施密特触发器原理简介

合集下载

单片机施密特触发器程序

单片机施密特触发器程序

单片机施密特触发器程序一、施密特触发器的原理和功能施密特触发器(Schmitt Trigger)是一种具有滞回特性的触发器,其主要功能是抗干扰。

它具有两个稳定状态,并且只有当输入信号电位达到阈值时,输出端才会发生状态改变。

施密特触发器能够在一定程度上减少干扰造成的误动作,提高电路的稳定性。

二、施密特触发器在单片机中的应用在单片机中,施密特触发器常用于处理输入信号的边缘变化,将边沿变化缓慢的电压波形整形为边沿陡峭的矩形脉冲。

这有助于减少外部干扰对单片机系统的影响,提高系统的可靠性和稳定性。

三、编写施密特触发器程序的步骤和方法1.确定施密特触发器的输入和输出引脚。

2.选择合适的阈值电压,并根据实际需求调整滞回特性。

3.编写程序实现施密特触发器的功能,主要包括电平检测和状态更新两部分。

四、程序实例及解析以下是一个使用C语言实现的施密特触发器程序实例:```c#include <reg51.h>sbit INPUT_PIN = P1^0; // 输入引脚sbit OUTPUT_PIN = P1^1; // 输出引脚void main(){while (1){if (INPUT_PIN == 0) // 输入引脚为低电平时,输出高电平{OUTPUT_PIN = 1;}else{OUTPUT_PIN = 0;}_nop_(); // 延时,防止输入信号边沿过快导致误动作}}```在这个例子中,我们使用了一个简单的施密特触发器,当输入引脚INPUT_PIN的电平低于阈值时,输出引脚OUTPUT_PIN输出高电平;当输入引脚的电平高于阈值时,输出引脚输出低电平。

通过调整阈值电压和滞回特性,可以实现对不同输入信号的响应。

总之,施密特触发器在单片机中的应用可以帮助我们处理复杂的输入信号,提高系统的抗干扰能力。

在编写程序时,我们需要了解施密特触发器的原理和功能,并根据实际需求调整阈值电压和滞回特性。

施密特触发器电路及工作原理详解

施密特触发器电路及工作原理详解

施密特触发器电路及工作原理详解什么叫触发器施密特触发电路(简称)是一种波形整形电路,当任何波形的信号进入电路时,输出在正、负饱和之间跳动,产生方波或脉波输出。

不同于比较器,施密特触发电路有两个临界电压且形成一个滞后区,可以防止在滞后范围内之噪声干扰电路的正常工作。

如遥控接收线路,传感器输入电路都会用到它整形。

施密特触发器一般比较器只有一个作比较的临界电压,若输入端有噪声来回多次穿越临界电压时,输出端即受到干扰,其正负状态产生不正常转换,如图1所示。

图 1 (a)反相比较器 (b)输入输出波形施密特触发器如图2 所示,其输出电压经由R1、R2分压后送回到运算放大器的非反相输入端形成正反馈。

因为正反馈会产生滞后(Hysteresis)现象,所以只要噪声的大小在两个临界电压(上临界电压及下临界电压)形成的滞后电压范围内,即可避免噪声误触发电路,如表1 所示图2 (a)反相斯密特触发器(b)输入输出波形上临界电压V TH下临界电压V TL滞后宽度(电压)V H V TL<噪声<V TH输入端信号νI上升到比V TH大时,触发电路使νO 转态输入端信号νI 下降到比V TL小时,触发电路使νO转态上、下临界电压差V H=V TH -V TL噪声在容许的滞后宽度范围内,νO维持稳定状态反相施密特触发器电路如图2 所示,运算放大器的输出电压在正、负饱和之间转换:νO= ±Vsat。

输出电压经由R1 、R2分压后反馈到非反相输入端:ν+= βνO,其中反馈因数=当νO为正饱和状态(+Vsat)时,由正反馈得上临界电压当νO为负饱和状态(- Vsat)时,由正反馈得下临界电压V TH与V TL之间的电压差为滞后电压:2R1图3 (a)输入、输出波形(b)转换特性曲线输入、输出波形及转换特性曲线如图3(b)所示。

当输入信号上升到大于上临界电压V TH时,输出信号由正状态转变为负状态即:νI >V TH→νo = - Vsat当输入信号下降到小于下临界电压V TL时,输出信号由负状态转变为正状态即:νI <V TL→νo = + Vsat输出信号在正、负两状态之间转变,输出波形为方波。

施密特触发器原理

施密特触发器原理

施密特触发器原理
施密特触发器原理是指由德国物理学家雷因施密特(R.H. Schmitt)在1960年提出的一种电子电路原理。

该原理提出了一种新的解决方案,用于解决电子电路中的振荡和失真问题,可以用于制作复杂的电子电路,并在控制系统中发挥重要作用。

施密特触发器原理的基本原理是:将一个给定的电压信号作为输入,用一种特殊的方法处理这个电压信号,这种方法可以将输入信号转换为一种新的电压信号,这种新的电压信号可以用来控制其他电子电路的工作。

在施密特触发器原理的应用中,当电压信号的幅度超过一定的阈值时,会出现一种特殊的触发效应,将输入信号转换为另一种电压信号,该电压信号可以被用来控制电子电路的工作。

施密特触发器原理可以用于制作复杂的电子电路,如时序逻辑电路、计算机逻辑电路、控制系统等,可以用于控制系统,实现更加精确高效的控制。

施密特触发器原理的应用十分广泛,可以用于生产自动化控制系统、智能家居设备、工业自动化等,使得自动化控制系统更加精确高效。

总之,施密特触发器原理是一种重要的电子电路原理,可以用于控制系统的实现,使得系统更加精确高效,并且可以应用于生产自动
化控制系统、智能家居设备、工业自动化等。

施密特触发电路原理

施密特触发电路原理

施密特触发电路是一种基于正反馈的触发器电路,常用于数字电路中的信号处理和触发功能。

它由两个比较器组成,具有两个阈值电压。

当输入信号超过高阈值时,输出从低电平切换到高电平;当输入信号低于低阈值时,输出从高电平切换到低电平。

施密特触发电路的原理如下:
1. 初始状态下,输入信号为低电平,输出为高电平。

2. 当输入信号上升到高于高阈值电压时,比较器的输出切换到低电平,反馈给另一个比较器作为输入。

3. 当输入信号下降到低于低阈值电压时,另一个比较器的输出切换到高电平,反馈给第一个比较器作为输入。

4. 通过正反馈的作用,施密特触发电路可以保持输出状态的稳定,直到输入信号再次超过高阈值或低于低阈值。

施密特触发电路具有滞回特性,即输出状态在输入信号上升和下降时具有不同的阈值。

这种特性使得施密特触发电路可以抵抗输入信号的噪声和干扰,提高了电路的稳定性和可靠性。

它常用于信号整形、频率分割和触发器等应用中。

施密特触发器的结构

施密特触发器的结构

施密特触发器的结构
施密特触发器是一种常用的电子元器件,常用于数字信号处理和时序控制等方面。

下面我们来详细了解一下施密特触发器的结构。

1. 基本结构
施密特触发器由两个晶体管和一组正反馈电路构成。

其中,一个晶体管作为开关,另一个晶体管作为负载。

正反馈电路能够提供高速放大和单稳态功能,从而实现触发器的逻辑功能。

2. 工作原理
施密特触发器的工作原理是基于正反馈原理而实现的。

当电压输入到正反馈电路中时,如果电压超出了一定的阈值范围,就会激活施密特触发器的输出。

当输出变化后,负反馈电路可以自动复位,使输出保持与输入不同的状态。

3. 特点
施密特触发器具有以下特点:
(1)极高的灵敏度和稳定性。

(2)具有单稳态功能,可以实现多种逻辑电路的控制。

(3)速度快,可以应用于高速数字电路。

(4)具有良好的耐噪声特性,可以避免噪声电平的干扰。

(5)具有较强的抗干扰能力,可以应用于复杂的数字电路系统中。

4. 应用领域
施密特触发器被广泛应用于数字电路系统中,例如计算机内存芯片、
数字信号处理、时序控制等方面。

此外,施密特触发器还可以应用于
变频器、开关电源、汽车灯光控制等领域,具有非常广泛的应用前景。

总之,施密特触发器是一种非常重要的电子元器件,其结构、工作原理、特点和应用领域都需要我们深入了解和掌握。

施密特触发器工作原理

施密特触发器工作原理

施密特触发器工作原理
施密特触发器是一种常见的电路元件,用于产生非常稳定的数字信号输出。

它的工作原理基于正反馈和负反馈的结合,能够在输入信号超过一定阈值时切换输出状态。

在本文中,我们将详细介绍施密特触发器的工作原理及其应用。

首先,让我们来了解一下施密特触发器的基本结构。

它由两个电阻和一个正反馈的比较器组成。

当输入信号超过一定阈值时,比较器输出高电平,从而改变电路的状态。

这种正反馈的结构使得施密特触发器具有较高的噪声抑制能力和良好的稳定性。

施密特触发器的工作原理可以通过一个简单的电路图来说明。

当输入信号超过阈值Vt1时,比较器输出高电平,导通第一个电阻,从而使得输出电压为低电平。

当输入信号下降到阈值Vt2时,比较器输出低电平,截断第一个电阻,从而使得输出电压为高电平。

这样,施密特触发器就实现了在输入信号超过一定阈值时切换输出状态的功能。

施密特触发器在数字电路中有着广泛的应用。

例如,在脉冲发生器中,它可以产生稳定的脉冲信号;在数字系统中,它可以用于信号的整形和去除噪声;在电子开关中,它可以实现稳定的触发功能。

由于其稳定性和可靠性,施密特触发器在数字电路设计中扮演着重要的角色。

总之,施密特触发器是一种基于正反馈和负反馈结合的电路元件,能够产生稳定的数字信号输出。

它的工作原理简单明了,应用广泛。

通过本文的介绍,相信读者对施密特触发器的工作原理有了更深入的了解,希望能够对您的学习和工作有所帮助。

mos管施密特触发器原理

mos管施密特触发器原理

mos管施密特触发器原理
MOS管施密特触发器是一种常用的数字电路触发器,它利用MOS 场效应管构成的反馈网络来实现正反馈,从而产生双稳态特性。

当输入信号超过一定阈值时,输出状态会发生翻转,这使得MOS管施密特触发器在数字逻辑电路中具有重要的应用。

MOS管施密特触发器的原理可以从多个方面来解释。

首先,从电路结构上来看,MOS管施密特触发器由两个MOS场效应管和若干个被动元件(如电阻、电容)组成。

其中,MOS管的栅极和漏极之间串联了一个正反馈环路,这种反馈结构可以使得输出在输入信号超过一定阈值时产生瞬时的翻转,从而实现触发器的功能。

其次,从工作原理上来看,MOS管施密特触发器利用MOS场效应管的开关特性和正反馈的作用来实现双稳态。

当输入信号超过一定阈值时,反馈环路会使得输出瞬时地改变状态,这种状态的改变又会反过来影响反馈环路,从而保持输出状态的稳定。

这种双稳态的特性使得MOS管施密特触发器可以作为数字存储元件或者时序电路中的重要组成部分。

此外,从信号处理的角度来看,MOS管施密特触发器可以看作
是一种非线性的信号处理器件。

在输入信号超过阈值时,输出会出现明显的跳变,这种非线性特性使得MOS管施密特触发器在数字信号处理和数字逻辑电路中具有重要的应用,例如在数字振荡器、脉冲发生器等电路中起着关键作用。

综上所述,MOS管施密特触发器的原理涉及到电路结构、工作原理和信号处理等多个方面,通过理解这些原理,可以更好地应用和设计MOS管施密特触发器电路。

施密特触发器原理图解详细分析

施密特触发器原理图解详细分析

施密特触发器原理图解详细分析重要特性:施密特触发器具有如下特性:输入电压有两个阀值VL、VH,VL施密特触发器通常用作缓冲器消除输入端的干扰。

施密特波形图施密特触发器也有两个稳定状态,但与一般触发器不同的是,施密特触发器采用电位触发方式,其状态由输入信号电位维持;对于负向递减和正向递增两种不同变化方向的输入信号,施密特触发器有不同的阀值电压。

门电路有一个阈值电压,当输入电压从低电平上升到阈值电压或从高电平下降到阈值电压时电路的状态将发生变化。

施密特触发器是一种特殊的门电路,与普通的门电路不同,施密特触发器有两个阈值电压,分别称为正向阈值电压和负向阈值电压。

在输入信号从低电平上升到高电平的过程中使电路状态发生变化的输入电压称为正向阈值电压,在输入信号从高电平下降到低电平的过程中使电路状态发生变化的输入电压称为负向阈值电压。

正向阈值电压与负向阈值电压之差称为回差电压。

它是一种阈值开关电路,具有突变输入——输出特性的门电路。

这种电路被设计成阻止输入电压出现微小变化(低于某一阈值)而引起的输出电压的改变。

利用施密特触发器状态转换过程中的正反馈作用,可以把边沿变化缓慢的周期性信号变换为边沿很陡的矩形脉冲信号。

输入的信号只要幅度大于vt+,即可在施密特触发器的输出端得到同等频率的矩形脉冲信号。

当输入电压由低向高增加,到达V+时,输出电压发生突变,而输入电压Vi由高变低,到达V-,输出电压发生突变,因而出现输出电压变化滞后的现象,可以看出对于要求一定延迟启动的电路,它是特别适用的.从传感器得到的矩形脉冲经传输后往往发生波形畸变。

当传输线上的电容较大时,波形的上升沿将明显变坏;当传输线较长,而且接受端的阻抗与传输线的阻抗不匹配时,在波形的上升沿和下降沿将产生振荡现象;当其他脉冲信号通过导线间的分布电容或公共电源线叠加到矩形脉冲信号时,信号上将出现附加的噪声。

无论出现上述的那一种情况,都可以通过用施密特反相触发器整形而得到比较理想的矩形脉冲波形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

施密特触发器简单介绍
本文来自: 原文网址:/sch/test/0083158.html
我们知道,门电路有一个阈值电压,当输入电压从低电平上升到阈值电压或从高电平下降到阈值电压时电路的状态将发生变化。

施密特触发器是一种特殊的门电路,与普通的门电路不同,施密特触发器有两个阈值电压,分别称为正向阈值电压和负向阈值电压。

在输入信号从低电平上
升到高电平的过程中使电路状态发生变化的输入电压称为正向阈值电压(),在输入信号从
高电平下降到低电平的过程中使电路状态发生变化的输入电压称为负向阈值电压()。

正向
阈值电压与负向阈值电压之差称为回差电压()。

普通门电路的电压传输特性曲线是单调的,施密特触发器的电压传输特性曲线则是滞回的[图6.2.2(a)(b)]。

图6.2.1 用CMOS反相器构成的施密特触发器
(a)电路(b)图形符号
图6.2.2 图6.2.1电路的电压传输特性
(a)同相输出(b)反相输出
用普通的门电路可以构成施密特触发器[图6.2.1]。

因为CMOS门的输入电阻很高,所以
的输入端可以近似的看成开路。

把叠加原理应用到和构成的串联电路上,我们可以推导出
这个电路的正向阈值电压和负向阈值电压。

当时,。

当从0逐渐上升到时,
从0上升到,电路的状态将发生变化。

我们考虑电路状态即将发生变化那一时刻的情况。

因为此时电路状态尚未发生变化,所以仍然为0,,
于是,。

与此类似,当时,。

当从逐渐下降到
时,从下降到,电路的状态将发生变化。

我们考虑电路状态即将发生变化那一时刻
的情况。

因为此时电路状态尚未发生变化,所以仍然为,
,于是,。

通过调节或,可以调节正向阈值电压和反向阈值电压。

不过,这个
电路有一个约束条件,就是。

如果,那么,我们有及
,这说明,即使上升到或下降到0,电路的状态也不会发生变化,电路处于“自锁状态”,不能正常工作。

图6.2.4 带与非功能的TTL集成施密特触发器
集成施密特触发器比普通门电路稍微复杂一些。

我们知道,普通门电路由输入级、中间级和输出级组成。

如果在输入级和中间级之间插入一个施密特电路就可以构成施密特触发器[图6.2.4]。

集成施密特触发器的正向阈值电压和反向阈值电压都是固定的。

利用施密特触发器可以将非矩形波变换成矩形波[图6.2.8]。

图6.2.8 用施密特触发器实现波形变换利用施密特触发器可以恢复波形[图6.2.9(a)(b)(c)]。

图6.2.9 用施密特触发器对脉冲整形利用施密特触发器可以进行脉冲鉴幅[图6.2.10]。

图6.2.10 用施密特触发器鉴别脉冲幅度。

相关文档
最新文档