%的关系是Wo=hv c.2.考向1光电效应方程的应用例3.(多选)(2017-全国【II卷)在光电效应实验中,分别用频率为%、巾的单色光°、b照射到同种金属上,测得相应的遏止电压分别为S和5、光电子的最大初动能分别为Ek“和Ekb.h 为普朗克常量.下列说确的是()A.若Va>Vb,则一定有Ua<UbB.若v a>v b,则一定有Ekd>EkbC.若UEUb,则一定有EkdVEk”D.若VQVb,则一定有hVa — Eka>hvb — E灶[题眼点拨]①“照射同种金属”,说明两种情况下的逸出功相同;②用E k=hv-Wo分析Ek的大小,用qU=Ek分析遏止电压的大小.BC [光电效应中遏止电压与最大初动能之间的关系为eU=Ek,根据光电效应方程可知Ek=hv— VV(),若则Eka>Ek/” Ua>Ub,选项A错误,选项B正确;若Ua<U hf则肋,选项C正确;由光电效应方程可得W{}=hv-E k,则hv0-E ka=hv b-E kh,选项D错误.]例4.(多选)在探究光电效应现象时,某小组的同学分别用波长为人、爼的单色光照射某金属, 逸出的光电子最大速度之比为2 :1,普朗克常量用力表示,光在真空中的速度用c表示.则()A.光电子的最大初动能之比为2 : 1B.该金属的截止频率为芸C.该金属的截止频率为#AD.用波长为|久的单色光照射该金属时能发生光电效应BD [由于两种单色光照射下,逸出的光电子的最大速度之比为2: 1,由E^rnv2可知,光电子的最大初动能之比为4 : 1, A错误;又由加=*+5知,号=用+林硏,烷=W+如谄,乂6=202,解得吟磴,则该金属的截止频率为芸,B正确,C错误;光的波长小于或等于3久时才能发生光电效应,D正确.]考向2与光电效应有关的图象问题例5. (2018-模拟)如图中所示是研究光电效应的电路图.某同学利用该装置在不同实验条件下得到了三条光电流/与A、K两极之间的电压U AK的关系曲线(屮光、乙光、丙光),如图乙所示.则下列说确的是()甲乙A.屮光照射光电管发出光电子的初动能一定小于丙光照射光电管发出光电子的初动能B.单位时间甲光照射光电管发出光电子比乙光的少C.用强度相同的屮、丙光照射该光电管,则单位时间逸出的光电子数相等D.对于不同种金属,若照射光频率不变,则逸出光电子的最大初动能与金属的逸出功为线性关系【自主思考】(1)在题图乙中,以|和以2的意义是什么?山此能否得出,甲、乙、丙三种光的频率关系?[捉示]&表示光电流为零时的反向电压,也就是遏止电压.此时似=5诚,乂因如诚=hv-w.由以上两式得Uc大的光的V大,所以甲、乙、丙三种光的频率关系为V«>vq. =卩乙(2)光强相同的两种色光,如何比较单位时间照射到单位面积上的光子数的多少?[捉示]频率大的光子能量大,在光强相同时,单位时间照射到单位面积上的光子数就少.D [当光照射到K极时,如果入射光的频率足够大(大于K极金属的极限频率),就会从K极发出光电子•当反向电压增加到某一值时,电流表A中电流就会变为零,此时如“说=eU Cf式中S表示光电子的最大初速度,e为电子的电荷量,S为遏止电压,根据爱因斯坦光电效应方程可知丙光的最大初动能较大,故丙光的频率较大,但丙光照射光电管发出光电子的初动能不一定比屮光照射光电管发出光电子的初动能大,所以A错误.对于屮、乙两束频率相同的光来说,入射光越强,单位时间发射的光电子数越多,所以B错误.对中、丙两束不同频率的光来说,光强相同是单位时间照射到光电管单位面积上的光子的总能量相等,山于丙光的光子频率较高,每个光子的能量较大,所以单位时间照射到光电管单位面积上的光子数就较少,所以单位时间发出的光电子数就较少,因此C错误.对于不同金属,若照射光频率不变,根据爱因斯坦光电效应方程Ek =hv~W,知Ek与金属的逸出功为线性关系,D正确.]例6.研究光电效应规律的实验装置如图所示,用频率为卩的光照射光电管阴极K时,有光电子产生.由于光电管K、A间加的是反向电压,光电子从阴极K发射后将向阳极A做减速运动.光电流汕1图中电流计G测出,反向电压U山电压表V测出.当电流讣的示数恰好为零时,电压表的示数称为反向截止电压队,在下列表示光电效应实验规律的图象中,错误的是()0 V 錢止电压U与频率卩C的关系BU a u 光强/和频率〃一定时,光电流i 与反向电压U的关系C反向电压&和频率少一定时■光电流i与光强Z的关系光强/和频率"一定时,光电流i与产生光电子的时间r的关系DB [山光电效应规律可知,光电流的强度与光强成正比,光射到金属上时,光电子的发射是瞬时的,不需要时间积累,故A、D图象正确;从金属中发出的光电子,在反向电压作用下做减速运动,随着反向电压的增大,到达阳极的光电子数减少,故C图象正确;由光电效应方程可知:亦匸血+Ekm,而eUc = Ekm,所以有加=/m)+et/c,由此可知,B图象错误.]例7. (2017-抚州模拟)人们发现光电效应具有瞬时性和对各种金属都存在极限频率的规律.请问谁提岀了何种学说很好地解释了上述规律?已知锌的逸出功为3.34 eV,用某单色紫外线照射锌板时,逸出光电子的最大速度为106 nVs,求该紫外线的波长2•(电子质量Mc=9.11xl0f kg,普朗克常量A=6.63xlO_34J-s,l eV= 1.60x10_ 19 J)[解析]爱因斯坦提出的光子说很好地解释了光电效应现象.由爱因斯坦光电效应方程:E k=hv-W Q①光速、波长、频率之间关系:联立①②得紫外线的波长为._ he1 iWo+尹琳6.63xlO_34x3xlO8= 1 m3.34x1.6x10-19+^9.11x107x101202.009x10-7 m.[答案]爱因斯坦的光子说很好地解释了光电效应2. 009x10-7m例8.(多选)(2017-模拟)如图是某金属在光的照射下产生的光电子的最大初动能Ek与入射光频率V 的关系图象•山图象可知()A. 该金属的逸出功等于EB. 该金属的逸出功等于加()C. 入射光的频率为2比时,产生的光电子的最大初动能为EABC [山爱因斯坦的光电效应方程:E k =hv-W 09对应图线可得,该金属的逸出功Wo=E=Jiv^ A 、B 均正确;若入射光的频率为2vo,则产生的光电子的最大初动能Ek = 2hv 0-W 0=hv 0=E,故C 正确;入射光的频率为号时,该金属不发生光电效应,D 错误.]例9.某光电管的阴极是用金属钾制成的,它的逸出功为2.21 eV,用波长为2.5x10—7m 的紫外线照射阴极.已知真空中光速为3.0xl08m/s,元电荷为1.6xlO-,9C,普朗克常量为6.63x10 _34J s,求得钾的极限频率和该光电管发射的光电子的最大初动能应分别是()A ・ 5.3X10M H 乙2.2J B. 5.3xlO 14 HzA4xlO",9J C. 3.3xlO 33H 乙2.2 J D. 3.3xlO 33 HzA4xlO _,9JB [III得Wp 2・21xl ・6xl0 一19 ~h = 6.63X10"34山光电效应方程加=Wo + Em 得D ・入射光的频率为号时,产生的光电子的最大初动能为号 极限频率vo= H Z =5.3X 10I4H ZE km =hv-W 0=hj-W 0三、对波粒一•象性的理解1. 对光的波动性和粒子性的进一步理解2 (1)大量光子易显示出波动性,而少量光子易显示出粒子性.⑵波长长(频率低)的光波动性强,而波长短(频率髙)的光粒子性强.(3) 光子说并未否泄波动说,E=hv =今中,v 和2就是波的概念. (4) 波和粒子在宏观世界是不能统一的,而在微观世界却是统一的.例10. (2018-模拟)关于波粒二象性,下列说法中正确的是()6・63x 10竹妆3・0><1082.5x10—7~2.21xl.6xl0'19J=4.4X 10'19J]甲乙丙丁A.图甲中紫光照射到锌板上可以发生光电效应,则其他可见光照射到锌板上也一定可以发生光电效应B.图乙中入射光的强度越大,则在阴极板上产生的光电子的最大初动能越大C.图丙说明光子既有粒子性也有波动性D.戴维和汤姆利用图丁证明了电子具有波动性D [在可见光中,紫光的频率最大,故紫光光子的能量最大,紫光照射到锌板上可以发生光电效应,但其他可见光照射到锌板上不一定发生光电效应,A错误;入射光的强度只能改变单位时间逸出光电子的数量,但不能增大逸出光电子的最大初动能,B错误;光的散射揭示了光的粒子性,没有揭示光的波动性,C错误;衍射是波特有的现象,故电子束衍射实验证明了电子具有波动性,D正确.]例11. (2017-高考)2017年年初,我国研制的“光源”一极紫外自111电子激光装置,发出了波长在100 nm(l nm=10-9 m)附近连续可调的世界上最强的极紫外激光脉冲,“光源”因其光子的能量大、密度高,可在能源利用、光刻技术、雾霾治理等领域的研究中发挥重要作用.一个处于极紫外波段的光子所具有的能量可以电离一个分子,但乂不会把分子打碎.据此判断,能够电离一个分子的能量约为(取普朗克常量/^G.GxlO-34 J s,真空光速c = 3xlO8 m/s)()A.10一21 JB. 10_,8JC. 10-15 JD. 10_,2JB [—个处于极紫外波段的光子所具有的能量加=»=6.6xlOK盍罗冋0-5, 选项B正确.]四、氢原子能级和能级跃迁1.两类能级跃迁(1)自发跃迁:高能级-低能级,释放能戢,发出光子.光子的频率、=¥=匚宀.(2)受激跃迁:低能级-高能级,吸收能量.①光照(吸收光子):光子的能量必须恰等于能级差7/v=AE.②碰撞、加热等:只要入射粒子能量大于或等于能级差即可,EZE.③大于电离能的光子被吸收,将原子电离.2.电离电藹态与电离能电离态:n=8, E=0基态T电离态:E吸=0—(一13.6 eV)=13.6 eV电离能.n=2—电离态:E^=0-E2=3.4 eV如吸收能量足够大,克服电离能后,获得自由的电子还携带动能.3.谱线条数的确左方法(1)一个氢原子跃迁发岀可能的光谱线条数最多为("一1).(2)—群氢原子跃迁发出可能的光谱线条数的两种求解方法.①用数学中的组合知识求解:艸二c‘二几5「1)・n 2②利用能级图求解:在氢原子能级图中将氢原子跃迁的各种可能情况一一画出,然后相加.例12.(多选)氢原子光谱在可见光部分只有四条谱线,它们分别是从〃为3、4、5、6的能级直接向/i = 2能级跃迁时产生的.四条谱线中,一条红色、一条蓝色、两条紫色,则下列说确的是()A.红色光谱是氢原子从“ =3能级向” =2能级跃迁时产生的B.蓝色光谱是氢原子从” =6能级或n = 5能级直接向”=2能级跃迁时产生的C.若氢原子从” =6能级直接向n=l能级跃迁,则能够产生红外线D.若氢原子从n=6能级直接向n = 3能级跃迁时辐射的光子不能使某金属发生光电效应,则氢原子从〃能级直接向“ =2能级跃迁时辐射的光子将可能使该金属发生光电效应AD [从〃为3、4、5、6的能级直接向n = 2能级跃迁时,从“ =3跃迁到”=2能级辐射的光子频率最小,波长最大,可知为红色光谱,A正确;蓝光光子频率大于红光光子频率,小于紫光光子频率,可知是从“=4跃迁到n=2能级辐射的光子,B错误;氢原子从畀=6能级直接向能级跃迁,辐射的光子频率大于从“ =6跃迁到“ =2能级时辐射的紫光光子频率,即产生紫外线,C错误;从” =6 跃迁到”=2能级辐射的光子频率大于从“ =6跃迁到〃能级辐射的光子频率,III氢原子从“ =6能级直接向〃=3能级跃迁时辐射的光子不能使某金属发生光电效应,但从〃=6跃迁到〃=2能级跃迁时辐射的光子可能使该金属发生光电效应,D正确.]例13.(2018.模拟)如图所示为氢原子能级图,氢原子中的电子从“=4能级跃迁到”=1能级可产生“光;从n = 3能级跃迁到“=1能级可产生方光,“光和b光的波长分别为儿和几,“、〃两光照射逸出功为4.5 eV的金属餌表面均可产生光电效应,遏止电压分别为/和3,,则D [氢原子中的电子从n=4能级跃迁到n=1能级产生a光,d光的光子能量hv a=E a =E4-£1 = 12.75 eV,氢原子中的电子从n = 3能级跃迁到n=\能级产生A光,b光的光子能量血=Q,=5—Q = 12.09eV,"光的光子能量高,则"光的频率大,波长小,即几vU,A、C项错误;由光电效应方程E^hv-Wo和5=0以可知,频率越大,对应遏止电压0越大,即UQUb, B项错误;Ekb=Av/,-VV0=7.59 eV, D项正确.][反思总结](1)一个区另U一个氢原子和一群氢原子能级跃迁的可能性.(2)两点提醒①原子能级之间跃迁时吸收或放出的光子能量一定等于两能级之间的差值.②要使氢原子发生电离,原子吸收的能量可以是大于原子该能级值的任意值.例14:氢原子跃迁时,山n = 3的激发态跃迁到基态所释放的光子可以使某金属刚好发生光电效应,则下列说确的是()A.氢原子由“ =3的激发态跃迁到基态时,电子的动能减少B.氢原子山〃=3的激发态跃迁到基态时,原子的能量增加C.增加由〃的激发态跃迁到基态的氢原子的数量,从该金属表面逸出的光电子的最大初动能不变D.氢原子由n = 2的激发态跃迁到基态所释放的光子照射该金属足够长时间,该金属也会发生光电效应C [氢原子山激发态跃迁到基态时,释放光子,原子的能量减少,电子的动能增加,A、B错;增加跃迁氢原子的数量,不能改变释放出的光子的频率,从该金属表面逸出的光电子的最大初动能不变,C对;从〃的激发态跃迁到基态的氢原子,其释放的光子的频率较小,不能使该金属发生光电效应,D错.]3. 小练:考査点:光的波粒二象性1.(多选)下列说法中正确的是()A.光的波粒二象性学说彻底推翻了麦克斯韦的光的电磁说B.在光的双缝干涉实验中,暗条纹的地方是光子永远不能到达的地方C.光的双缝干涉实验中,大量光子打在光屏上的落点是有规律的,暗纹处落下光子的槪率小D.单个光子具有粒子性,大疑光子具有波动性[答案]CD考査点:光电效应规律2.(多选)在光电效应实验中,用频率为v的光照射光电管阴极,发生了光电效应,下列说确的是()A.增大入射光的强度,光电流增大B.减小入射光的强度,光电效应现象消失C.改用频率小于v的光照射,一迄不发生光电效应D.改用频率大于v的光照射,光电子的最大初动能变大[答案]AD考査点:玻尔理论3.氢原子由“=1的状态激发到”=4的状态,在它回到的状态的过程中,有以下说法:①可能激发的能量不同的光子只有3种②可能发出6种不同频率的光子③可能发出的光子的最大能量为12.75 eV④可能发岀光子的最小能量为0.85 eV 其中正确的说法是()A. ®(3)c. ®@[答案]D考查点:(X粒子散射实验B.②④D.②③4.(多选)在a粒子散射实验中,如果两个具有相同能量的a粒子以不同的角度散射出来,则散射角度大的这个a粒子()A.更接近原子核B.更远离原子核C.受到一个以上的原子核作用D.受到原子核较大的冲量作用[答案]AD4.巩固提升:光子说光电效应现象1.2016年8月16 S01时40分,由我国研制的世界首颗疑子科学试验卫星“墨子号"在卫星发射中心用长征二号丁运载火箭成功发射升空.它的成功发射和在轨运行,不仅将有助于我国广域量子通信网络的构建, 服务于国家信息安全,它将开展对呈:子力学基本问题的空间尺度试验检验,加深人类对量子力学自身的理解,关于量子和量子化,下列说法错误的是()A.玻尔在研究原子结构中引进了量子化的概念B.普朗克把能量子引入物理学,破除了“能量连续变化“的传统观念C.光子的概念是爱因斯坦提岀的D.光电效应实验中的光电子,也就是光子D [由玻尔理论可知,在研究原子结构时,引进了量子化的概念,故A正确:普朗克在1900年把能量子引入物理学,破除了“能疑连续变化“的传统观念,提出疑子化理论,故B正确:为解释光电效应现象,爱因斯坦提岀了光子说,引入了光子的槪念,故C正确;光电子就是在光电效应中产生的电子,本质是金属板的电子,故D错误.]2.用一朿紫外线照射某金属时不能产生光电效应,可能使该金属发生光电效应的措施是()A.改用频率更小的紫外线照射B.改用X射线照射C.改用强度更大的原紫外线照射D.延长原紫外线的照射时间选B某种金属能否发生光电效应取决于入射光的频率,与入射光的强度和照射时间无关。

自由电子的定向移电速率

自由电子的定向移电速率

一、阴极射线的速度高中物理第三册(选修本),在《磁场》一章中提到阴极射线是由带负电的微粒组成,即阴极射张就是电子流.让这些电子流垂直进入互相垂直的匀强电场和匀强磁场中,改变电场强度或磁感应强度的大小,使这些带负电微粒运动方向不变,这时电场力eE恰好等于磁场力eBv,即eE=eBv,从而得出电子运动速度v=E/B。

1894年汤姆逊利用此方法测得阴极射线的速度是光速的1/1500,约2×105米/秒.二、电子绕核运动速度高中物理第二册,在原子核式结构的发现中,提到电子没有被原子核吸到核上,是因为它以很大的速度绕核运动,这个速度有多大呢?按玻尔理论,氢原子核外电子的可能轨道是rn=n2r1,r1=0.53×10-10米。

根据电子绕核运动的向心力等于电子与核间的库仑力,可计算电子绕核的速度v=((ke2)/(mr1))1/2 ,代入数据得v1=2.2×106米/秒,同理可得电子在第二、第三能级上的运动速度v2=1.1×106米/秒;v3=0.73×106米/秒.从以上数字可知,电子离核越运其速度越小.三、光电子速度在光的照射下从物体发出电子的现象叫做光电效应.发射出来的电子叫光电子,光电子的速度有多大呢?由爱因期坦光电效应方程mv2/2=hυ-W,可以计算出电子逸出的最大速度,如铯的逸出功是3.0×10-19焦,用波长是0。

5890微米的黄光照射铯,光电效应方程与υ=c/λ联立可求出电子从铯表面飞出的最大初速度vm=((2/m)·((ch/λ)-W))1/2,代数字得vm=2.9×105米/秒.如果用波长更短的光照射铯,电子飞出铯表面的速度还会更大.从而得知,不同的光照射不同的物质,发生光电效应时电子飞出的最大速度也不同.四、金属导体中自由电子热运动的平均速率因为自由电子可以在金属晶格间自由地做无规则热运动,与容器中的气体分子很相似,所以这些自由电子也称为电子气.根据气体分子运动论,电子热运动_的平均速率v=((8kT)/(πm))1/2,式中k是玻耳兹常数,其值为1.38×10-23焦/开,m 是电子质量,大小为0.91×10-30千克,T是热力学温度,设t=27℃,则T=300K,_代入以上公式可得v=1.08×105米/秒.五、金属导体中自由电子的定向移电速率设铜导线单位体积内的自由电子数为n,电子定向移动为v,每个电子带电量为e,导线横截面积为S.则时间t内通过导线横截面的自由电子数N=nvtS,其总电量Q=Ne=nvtSe.根据I=Q/t得v=I/neS,代入数字可得v=7.4×10-5米/秒,即0.74毫米/秒.从以上数据可知,自由电子在导体中定向移动速率(约10-4米/秒)比自由电子热运动的平均速率(约10105米/秒)少约1/109倍.这说明电流是导体中所有自由电子以很小的速度运动所形成的.这是为什么呢?金属导体中自由电子定向移动速度虽然很小,但是它是叠加在巨大的电子热运动速率之上的.正象声速很小,如将声音转换成音频信号载在高频电磁波上,其向外传播的速度等于光速(c=3×108米/秒).电流的传导速率(等于电场传播速率)却是很大的(等于光速).六、自由电子在交流电路中的运动速率当金属中有电场时,每个自由电子都将受到电场力的作用,使电子沿着与场强相反的方向相对于晶格做加速的定向运动.这个加速定向运动是叠加在自由电子杂乱的热运动之上的.对某个电子来说,叠加运动的方向是很难确定的.但对大量自由电子来说,叠加运动的定向平均速度方向是沿着电场的反方向.电场大小变化或电场方向改变,其平均速度大小和方向都变化.对50赫的交流电而言,可推导出自由电子的定向速度v=-(eεmτ/m)sin(t-ψ),τ为自由电子晶格碰撞时间,其数量级为10-14秒.所受到的合力F=-2eεmsin(ψ/2)cos(ωt-ψ/2),即电子所受的力满足F=-kx.这说明自由电子在交流电路中是做简谐运动.其电子定向运动的最大速率为:vm=eεmτ/m≈10-4米/秒,振幅约为10-6米.七、打在电视荧光屏上的电子速度高中物理第二册《电场》一章中提到示波管知识,其实电视机与示波管的基本原理是相同的,故电子在电视荧光屏上的速度,也可根据带电粒子在匀强电场中的运动规律mv2=eU求出.以黄河47cm彩电为例,其加速电压按120伏计算,电子打在荧光屏上的速度v=(2eU/m)1/2,代入数字得v=6.5×106米/秒.八、打在对阴极上的电子速度高中物理第二册第236页,在讲授伦琴射线产生时说:“炽热钨丝发出的电子在电场的作用下以很大的速度射到对阴极上.”设伦琴射线管阴阳两极接高压为10万伏,则电子在电场力作用下做加速运动,求其速度用mv2=eU公式显然是不行的.因为电子质量随其速度增大而增大,故需用相对论质量公式代入上式求出,即mv2/(2×(1-v1/2/c1/2)1/2)代入数字得v=6.5×106米/秒.九、射线的速度高中物理第二册天然放射性元素一节中说到,研究β射线在电场和磁场中的偏转情况,证明了β射线是高速运动的电子流。

光电子技术知识点

光电子技术知识点

光电子技术知识点光电子技术是一门研究光与电子相互作用的学科,它涉及到光的产生、传输、操控以及光与电子的相互转换等方面的知识。

光电子技术在现代科学和工程领域中具有广泛的应用,包括通信、能源、医学、材料科学等多个领域。

本文将介绍一些光电子技术的基本知识点。

第一,光的特性。

光是一种电磁波,具有波动性和粒子性。

光的波长和频率决定了它的颜色和能量。

光的传播速度是光速,约为3×10^8米/秒。

光的传播可以受到材料的折射、反射和散射等现象的影响。

第二,光的产生。

光可以通过多种方式产生,例如热辐射、激光、荧光等。

其中,激光是一种特殊的光源,具有单色性、相干性和定向性等特点,被广泛应用于科学研究、医疗、通信等领域。

第三,光的传输。

光的传输可以通过光纤实现。

光纤是一种具有高折射率的细长材料,可以将光信号通过全反射的方式传输。

光纤具有低损耗、大带宽和抗电磁干扰等优点,在通信领域得到广泛应用。

第四,光的操控。

光的操控可以通过光学器件实现。

光学器件包括透镜、棱镜、偏振器等,可以对光进行聚焦、分光、偏振等操作。

光学器件在光通信、成像、激光加工等领域中起着重要的作用。

第五,光与电子的相互转换。

光与电子的相互转换可以通过光电效应和光伏效应实现。

光电效应是指当光照射到金属或半导体表面时,产生电子的释放现象。

光伏效应是指当光照射到半导体材料中时,产生电子和空穴的产生和分离现象。

光电效应和光伏效应在太阳能电池、光电二极管等器件中得到应用。

综上所述,光电子技术是一门研究光与电子相互作用的学科,涉及到光的特性、产生、传输、操控以及光与电子的相互转换等知识点。

光电子技术在现代科学和工程领域中具有广泛的应用前景,为我们的生活和工作带来了许多便利和创新。

随着科技的不断进步,光电子技术将继续发展,为人类社会的进步做出更大的贡献。

光电效应的基本规律

光电效应的基本规律

光电效应的基本规律
光电效应的基本规律为:
1. 光子能量和电子释放速度成正比。

光电子的能量取决于光子的能量(频率、波长),而电子的释放速度也与光子的能量有一定的关联性。

2. 光电效应只发生在光子的能量大于某一特定值时。

这个特定值称为逸出功,是材料本身所具有的性质。

3. 光电效应中电子的发射方向与光子的入射方向相同。

这是由于光子在与原子的电子相互作用时只能释放出一个电子,并且电子被释放后只能沿着光子的传播方向逃逸。

4. 光电效应中光子的极性不影响电子的释放。

无论光子是横向极化还是纵向极化,电子的释放效应都是相同的。

5. 光电效应是一种瞬时的效应,光子和电子之间的相互作用时间非常短,通常只有几飞秒到几百飞秒的数量级。

光的特性与光的波动性

光的特性与光的波动性

光的特性与光的波动性光,作为一种电磁辐射,具有多种独特的特性和波动性。

本文将探讨光的特性以及光的波动性,并深入了解光在各个领域中的应用。

一、光的特性1. 光的传播速度:光在真空中的传播速度为每秒约3.0 x 10^8米。

这是宇宙中最快的速度,也是许多物理定律中的基础之一。

2. 光的波长和频率:光波在传播过程中表现出波动的特性。

光的波长是指相邻两个波峰之间的距离,通常以纳米(nm)表示。

而光的频率表示每秒钟波峰通过的次数,以赫兹(Hz)表示。

3. 光的能量:光是由一束束的光子(光量子)组成的,每个光子具有一定的能量。

光的能量与光子的数量成正比,而与光波的振幅和频率相关。

4. 光的传播路径:光的传播路径遵循直线传播原则,即光线在同质介质中是直线传播。

而当光线从一种介质传播到另一种介质时,会产生折射现象。

二、光的波动性1. 干涉现象:光的波动性在干涉现象中得到了明显的展示。

当两束相干光波相遇时,会产生干涉现象,出现明暗交替的条纹。

2. 衍射现象:衍射是指光波在遇到一个窄缝或障碍物时发生弯曲和扩散的现象。

衍射现象表明光的传播不仅仅沿直线传播,而是会在障碍物周围弯曲和扩散。

3. 折射现象:当光波传播介质发生变化时,光的波动性会导致折射现象。

光从一种介质传播到另一种介质时,会改变波速和波长,同时沿新方向继续传播。

4. 偏振现象:偏振是指光波沿特定方向振动的现象。

光波可以通过偏振片进行筛选和调整,具有重要的光学应用价值。

三、光的应用1. 光通信:光纤通信利用光的传播速度快、信息传输量大的优势,广泛应用于电话、互联网和电视等通信领域。

2. 光电子学:光电子学利用光的特性和波动性,开发了光传感器、光电二极管等光电子器件,用于测量、检测和控制等领域。

3. 光谱分析:光谱分析利用光的波长和频率特性,可以确定物质的成分和结构。

光谱分析在化学、天文学等领域中得到广泛应用。

4. 激光技术:激光技术是一种利用光的波动性和特性,产生高强度、高单色性、高直线度的光束。

光电效应实验的四大实验现象

光电效应实验的四大实验现象

光电效应实验的四大实验现象以光电效应实验的四大实验现象为标题,我们将详细介绍这些实验现象及其相关知识。

光电效应是指当光照射到金属表面时,金属会发射出电子的现象。

这一现象的实验研究对于量子力学的发展起到了重要的推动作用。

一、光电效应的第一大实验现象:光电流的存在在光电效应实验中,我们可以观察到一种称为光电流的电流现象。

当光照射到金属表面时,金属会发射出电子,这些电子在电场的作用下形成电流。

实验中可以使用电流计来测量这一光电流。

通过改变光的强度和频率,我们可以发现光电流与光的强度和频率之间存在着一定的关系。

二、光电效应的第二大实验现象:阈值频率在光电效应实验中,我们发现只有当光的频率超过一定的阈值频率时,金属才会发生光电效应,即发射出电子。

这个阈值频率与金属的性质有关,不同金属的阈值频率不同。

实验中可以通过改变光的频率,观察到金属发射电子的变化情况。

这一实验现象表明光的频率对光电效应起到了重要的影响。

三、光电效应的第三大实验现象:光电子能量与光的频率的关系在光电效应实验中,我们可以通过测量光电子的最大动能来研究光电子的能量。

实验中我们发现,光电子的最大动能与光的频率呈线性关系,即光的频率越高,光电子的最大动能越大。

这一实验结果与经典物理学的理论不符,而是符合了爱因斯坦提出的光量子假设。

光子的能量与光的频率成正比关系,光电子的最大动能取决于吸收光子能量的能力。

四、光电效应的第四大实验现象:光电子的速度分布在光电效应实验中,我们可以通过测量光电子的速度分布来研究光电子的运动情况。

实验中我们发现,光电子的速度分布与光的频率和强度有关。

当光的频率超过阈值频率时,光电子的速度分布呈连续的形态,即速度范围从零到最大值。

而当光的频率低于阈值频率时,光电子的速度分布呈离散的形态,只有在特定的速度范围内才能观察到光电子。

这一实验现象进一步验证了光电效应与光子假设的一致性。

光电效应实验的四大实验现象包括光电流的存在、阈值频率、光电子能量与光的频率的关系和光电子的速度分布。

电子运动速度

电子运动速度

电子运动速度一览比较电子速度问题的研究,对知识的结合与提高,有很大益处.(下面材料全来自科普或教材,仅供参考。

)一、阴极射线的速度阴极射线是由带负电的微粒组成,即阴极射张就是电子流.让这些电子流垂直进入互相垂直的匀强电场和匀强磁场中,改变电场强度或磁感应强度的大小,使这些带负电微粒运动方向不变,这时电场力eE恰好等于磁场力eBv,即eE=eBv,从而得出电子运动速度v=E/B。

1894年汤姆逊利用此方法测得阴极射线的速度是光速的1/1500,约2×105米/秒.二、电子绕核运动速度在原子核式结构的发现中,提到电子没有被原子核吸到核上,是因为它以很大的速度绕核运动,这个速度有多大呢?按玻尔理论,氢原子核外电子的可能轨道是rn=n2r1,r1=0.53×10-10米。

根据电子绕核运动的向心力等于电子与核间的库仑力,可计算电子绕核的速度v=((ke2)/(mr1))1/2 ,代入数据得v1=2.2×106米/秒,同理可得电子在第二、第三能级上的运动速度v2=1.1×106米/秒;v3=0.73×106米/秒.从以上数字可知,电子离核越远其速度越小.三、光电子速度在光的照射下从物体发出电子的现象叫做光电效应.发射出来的电子叫光电子,光电子的速度有多大呢?由爱因期坦光电效应方程mv2/2=hυ-W,可以计算出电子逸出的最大速度,如铯的逸出功是3.0×10-19焦,用波长是0。

5890微米的黄光照射铯,光电效应方程与υ=c/λ联立可求出电子从铯表面飞出的最大初速度vm=((2/m)·((ch/λ)-W))1/2,代数字得vm=2.9×105米/秒.如果用波长更短的光照射铯,电子飞出铯表面的速度还会更大.从而得知,不同的光照射不同的物质,发生光电效应时电子飞出的最大速度也不同.四、金属导体中自由电子热运动的平均速率因为自由电子可以在金属晶格间自由地做无规则热运动,与容器中的气体分子很相似,所以这些自由电子也称为电子气.根据气体分子运动论,电子热运动的平均速率v=((8kT)/(πm))1/2,式中k是玻耳兹常数,其值为1.38×10-23焦/开,m是电子质量,大小为0.91×10-30千克,T是热力学温度,设t=27℃,则T=300K,代入以上公式可得v=1.08×105米/秒.五、金属导体中自由电子的定向移电速率设铜导线单位体积内的自由电子数为n,电子定向移动为v,每个电子带电量为e,导线横截面积为S.则时间t内通过导线横截面的自由电子数N=nvtS,其总电量Q=Ne=nvtSe.根据I=Q/t得v=I/neS,代入数字可得v=7.4×10-5米/秒,即0.74毫米/秒.从以上数据可知,自由电子在导体中定向移动速率(约10-4米/秒)比自由电子热运动的平均速率(约10105米/秒)少约1/109倍.这说明电流是导体中所有自由电子以很小的速度运动所形成的.这是为什么呢?金属导体中自由电子定向移动速度虽然很小,但是它是叠加在巨大的电子热运动速率之上的.正象声速很小,如将声音转换成音频信号载在高频电磁波上,其向外传播的速度等于光速(c=3×108米/秒).电流的传导速率(等于电场传播速率)却是很大的(等于光速).六、自由电子在交流电路中的运动速率当金属中有电场时,每个自由电子都将受到电场力的作用,使电子沿着与场强相反的方向相对于晶格做加速的定向运动.这个加速定向运动是叠加在自由电子杂乱的热运动之上的.对某个电子来说,叠加运动的方向是很难确定的.但对大量自由电子来说,叠加运动的定向平均速度方向是沿着电场的反方向.电场大小变化或电场方向改变,其平均速度大小和方向都变化.对50赫的交流电而言,可推导出自由电子的定向速度v=-(e εmτ/m)sin(t-ψ),τ为自由电子晶格碰撞时间,其数量级为10-14秒.所受到的合力F=-2eεmsin(ψ/2)cos(ωt-ψ/2),即电子所受的力满足F=-kx.这说明自由电子在交流电路中是做简谐运动.其电子定向运动的最大速率为:vm=eεmτ/m≈10-4米/秒,振幅约为10-6米.七、打在电视荧光屏上的电子速度其实电视机与示波管的基本原理是相同的,故电子在电视荧光屏上的速度,也可根据带电粒子在匀强电场中的运动规律mv2=eU求出.以黄河47cm彩电为例,其加速电压按120伏计算,电子打在荧光屏上的速度v=(2eU/m)1/2,代入数字得v=6.5×106米/秒.八、打在对阴极上的电子速度伦琴射线产生时:“炽热钨丝发出的电子在电场的作用下以很大的速度射到对阴极上.”设伦琴射线管阴阳两极接高压为10万伏,则电子在电场力作用下做加速运动,求其速度用mv2=eU公式显然是不行的.因为电子质量随其速度增大而增大,故需用相对论质量公式代入上式求出,即mv2/(2×(1-v1/2/c1/2)1/2)代入数字得v=6.5×106米/秒.九、射线的速度天然放射性元素中,研究β射线在电场和磁场中的偏转情况,证明了β射线是高速运动的电子流。

光的波粒二象性知识点

光的波粒二象性知识点

光的波粒二象性知识点【篇一:光的波粒二象性知识点】光学现象是与人类的生产和日常生活密切相关的.人类在对光学现象、规律的研究的同时,也开始了对光本性的探究.到了17世纪,人类对光的本性的认识逐渐形成了两种学说.(一)光的微粒说一般,人们都认为牛顿是微粒说的代表,牛顿于1675年曾提出:“光是一群难以想象的细微而迅速运动的大小不同的粒子”,这些粒子被发光体“一个接一个地发射出来”.用这样的观点,解释光的直进性、影的形成等现象是十分方便的.在解释光的反射和折射现象时,同样十分简便.当光射到两种介质的界面时,要发生反射和折射.在解释反射现象时,只要假设光的微粒在与介质作用时,其相互作用,使微粒的速度的竖直分量方向变化,但大小不变;水平分量的大小和方向均不发生变化(因为在这一方向上没有相互作用),就可以准确地得出光在反射时,反射角等于入射角这一与实验事实吻合的结论.说到折射,笛卡儿曾用类似的假设,成功地得出了入射角正弦与折射角正弦之比为一常数的结论.但当光从光疏介质射向光密介质时,发生的是近法线折射,即入射角大,折射角小.这时,必须假设光在光密介质的传播速度较光在光疏介质中的传播速度大才行.一束光入射到两种介质界面时,既有反射,又有折射.何种情况发生反射,何种情况下又发生折射呢?微粒说在解释这一点时遇到了很大的困难.为此,牛顿提出了著名的“猝发理论”.他提出:“每一条光线在通过任何折射面时,便处于某种为时短暂的过渡性结构和状态之中.在光线的前进过程中,这种状态每隔相等的间隔(等时或等距)内就复发一次,并使光线在它每一次复发时,容易透过下一个折射面,而在它(相继)两次复发之间容易被这个面所反射”,“我将把任何一条光线返回到倾向于反射(的状态)称它为‘容易反射的猝发’,而把它返回到倾向于透射(的状态)称它为‘容易透射的猝发’,并且把每一次返回和下一次返回之间所经过的距离称它为‘猝发的间隔’”.如果说“猝发理论”还能解释反射和折射的话,那么,以微粒说解释两束光相遇后,为何仍能沿原方向传播这一常见的现象,微粒说则完全无能为力了.(二)光的波动说关于光的本性,当时还存在另一种观点,即光的波动说.认为光是某种振动,以波的形式向四周围传播.其代表人物是荷兰物理学家惠更斯.他认为,光是由发光体的微小粒子的振动在弥漫于一切地方的“以太”介质中传播过程,而不是像微粒说所设想的像子弹和箭那样的运动.他指出:“假如注意到光线向各个方向以极高的速度传播,以及光线从不同的地点甚至是完全相反的地方发出时,光射线在传播中一条光线穿过另一条光线而相互毫不影响,就能完全明白这一点:当我们看到发光的物体时,决不可能是由于从它所发生的物质,像穿过空气的子弹和箭一样,通过物质迁移所引起的”.他把光比作在水面上投入石块时产生的同心圆状波纹.发光体中的每一个微粒把振动,通过“以太”这种介质向周围传播,发出一组组同心的球面波.波面上的每一点,又可以此点为中心,再向外传播子波.当然,这样的观点解释同时发生反射和折射,比微粒说的“猝发理论”方便得多,以水波为例,水波在传播时,反射与折射可以同时发生.一列水波在与另一列水波相遇时,可以毫无影响的相互通过.惠更斯用波动说还解释了光的反射和折射.但他在解释光自光疏介质射向光密介质的近法线折射时,需假设光在光密介质中的传播速度较小.现代光速的测定表明,波动说在解释折射时依据的假设是正确的:光在光密介质中传播时光速较小.但在17世纪时,光速的测量尚在起步阶段,谁是谁非,没有定论.当然,光的波动说在解释光的直进性和何以能在传播时,会在不透明物体后留下清晰的影子等问题也遇到困难.可见,光的微粒说和波动说在解释光学现象时,都各有成功的一面,但都不能完满地解释当时所了解的各种光学现象.在其后的100多年中,主要由于牛顿的崇高地位及声望,因而微粒说一直占主导地位,波动说发展很缓慢.人类对光本性的认识,还期待新的现象的发现.直到19世纪初,人们发现了光的干涉现象,进一步研究了光的衍射现象.干涉和衍射是波动的重要特征,从而光的波动说得到迅速发展.人类对光的本性的认识达到一个新的阶段.(三)牛顿理论中的波动性思想作为一代物理学大师的牛顿,是提倡了微粒说,但他却并不排斥波动说.他根据他所做过的大量实验和缜密的思考,提出了不少卓越的、富有启发性的思想.在关于颜色的见解上,他提出“不同种类的光线,是否引起不同大小的振动,并按其大小而激起不同的颜色感觉,正像空气的振动按其大小而激起不同的声音感觉一样?而且是否特别是那些最易折射的光线激起最短的振动以造成深紫色的感觉,最不易折射的光线激起最长的振动,以造成深红色的感觉,而介于两者之间的各种光线激起各种中间大小的振动而造成中间颜色的感觉?”他同时还提出:“扔一块石头到平静的水面中,由此激起的水波将在石头落水的地方持续一段时间,并从这里以同心圆的形式在水面上向远处传播.空气用力撞击所激起的振动和颤动也将持续少许时间,并从撞击处以同心球的形式传播到远方,与此相似,当光线射到任何透明体的表面并在那里折射或反射时,是不是因此就要在反射或折射介质中入射点的地方,激起振动和颤动的波,而且这种振动总能在那里发生并从那里传播出去.”在解释光现象中,牛顿还多次提出了周期性的概念.而具有周期性,也是波动的一个重要特征.提出波动说的惠更斯却否认振动或波动的周期性.因此,对牛顿来说,在他的微粒说理论中包含有波动说的合理因素.究竟谁是谁非,牛顿认为“我只是对尚待发现的光和它对自然结构的那些效果开始作了一些分析,对它作了几点提示,而把这些提示留待那些好奇的人们进一步去用实验和观察来加以证明和改进.”牛顿的严谨,兼收并蓄的科学态度是值得我们学习的,恐怕这也是他成为物理学大师的原因之一.(四)理解光的波粒二象性1、动画(参考媒体资料中的动画“光的波粒二象性”):当我们用很弱的光做双缝干涉实验时,将感光胶片放在屏的位置上,会看到什么样的照片呢?为什么会有这种现象?分析图片:结论:1、上面图片清晰的显示了光的粒子性.2、光子落在某些条形区域内的可能性较大(对于波的干涉即为干涉加强区),说明光子在空间各点出现的可能性的大小可以用波动规律进行解释.得出:光波是一种概率波,概率表征某一事物出现的可能性.高考物理账号id:gkwl100高中物理知识点汇总与答题技巧宝典,还有题型精练、答题模版,只要你需要的这里都有!献花(0)+1【篇二:光的波粒二象性知识点】波粒二象性知识点总结一:黑体与黑体辐射1.热辐射(1)定义:我们周围的一切物体都在辐射电磁波,这种辐射与物体的温度有关,所以叫热辐射。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、阴极射线的速度
高中物理第三册(选修本),在《磁场》一章中提到阴极射线是由带负电的微粒组成,即阴极射张就是电子流.让这些电子流垂直进入互相垂直的匀强电场和匀强磁场中,改变电场强度或磁感应强度的大小,使这些带负电微粒运动方向不变,这时电场力eE恰好等于磁场力eBv,即eE=eBv,从而得出电子运动速度v=E/B。

1894年汤姆逊利用此方法测得阴极射线的速度是光速的1/1500,约2×105米/秒.
二、电子绕核运动速度
高中物理第二册,在原子核式结构的发现中,提到电子没有被原子核吸到核上,是因为它以很大的速度绕核运动,这个速度有多大呢?按玻尔理论,氢原子核外电子的可能轨道是rn=n2r1,r1=0.53×10-10米。

根据电子绕核运动的向心力等于电子与核间的库仑力,可计算电子绕核的速度v=((ke2)/(mr1))1/2 ,代入数据得v1=2.2×106米/秒,同理可得电子在第二、第三能级上的运动速度v2=1.1×106米/秒;v3=0.73×106米/秒.从以上数字可知,电子离核越运其速度越小.
三、光电子速度
在光的照射下从物体发出电子的现象叫做光电效应.发射出来的电子叫光电子,光电子的速度有多大呢?根据高中物理第二册(必修),由爱因期坦光电效应方程mv2/2=hυ-W,可以计算出电子逸出的最大速度,如铯的逸出功是3.0×10-19焦,用波长是0。

5890微米的黄光照射铯,光电效应方程与υ=c/λ联立可求出电子从铯表面飞出的最大初速度vm=((2/m)·((ch/λ)-W))1/2,代数字得vm=2.9×105米/秒.如果用波长更短的光照射铯,电子飞出铯表面的速度还会更大.从而得知,不同的光照射不同的物质,发生光电效应时电子飞出的最大速度也不同.
四、金属导体中自由电子热运动的平均速率
因为自由电子可以在金属晶格间自由地做无规则热运动,与容器中的气体分子很相似,所以这些自由电子也称为电子气.根据气体分子运动论,电子热运动的平均速率v=((8kT)/(πm))1/2,式中k是玻耳兹常数,其值为1.38×10-23焦/开,m 是电子质量,大小为0.91×10-30千克,T是热力学温度,设t=27℃,则T=300K,代入以上公式可得v=1.08×105米/秒.
五、金属导体中自由电子的定向移电速率
设铜导线单位体积内的自由电子数为n,电子定向移动为v,每个电子带电量为e,导线横截面积为S.则时间t内通过导线横截面的自由电子数N=nvtS,其总电量Q=Ne=nvtSe.根据I=Q/t得v=I/neS,代入数字可得v=7.4×10-5米/秒,即0.74毫米/秒.从以上数据可知,自由电子在导体中定向移动速率(约10-4米/秒)比自由电子热运动的平均速率(约10105米/秒)少约1/109倍.这说明电流是导体中所有自由电子以很小的速度运动所形成的.这是为什么呢?金属导体中自由电子定向移动速度虽然很小,但是它是叠加在巨大的电子热运动速率之上的.正象声速很小,如将声音转换成音频信号载在高频电磁波上,其向外传播的速度等于光速(c=3×108米/秒).电流的传导速率(等于电场传播速率)却是很大的(等于光速).
六、自由电子在交流电路中的运动速率
当金属中有电场时,每个自由电子都将受到电场力的作用,使电子沿着与场强相反的方向相对于晶格做加速的定向运动.这个加速定向运动是叠加在自由电子杂乱的热运动之上的.对某个电子来说,叠加运动的方向是很难确定的.但对大量自由电子来说,叠加运动的定向平均速度方向是沿着电场的反方向.电场大小变化或电场方向改变,其平均速度大小和方向都变化.对50赫的交流电而言,可推导出自由电子的定向速度v=-(eεmτ/m)sin(t-ψ),τ为自由电子晶格碰撞时间,其数量级为10-14秒.所受到的合力F=-2eεmsin(ψ/2)cos(ωt-ψ/2),即电子所受的力满足F=-kx.这说明自由电子在交流电路中是做简谐运动.其电子定向运动的最大速率为:vm=eεmτ/m≈10-4米/秒,振幅约为10-6米.
七、打在电视荧光屏上的电子速度
高中物理第二册《电场》一章中提到示波管知识,其实电视机与示波管的基本原理是相同的,故电子在电视荧光屏上的速度,也可根据带电粒子在匀强电场中的运动规律mv2=eU求出.以黄河47cm彩电为例,其加速电压按120伏计算,电子打在荧光屏上的速度v=(2eU/m)1/2,代入数字得v=6.5×106米/秒.
八、打在对阴极上的电子速度
高中物理第二册第236页,在讲授伦琴射线产生时说:“炽热钨丝发出的电子在电场的作用下以很大的速度射到对阴极上.”设伦琴射线管阴阳两极接高压为10
万伏,则电子在电场力作用下做加速运动,求其速度用mv2=eU公式显然是不行的.因为电子质量随其速度增大而增大,故需用相对论质量公式代入上式求出,即mv2/(2×(1-v1/2/c1/2)1/2) 。

代入数字得v=6.5×106米/秒.
九、射线的速度
高中物理第二册天然放射性元素一节中说到,研究β射线在电场和磁场中的偏转情况,证明了β射线是高速运动的电子流。

β射线的贯穿本领很强,很容易穿透黑纸,甚至能穿透几毫米厚的铝板.那么β射线的速度有多大呢?法国物理学家贝克勒耳在1990年研究β粒子时的方法,大体上同汤姆逊在1897年研究阴极射线粒子的过程相同.通过把β射线引入互相垂直的电场和磁场,贝克勒耳测算出了β粒子的速率接近光速(c=3×108米/秒)
十、正负电子对撞的速度
高中物理第三册(选修)第239页说到:“我国1989年初投入运行的第一台高能粒子器---北京正负电子对撞机,能使电子束流的能量达到28+28亿电子伏.”那么正负电子相撞的速度有多大呢?根据E=m0v2/(2×(1-v1/2/c1/2)1/2)即可求出=2.98×108米/秒.可见其速度之大接近光速(光速取3×108米/秒).
十一、轰击质子的电子速度
高中物理第三册P236提到“为了探索质子的内部结构,使用了200亿电子伏的电子去轰击质子.”这样的高能电子是利用回旋加速器得来的.电子的速度同样可用E=m0v2/(2×(1-v1/2/c1/2)1/2)来计算,代入数字得2.999×108米/秒,此速度极接近光速.通过以上讨论可知,在各种不同情况电子的速度大小各异,但电子运动的速率永远不能等于光速,更不能大于光速,只可能接近光速.1901年德国物理学爱考夫曼用镭放射出的β射线进行实验时,发现了电子质量随速度变化而变化的现象,当电子速度接近光速时其质量急剧增加.1905年爱因斯坦发表了狭义相对论,他提出:物体的质量不是固定不变的,它随物体运动速度的增大而增大.当物体运动速度(c为光速)时,其运动质量为静止质量的1.7倍,当物体运动速度v=0.8c时,其运动质量为静止质量的3.1倍.28亿电子伏的电子其运动质量是静止质量的8.77倍.200亿电子伏的电子其运动质量是静止质量的1224倍.。

相关文档
最新文档