导数的概念及运算一轮复习课 PPT

合集下载

导数的概念及运算课件——2025届高三数学一轮复习

导数的概念及运算课件——2025届高三数学一轮复习
A.2f ′(3)<f (5)-f (3)<2f ′(5)
B.2f ′(3)<2f ′(5)<f (5)-f (3)
C.f (5)-f (3)<2f ′(3)<2f ′(5)
D.2f ′(5)<2f ′(3)<f (5)-f (3)
A
[由题图知:f
5 − 3
′(3)<
5−3
<f ′(5),
即2f ′(3)<f (5)-f (3)<2f ′(5).故选A.]
y-f (x0)=f ′(x0)(x-x0)
斜率
线的____,相应的切线方程为_____________________.
提醒:求曲线的切线时,要分清在点P处的切线与过点P的切线的区别,前者只
有一条,而后者包括了前者.
第1课时 导数的概念及运算
链接教材
夯基固本
典例精研
核心考点
3.基本初等函数的导数公式
)
第1课时 导数的概念及运算
链接教材
夯基固本
4.(人教A版选择性必修第二册P81习题5.2T7改编)函数f
典例精研
核心考点
课时分层作业
1
x
(x)=e + 的图象在x=1

y=(e-1)x+2
处的切线方程为_______________.
y=(e-1)x+2
1

[∵f ′(x)=ex- 2 ,∴f ′(1)=e-1,又f (1)=e+1,∴切点为(1,

cf ′(x)
(4)[cf (x)]′=_______.
5.复合函数的定义及其导数
一般地,对于两个函数y=f (u)和u=g(x),如果通过中间变量u,y可以表示成x

导数的概念及运算课件

导数的概念及运算课件

Δx
.
如果 f(x)在开区间(a,b)内每一点 x 都是可导的,则称 f(x)
在区间(a,b)内可导.在区间(a,b)内,f ′(x)构成一个新的函
数,这个函数称为函数 f(x)的导数.
第三章 第一节
走向高考 ·高考一轮总复习 ·人教A版 ·数学
4.导数的几何意义:函数 y=f(x)在点 x0 处的导数 f ′(x0),就是曲线 y=f(x)在点 P(x0,y0)处的_切__线__的__斜__率__. 导数的物理意义:物体的运动方程 s=s(t)在点 t0 处的导数 s′(t0),就是物体在 t0 时刻的__瞬__时__速__度____.
答案:A
第三章 第一节
走向高考 ·高考一轮总复习 ·人教A版 ·数学
点评:求曲线在某点处的切线方程,应先求该点处的导数 值,得到切线斜率.再写出切线方程.
第三章 第一节
走向高考 ·高考一轮总复习 ·人教A版 ·数学
导数公式及运算法则 [例 3] 设 f0(x)=sinx,f1(x)=f0′(x),f2(x)=f1′(x),…, fn+1(x)=fn′(x),n∈N,则 f2013(x)等于( ) A.sinx B.-sinx C.cosx D.-cosx
A.2
B.-1
C.1
D.-2
第三章 第一节
走向高考 ·高考一轮总复习 ·人教A版 ·数学
解析:lim x→0
f1-2fx1-2x=lxi→m0
f1--2x2-x f1=-1,
即y′|x=1=-1,
则y=f(x)在点(1,f(1))处的切线斜率为-1,故选B.
答案:B
第三章 第一节
走向高考 ·高考一轮总复习 ·人教A版 ·数学

人教版高中总复习一轮数学精品课件 第3章 一元函数的导数及其应用 3.1 导数的概念、意义及运算

人教版高中总复习一轮数学精品课件 第3章 一元函数的导数及其应用 3.1 导数的概念、意义及运算
第三章
3.1 导数的概念、意义及运算




01
第一环节
必备知识落实
02
第二环节
关键能力形成
第一环节
必备知识落实
【知识筛查】
对于函数y=f(x),设自变量x从x0变化到x0+Δx,相应地,函数值就从f(x0)变化
到f(x0+Δx),这时,x的变化量为Δx,y的变化量为Δy=f(x0+Δx)-f(x0).
(2)设曲线与经过点 A(2,-2)的切线相切于点 P(x0,03 -402 +5x0-4).
∵f'(x0)=302 -8x0+5,
∴切线方程为 y-(-2)=(302 -8x0+5)(x-2),
又切线过点 P(x0,03 -402 +5x0-4),
∴03 -402 +5x0-2=(302 -8x0+5)(x0-2),
它的导数与函数y=f(u),u=g(x)的导数间的关系为yx'= yu'·ux' .
1.奇函数的导数是偶函数,偶函数的导数是奇函数,周期函数的导数还是
周期函数.
1 ' 1
2.熟记以下结论:(1)
=- 2 ;


1
(2)(ln|x|)'=;
1 '
'()
(3) () =2(f(x)≠0);
[()]
于切线的斜率,从而求出切点的横坐标,将横坐标代入函数解析式求出切点
的纵坐标.
3.已知切线方程(斜率)求参数的值(取值范围)的关键是能利用函数的导数
等于切线斜率列出方程.
对点训练2
(1)设函数f(x)=x3+(a-1)x2+ax,若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的

第一节-导数的概念及运算定积分ppt课件

第一节-导数的概念及运算定积分ppt课件
谨记结论·谨防易错 (1)f′(x0)代表函数 f(x)在 x=x0 处的导数值;(f(x0))′是函数值 f(x0)的导 数,且(f(x0))′=0. (2)奇函数的导数是偶函数,偶函数的导数是奇函数.周期函数的导数还是 周期函数. (3)f1x′=-f[′fxx]2. (4)曲线的切线与曲线的公共点的个数不一定只有一个,而直线与二次曲线 相切只有一个公共点.
3.在桥梁设计中,桥墩一般设计成圆柱形,因为其各向受力均衡,而且在相
同截面下,浇筑用模最省.假设一桥梁施工队在浇筑桥墩时,采用由内向
外扩张式浇筑,即保持圆柱高度不变,截面半径逐渐增大,设圆柱半径关
于时间变化的函数为 R(t).若圆柱的体积以均匀速度 c 增长,则圆柱的侧面
积的增长速度与圆柱半径
()
A.成正比,比例系数为 c
四、“基本活动经验”不可少 为了响应国家节能减排的号召,甲、乙两个工厂进行了污 水排放治理,已知某月内两厂污水的排放量 W 与时间 t 的关系如图所示. (1)该月内哪个厂的污水排放量减少得更多? (2)在接近 t0 时,哪个厂的污水排放量减少得更快? 答案:(1)乙 (2)甲
在日常生 活中, 随处都 可以看 到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
为函数y=f(x)在x=x0处的导数
记法
记作f′(x0)或y′|x=x0,即f′(x0)=li m Δx→0
ΔΔxy=
li m fx0+Δx-fx0
Δx→0
Δx
几何 是曲线y=f(x)在点 (x0,f(x0)) 处的 切线的斜率 ,相应的切线方程为 意义 y-f(x0)=f′(x0)(x-x0)
在日常生 活中, 随处都 可以看 到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么

3.1导数的概念及运算课件高三数学一轮复习

3.1导数的概念及运算课件高三数学一轮复习
×
解析 (1)f′(x0)表示y=f(x)在x=x0处的瞬时变化率,(1)错. (2)f(x)=sin(-x)=-sin x,则f′(x)=-cos x,(2)错. (3)求f′(x0)时,应先求f′(x),再代入求值,(3)错. (4)“在某点”的切线是指以该点为切点的切线,因此此点横坐标处的导数值 为切线的斜率;而对于“过某点”的切线,则该点不一定是切点,要利用解方 程组的思想求切线的方程,在曲线上某点处的切线只有一条,但过某点的切 线可以不止一条,(4)错.
f′(x)=___e_x__
1
f′(x)=__x_l_n_a__
1
f′(x)=__x___
4.导数的运算法则
若 f′(x),g′(x)存在,则有: [f(x)±g(x)]′=______f′_(_x_)±_g_′_(_x_) _______; [f(x)g(x)]′=____f′_(_x_)g_(_x_)_+__f(_x_)_g_′(_x_)____; gf((xx))′=__f_′(__x_)__g_(__x[_g)_(_-_x_)f_(_]_2x_)__g_′_(__x_)__ (g(x)≠0); [cf(x)]′=_____c_f_′(_x_)_____.
训练1 (1)已知函数y=f(x)的图象是下列四个图象之一,且其导函数y=f′(x)的图
象如图所示,则该函数的图象是( B )
解析 由y=f′(x)的图象是先上升后下降可知,函数y=f(x)图象的切线的斜率 先增大后减小,故选B.
(2)曲线f(x)=2ln x在x=t处的切线l过原点,则l的方程是( )
A.f(x)=x2
B.f(x)=e-x
C.f(x)=ln x
D.f(x)=tan x
解析 若f(x)=x2,则f′(x)=2x,令x2=2x,得x=0或x=2,方程显然有解, 故A符合要求; 若f(x)=e-x,则f′(x)=-e-x,令e-x=-e-x,此方程无解,故B不符合要求;

2024年高考数学一轮复习课件(新高考版) 第3章 §3.1 导数的概念及其意义、导数的运算

2024年高考数学一轮复习课件(新高考版)  第3章 §3.1 导数的概念及其意义、导数的运算

2024年高考数学一轮复习课件(新高考版)第三章 一元函数的导数及其应用§3.1 导数的概念及其意义、导数的运算考试要求1.了解导数的概念、掌握基本初等函数的导数.2.通过函数图象,理解导数的几何意义.3.能够用导数公式和导数的运算法则求简单函数的导数,能求简单的复合函数 (形如f(ax+b))的导数.内容索引第一部分第二部分第三部分落实主干知识探究核心题型课时精练第一部分1.导数的概念f′(x0)y′| (1)函数y=f(x)在x=x0处的导数记作或 .0x x=(2)函数y=f(x)的导函数(简称导数)2.导数的几何意义函数y=f(x)在x=x0处的导数的几何意义就是曲线y=f(x)在点P(x0,f(x0))斜率y-f(x0)=f′(x0)(x-x0)处的切线的,相应的切线方程为 .3.基本初等函数的导数公式基本初等函数导函数f (x )=c (c 为常数)f ′(x )=__f (x )=x α(α∈R ,且α≠0)f ′(x )=______f (x )=sin xf ′(x )=_____f (x )=cos xf ′(x )=______f (x )=a x (a >0,且a ≠1)f ′(x )=______f (x )=e x f ′(x )=___0αx α-1cos x -sin x a x ln a e x知识梳理f(x)=log a x(a>0,且a≠1)f′(x)=_____ f(x)=ln x f′(x)=___4.导数的运算法则若f ′(x ),g ′(x )存在,则有[f (x )±g (x )]′= ;[f (x )g (x )]′= ;[cf (x )]′= .f ′(x )±g ′(x )f ′(x )g (x )+f (x )g ′(x )cf ′(x )5.复合函数的定义及其导数复合函数y=f(g(x))的导数与函数y=f(u),u=g(x)的导数间的关系为y u′·u x′y x′=,即y对x的导数等于y对u的导数与u对x的导数的乘积.常用结论1.区分在点处的切线与过点处的切线(1)在点处的切线,该点一定是切点,切线有且仅有一条.(2)过点处的切线,该点不一定是切点,切线至少有一条.判断下列结论是否正确(请在括号中打“√”或“×”)(1)f ′(x 0)是函数y =f (x )在x =x 0附近的平均变化率.( )(2)与曲线只有一个公共点的直线一定是曲线的切线.( )(3)f ′(x 0)=[f (x 0)]′.( )(4)(cos 2x ) ′=-2sin 2x .( )×××√1.若函数f(x)=3x+sin 2x,则√因为函数f(x)=3x+sin 2x,所以f′(x)=3x ln 3+2cos 2x.y=(e-1)x+2又∵f(1)=e+1,∴切点为(1,e+1),切线斜率k=f′(1)=e-1,即切线方程为y-(e+1)=(e-1)(x-1),即y=(e-1)x+2.3.已知函数f(x)=x ln x+ax2+2,若f′(e)=0,则a= .由题意得f′(x)=1+ln x+2ax,第二部分√√√对于A,[(3x+5)3]′=3(3x+5)2(3x+5)′=9(3x+5)2,故A正确;对于B,(x3ln x)′=(x3)′ln x+x3(ln x)′=3x2ln x+x2,故B正确;对于D,(2x+cos x)′=(2x)′+(cos x)′=2x ln 2-sin x,故D正确.(2)已知函数f(x)的导函数为f′(x),且满足f(x)=x3+x2f′(1)+2x-1,则f′(2)等于√A.1B.-9C.-6D.4因为f(x)=x3+x2f′(1)+2x-1,所以f′(x)=3x2+2xf′(1)+2,把x=1代入f′(x),得f′(1)=3×12+2f′(1)+2,解得f′(1)=-5,所以f′(x)=3x2-10x+2,所以f′(2)=-6.思维升华(1)求函数的导数要准确地把函数拆分成基本初等函数的和、差、积、商,再利用运算法则求导.(2)抽象函数求导,恰当赋值是关键,然后活用方程思想求解.(3)复合函数求导,应由外到内逐层求导,必要时要进行换元.√√√f(x)=sin(2x+3),f′(x)=cos(2x+3)·(2x+3)′=2cos(2x+3),故A 正确;f(x)=e-2x+1,则f′(x)=-2e-2x+1,故B错误;f(x)=x ln x,f′(x)=(x)′ln x+x(ln x)′=ln x+1,故D正确.命题点1 求切线方程例2 (1)(2023·大同模拟)已知函数f(x)=2e2ln x+x2,则曲线y=f(x)在点(e,f(e))处的切线方程为√A.4e x-y+e2=0B.4e x-y-e2=0C.4e x+y+e2=0D.4e x+y-e2=0所以f(e)=2e2ln e+e2=3e2,f′(e)=4e,所以曲线y=f(x)在点(e,f(e))处的切线方程为y-3e2=4e(x-e),即4e x-y-e2=0.(2)(2022·新高考全国Ⅱ)曲线y=ln|x|过坐标原点的两条切线的方程为_______,_________.先求当x>0时,曲线y=ln x过原点的切线方程,设切点为(x0,y0),解得y0=1,代入y=ln x,得x0=e,命题点2 求参数的值(范围)例3 (1)(2022·重庆模拟)已知a为非零实数,直线y=x+1与曲线y=ea ln(x+1)相切,则a=_____.(2)(2022·新高考全国Ⅰ)若曲线y=(x+a)e x有两条过坐标原点的切线,(-∞,-4)∪(0,+∞)则a的取值范围是 .因为y =(x +a )e x ,所以y ′=(x +a +1)e x .设切点为A (x 0,(x 0+a ) ),O 为坐标原点,0e x 0e x 0x x =000()ex x a x 因为曲线y =(x +a )e x 有两条过坐标原点的切线,所以Δ=a 2+4a >0,解得a <-4或a >0,所以a 的取值范围是(-∞,-4)∪(0,+∞).思维升华(1)处理与切线有关的问题,关键是根据曲线、切线、切点的三个关系列出参数的方程:①切点处的导数是切线的斜率;②切点在切线上;③切点在曲线上.(2)注意区分“在点P处的切线”与“过点P的切线”.跟踪训练2 (1)曲线f(x)=在(0,f(0))处的切线方程为√A.y=3x-2B.y=3x+2C.y=-3x-2D.y=-3x+2所以f′(0)=3,f(0)=-2,所以曲线f(x)在(0,f(0))处的切线方程为y-(-2)=3(x-0),即y=3x-2.√例4 (1)若直线l:y=kx+b(k>1)为曲线f(x)=e x-1与曲线g(x)=eln x的公切线,则l的纵截距b等于A.0B.1√C.eD.-e设l 与f (x )的切点为(x 1,y 1),则由f ′(x )=e x -1,得l :y = +(1-x 1) .同理,设l 与g (x )的切点为(x 2,y 2),11e x x -11e x -11e x -11e x -因为k >1,所以l :y =x 不成立,故b =-e.(2)(2023·晋中模拟)若两曲线y=ln x-1与y=ax2存在公切线,则正实数a 的取值范围是√设公切线与曲线y=ln x-1和y=ax2的切点分别为(x1,ln x1-1),(x2,ax),其中x1>0,令g (x )=2x 2-x 2ln x ,则g ′(x )=3x -2x ln x =x (3-2ln x ),令g ′(x )=0,得x = ,32e 当x ∈(0, )时,g ′(x )>0,g (x )单调递增;32e当x ∈(,+∞)时,g ′(x )<0,g (x )单调递减,32e 32e思维升华公切线问题,应根据两个函数在切点处的斜率相等,且切点既在切线上又在曲线上,列出有关切点横坐标的方程组,通过解方程组求解.或者分别求出两函数的切线,利用两切线重合列方程组求解.跟踪训练3 (1)已知定义在(0,+∞)上的函数f(x)=x2-m,h(x)=6ln x -4x,设两曲线y=f(x)与y=h(x)在公共点处的切线相同,则m等于A.-3 B.1√C.3D.5依题意,设曲线y=f(x)与y=h(x)在公共点(x0,y0)处的切线相同.∵f(x)=x2-m,h(x)=6ln x-4x,∵x0>0,∴x0=1,m=5.(2)已知f(x)=e x-1,g(x)=ln x+1,则f(x)与g(x)的公切线有A.0条B.1条√C.2条D.3条根据题意,设直线l与f(x)=e x-1相切于点(m,e m-1) ,与g(x)相切于点(n,ln n+1)(n>0),对于f(x)=e x-1,f′(x)=e x,则k1=e m,则直线l的方程为y+1-e m=e m(x-m) ,即y=e m x+e m(1-m)-1,可得(1-m)(e m-1)=0,即m=0或m=1,则切线方程为y=e x-1 或y=x,故f(x)与g(x)的公切线有两条.第三部分1.(2023·广州模拟)曲线y=x3+1在点(-1,a)处的切线方程为√A.y=3x+3B.y=3x+1C.y=-3x-1D.y=-3x-3因为f′(x)=3x2,所以f′(-1)=3,又当x=-1时,a=(-1)3+1=0,所以y=x3+1在点(-1,a)处的切线方程为y=3(x+1),即y=3x+3.2.记函数f(x)的导函数为f′(x).若f(x)=e x sin 2x,则f′(0)等于√A.2B.1C.0D.-1因为f(x)=e x sin 2x,则f′(x)=e x(sin 2x+2cos 2x),所以f′(0)=e0(sin 0+2cos 0)=2.3.(2022·广西三市联考)设函数f(x)在R上存在导函数f′(x),f(x)的图象在点M(1,f(1))处的切线方程为y=+2,那么f(1)+f′(1)等于√A.1B.2C.3D.44.已知函数f(x)=x ln x,若直线l过点(0,-e),且与曲线y=f(x)相切,则直线l的斜率为√A.-2B.2C.-eD.e设切点坐标为(t,t ln t),∵f(x)=x ln x,∴f′(x)=ln x+1,直线l的斜率为f′(t)=ln t+1,∴直线l的方程为y-t ln t=(ln t+1)(x-t),将点(0,-e)的坐标代入直线l的方程得-e-t ln t=-t(ln t+1),解得t=e,∴直线l的斜率为f′(e)=2.。

导数的概念及其几何意义、导数的运算课件-2025届高三数学一轮复习

导数的概念及其几何意义、导数的运算课件-2025届高三数学一轮复习

A.e+e1+2 B.-e+e1+2
C.2
D.-2
答案:B
解析:因为f(x)=ln x-f′(1)ex+2, 则f′(x)=1x-f′(1)ex, 则f′(1)=1-f′(1)e, 即则ff′((11))==-e+1e1+e,1+2.故选B.
5 . ( 易 错 ) 过 原 点 与 曲 线 y = (x - 1)3 相 切 的 切 线 方 程 为 _y_=__0_或_2_7_x_-__4_y=__0__.
A.12 B.20 C.10 D.24
答案:D
解析:由题意得f′(x)=3x2-2,故f′(2)=3×4-2=10,则f(x)=x3-2x+20,故 f(2)=8-4+20=24.故选D.
题后师说
巩固训练1
(1)(多选)[2024·吉林长春模拟]已知下列四个命题,其中不正确的是
()
A.(e2x)′=2e2x
3

(




)

线
y

x2

3 x
在 点 (1 , 4) 处 的 切 线 方 程 为
____x_+_y_-__5_=_0_____.
解析:∵y′=2x-x32, ∴y′|x=1=2-3=-1. ∴所求切线方程为y-4=-(x-1), 即x+y-5=0.
4.(易错)已知函数f(x)=ln x-f′(1)ex+2,则f(1)=( )
(1)
1 fx
′=__-__ff′_xx_2__(f(x)≠0).
(2)[exf(x)]′=_e_x[_f_(x_)_+_f_′(_x_)]_.
f′ x − f x
(3)

高中数学一轮复习课件 第12章 导数导数的概念及运算法则

高中数学一轮复习课件 第12章 导数导数的概念及运算法则

4.函数和、差、积、商的导数 导数的运算法则: [f(x)±g(x)]'=f'(x)±g'(x); [f(x)g(x)]'=f'(x)g(x)+f(x)g'(x);
f ( x)
[ ]'= g ( x)
f '( x) g ( x) f ( x) g '( x) [ g ( x)]2 (g(x)≠0).
3 4
【答案】[ ,3]
3 4
高中数学一轮复习课件
题型1 导数的概念及几何意义
例1 (1)给出下列命题:
①若函数y=x,则当x=0时y'=0;
②若函数f'(x)=ax2+1,且f'(2)=13,则f(x)=x3+x;
③加速度是动点位移函数S(t)对时间t的导数.
其中正确的命题有 (
(A)0个. (B)1个.
高中数学一轮复习课件
1.导数的概念
lim f ( x0 x) f ( x0 ) lim 一般地,函数y=f(x)在x=x0处的瞬时变化率是 = x x0
x0
y ,我们称它为函数y=f(x)在x=x0处的导数,记为f'(x0)或y' | ,即f'(x0)= x
x x0
导数的概念及其几何意义与导数的运算是每年高考的必考内 容,导数的运算是导数的基本内容,在高考中一般不单独命题,而在考 查导数的应用的同时进行考查; 导数的几何意义是高考重点考查的 内容,常与解析几何知识交汇命题,多以选择题和填空题的形式出现, 有时也出现在解答题中关键的一步,结合《考纲》预测2013年试题 在以上各个考查点仍以常规题型为主,试题难度中等.
lim f ( x0 x) f ( x0 ) .如果函数y=f(x)在开区间(a,b)内的每一点处都有 x
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

变式:求过点P(-1,2)的 曲线 f(x)的切线方程____
点击进入几何画板
变式:若曲线y=xln x上点P 到直线 2x-y-10=0距离最小,则 点P的坐标是________.
点击进入几何画板
解析:设直线 y=x+1 与曲线 y=ln(x+a)的切点为(x0,y0), 则 y0=1+x0,y0=ln(x0+a). 又 y′=x+1 a,所以 y′|x=x0=x0+1 a=1,即 x0+a=1. 又 y0=ln(x0+a),所以 y0=0,则 x0=-1,所以 a=2. 答案:B
第十节 变化率与导数、导数的计算 结 束
栏目索引
课前·双基落实 课堂·考点突破 课后·三维演练
导数的概念及运算
一、课前双基落实
f′(x0)=Δlixm→0 ΔΔxy=__Δ_lix_m→_0_f_x_0_+__ΔΔ_x_x_-__f_x_0_. (2)导数的几何意义 :
函数 f(x)在点 x0 处的导数 f′(x0)的几何意义是在曲线 y=f(x)上 点 P(x0,y0) 处的 切线的斜率 (瞬时速度就是位移函数 s(t)对时 间 t 的导数).相应地,切线方程为 y-y0=f′(x0)(x-x0). (3)函数 f(x)的导函数:
1.曲线 y=ex 在点 A(0,1)处的切线斜率为()Fra bibliotekA.1
B.2
C.e
1 D.e
2.(教材习题改编)设函数 f(x)在(0,+∞)内可导,且 f(x)=
x+ln x,则 f′(1)=________.
3.(2015·天津高考)已知函数 f(x)=axln x,x∈(0,+∞), 其中 a 为实数,f′(x)为 f(x)的导函数.若 f′(1)=3,则 a 的值为________.
3.曲线的切线与曲线的交点个数不一定只有一个,这和 研究直线与二次曲线相切时有差别.
二、课堂考点突破
求下列函数的导数. (1)y=x2sin x;
(3)y=coesx x;
(2)y=ln x+1x;
(4)y=ln(2x-5).
[提醒] 复合函数求导时,先确定复合关系, 由 外向内逐层求导,必要时可换元.如(4)题易错.
三、回顾总结
1、本课主要复习了那些知识?
导数的一个概念,二种意义, 求导运算的三层境界
2、应用这些知识过程中,你觉得锻炼了那些能力?
运算求解及推理论证,分析问题和解决问题的能力
3、本课知识蕴含了哪些数学思想方法?
函数与方程思想,数形结合思想,及转化的思想
“课后·三维演练”见“课时跟踪检测(十三)”
4.函数 y=lnexx的导函数为________________.
5.已知直线 y=-x+1 是函数 f(x)=-1a·ex 图象的切线,则 实数 a=________.
1.利用公式求导时要特别注意除法公式中分子的符号, 防止与乘法公式混淆.
2.求曲线切线时,要分清在点 P 处的切线与过 P 点的切 线的区别,前者只有一条,而后者包括了前者.
fx+Δx-fx 称函数 f′(x)=_Δlix_m→_0_______Δ_x______为 f(x)的导函数.
cos x ex
-sin x 1 xln a
axln a 1
x
f′(x)±g′(x)
f′(x)g(x)+f(x)g′(x) f′xgx-fxg′x
[gx]2
u对x
yu′·ux ′
y对u
相关文档
最新文档