电力机车网络化电气控制系统设计

合集下载

谈技术提升HXD2型机车TCMS微机网络控制系统

谈技术提升HXD2型机车TCMS微机网络控制系统

谈技术提升HXD2型机车TCMS微机网络控制系统摘要:为适应中国铁路的发展需要和技术的不断发展,对原HXD2型新八轴机车进行技术提升,以进一步优化机车性能,更好的满足中国铁路的运输要求,本文对技术提升HXD2型电力机车TCMS微机网络控制系统主要控制逻辑进行了阐述。

关键词:HXD2型电力机车;中央控制单元;逻辑控制1 机车TCMS系统1.1 系统结构技术提升HXD2型电力机车TCMS系统采用分布式结构,在司机室、微机柜、变流柜、制动柜分别设置了相应的单元。

单台机车由两节机车通过WTB内重联组成,单节机车包含2个主处理单元(MPU)、2个远程输入输出单元(RIOM)、2个重联网关(GW)、 4个牵引控制单元(TCU)、2个辅助控制单元(ACU)、1个显示单元(DDU)和1个事件记录仪(ERM)组成。

其中,两个主处理单元MPU互为冗余,负责调度各个子单元协调工作,实现机车控制;ERM记录机车运行数据和故障数据,方便对机车进行调试和故障分析。

1.2 控制模式主处理单元主要控制模式可以分为两种:正常运行模式控制和维护测试模式控制。

控制系统上电后,机车自动进入正常运行模式;通过显示屏设定可以进入维护测试模式。

1.3 关键控制技术主处理单元关键控制技术包括主电路控制、辅助电路控制、机车运行控制、制动控制和维护测试控制。

本文对各项技术进行详细解析。

2 主电路控制技术提升HXD2型电力机车的主电路主要由网侧电路、四象限整流电路、直流环节电路、牵引逆变电路等相关电路组成,主变压器原边通过受电弓、主断路器得电,主变压器的二次绕组向牵引变流器供电,通过牵引控制单元交-直-交控制转换后,为牵引电机供电。

2.1 受电弓控制每节车装有一架受电弓。

受电弓是机车从接触网获得电能的重要电气部件。

MPU通过RIOM1采集升弓扳键,驱动升弓继电器,控制受电弓升起和降落:升弓继电器得电时,受电弓升起,受电弓滑板与接触网接触,将电流从接触网引入机车,供车内的电气设备使用;升弓继电器失电时,受电弓落下。

HXD1型电力机车-电气原理

HXD1型电力机车-电气原理

Page 37
四、电气原理图说明
电气原理图电气设备代码
电气设备代码前缀” -”字母代码,依据标准DIN EN 61346 -2,具体电气设备清单见ZL功能区,举例如下: A 装配、子装配 C 电容 E 杂项,如照明装置、加热装置 K 传感器,接触器 L 互感器 M 电机 S 开关,转换器 T 变压器 X 端子、插头、插座 „„
一、主电路原理
高压隔离开关
网侧主要部件介绍
额定电压: 25 kV 额定电流:400 A
短时耐受电流:8 kA,1s
机械寿命:20000次 驱动方式:手动
一、主电路原理
网侧主要部件介绍
高压电缆总成
形式:单T型
电缆截面积:95mm2 额定电压:25kV 正常工作电压:17.5 kV~31 kV
一、主电路原理
主传动系统
网侧受流原理
升单个受电弓的 网侧电路原理图
升双受电弓的 网侧电路原理图
一、主电ቤተ መጻሕፍቲ ባይዱ原理
网侧检测原理
网侧电路中的高压电压互感器、原边电流互感器和回流电流互感器 等测量器件,用于向机车控制系统、牵引控制单元和能耗表等提供网侧 电压和电流信号。能耗表用于显示机车从电网取得的电能和机车再生制 动向电网反馈的电能。
一、主电路原理
网侧主要部件介绍
高压电压互感器
形式:干式 一次额定电压:25kV 额定频率:50 Hz/60 Hz
二次额定电压:150V
准确级次:C1. 05级 额定输出容量:2×10VA 爬电距离:875mm
一、主电路原理
主断路器(含接地开关)
网侧主要部件介绍
主断路器技术参数
额定电压:25kV
主变压器为卧式变压器,主变压器和谐振电抗器安装在变压器油箱内,采用油循环强迫 风冷。主变压器设有压力释放阀。

HXD3D机车网络控制系统、主变压器、应急处理

HXD3D机车网络控制系统、主变压器、应急处理
控制电路自动开关有:微机控制I自动开关QA41、微机控制II自动开关QA42、司 机控制I自动开关QA43、司机控制II自动开关QA44、机车控制自动开关QA45、主变流 器I自动开关QA46、辅助变流器I自动开关QA47、列车供电柜I自动开关QA48、列车供 电柜II自动开关QA49、制动柜自动开关QA50、头灯自动开关QA51、自动过分相自动 开关QA52、司机室照明自动开关QA53、机械间照明自动开关QA54、车外照明自动开 关QA55、监控系统自动开关QA56,信号系统自动开关QA57、机车电台自动开关QA58、 直流加热自动开关QA60、辅助设备自动开关QA62、电源装置自动开关QA63、6A系统 自动开关QA65、主变流器II自动开关QA66、辅助变流器II自动开关QA67、电空制动 自动开关QA68、制动微机自动开关QA69等。
HXD3D型交流传动 快速客运电力机车 微机控制系统及主变压器
技术开发部 电气二室 王乐 民
中国北车集团大连机车车辆有限公司
Dalian Locomotive &Rolling Stock Co., Ltd CNR Group
精品文 档
主要内容:
一、微机网络控制系统简介 二、主变压器简介 三、常见故障处理
精品文 档
精品文 档
主界面
精品文 档
锁屏界面
精品文 档
列车信息-机车纵览界面
精品文 档
控制-隔离界面
精品文 档
控制-受电弓预选择界面
精品文 档
控制-距离计数器界面
精品文 档
空气制动系统-制动信息界面
精品文 档
空气制动系统-隔离阀状态界面
精品文 档
过程数据-列车界面
精品文 档
过程数据-驱动界面

技术提升HXD2型电力机车ERM设计

技术提升HXD2型电力机车ERM设计

技术提升HXD2型电力机车ERM设计发表时间:2020-12-22T06:30:08.235Z 来源:《防护工程》2020年26期作者:孙文静刘鹏杨天奇[导读] 技术提升HXD2型电力机车是在现有HXD2型电力机车基础上进行的升级改造。

中车大连电力牵引研发中心有限公司辽宁大连 116052摘要:技术提升HXD2型电力机车是在现有HXD2型电力机车基础上进行的升级改造。

从网络控制系统(TCMS)角度,技术提升HXD2型电力机车主要采用了自主化的中央控制单元(MPU)、事件记录仪(ERM)和TCN网关,同时采用了多通道板卡式的远程输入输出单元(RIOM)。

TCMS产品在性能上得到了极大提升,为机车安全稳定运行提供了重要保障。

同时该车型新增了利用ERM实现无线重联通信等功能,提高了机车的实时通信和运载能力。

关键词:ERM;无线重联通信;TCMS;自主化1、概述技术提升HXD2型电力机车TCMS采用分布式网络架构,其网络拓扑图如图1所示。

整车网络遵循IEC61375标准,列车级总线采用WTB 通信,传送速率为1.0Mbit/s,车辆级总线采用MVB通信,电气中距离(EMD)介质,传输速率为1.5Mbit/s,设备级总线采用CAN通信。

图1网络拓扑图2、TCMS系统组成 TCMS系统主要包括中央控制单元MPU1、MPU2,正常工作时MPU1为主设备、MPU2为从设备。

远程输入输出单元RIOM1实现TCMS 与司机室硬线信号的交互;远程输入输出单元RIOM2用于实现TCMS与机械间设备硬线信号的交互;显示屏DDU用来显示机车及子系统的状态并实现部分设置功能;机车通过TCN网关GW实现互联互通;CMD通过GW3网关接入TCMS,GW3网关实现MVB与HDLC协议的转化。

事件记录仪ERM用于数据存储并与无线重联设备进行数据交互。

3、事件记录仪ERM硬件组成 ERM采用采用3U42TE机箱结构,1个ERM机箱内包括1块电源板,1块ERM板卡。

铁路机车—电力机车的电气设备及其电路

铁路机车—电力机车的电气设备及其电路
项目四 铁路机车
任务3 电力机车
一 电力机车的结构组成及特点 二 电力机车的电气设备及电路 三 电力机车的制动系统组成
任务3 电力机车
电力机车的电气设备组成
电气设备包括:电气设备及连接导线。电气设备主要有牵引电机、 牵引变压器、整流硅机组及各种电器等。
电路分为:主电路、辅助电路及控制电路。
任务3 电力机车
电力机车的电气设备组成——主电路
该电路将产生机车牵引力和制动力的各种电气设备连成一个系统, 实现机车的功率传输。
电气设备包括:受电弓、主断路器、主变压器、牵引变流器、牵引 电机等。
任务3 电力机车
电力机车的电气设备组成——主电路
1.受电弓 机车顶部装有两套单臂受电弓,受电弓紧压接触网导线滑行摩擦从 电网上取组成——主电路
2.主断路器 是用来接通或断开电力机车高压电路,当主电路发生短路、接地或 整流调压电路、牵引电动机等设备发生故障时,自动切断机车电源。
任务3 电力机车
电力机车的电气设备组成——主电路
3.主变压器 用来把接触网上取得的25kV高压电变换为各种类型低压电,以满足 机车上牵引电机和各种辅助电气的工作需要。
5.牵引电机 安装在机车转向架上,通过传动装置与轮对相连。机车在牵引状态 时,牵引电机将电能转换成机械能,驱动机车运行。当机车在电气制动 状态时,牵引电机将列车的机械能转化为电能,产生列车的制动力。
任务3 电力机车
电力机车的电气设备组成——辅助电路
电源来自主变压器的辅助绕组,通过劈相机将单相交流电转变成三 相交流电后,供给辅机设备,包括:辅助滤波柜、电器柜、辅助机组、 空调及采暖设备、蓄电池充电机、库用插座等。
任务3 电力机车
电力机车的电气设备组成——控制电路

HXD1C型电力机车网络控制系统

HXD1C型电力机车网络控制系统

IDU功能
1)列车信息显示 :向车辆驾驶人员和维护人员提供车 辆综合信息,各设备的工作状态,故障信息的综合与处理 等功能; 2)参数设定 :对轮径值、列车重量、站点、时间日期
等参数进行更改与设定;
智能显示装置IDU结构
技术参数 1、机械尺寸 315*250*81.1 2、重 量 4.5kg
3、工作电源 工作电压:DC77V~DC133.5V 4、环境温度 -25℃~+45℃
由于采用模块化设计, 使得系统的构成十分灵活,但减少 了系统布线距离,而且容易扩展。 图中缩写的的含义: 中央控制单元CCU (VCM×2、GWM×1、ERM×1) 司机室输入输出单元CIO (DXM×1、DIM×1、AXM×1) 机械间输入输出单元MIO
(DXM×6、DIM×1)
3、网关模块GWM 每节机车装有1个WTB/MVB网关模块GWM,位于机械间内, WTB/MVB网关模块GWM通过多功能车辆总线MVB(ESD+)与车 辆控制模块VCM通信。 WTB/MVB网关模块GWM是TCMS实现机车重联运行的核 心模块,具备如下功能: 1)列车级过程控制:执行诸如牵引/制动控制等一系列与 机车重联运行有关的控制功能; 2)列车总线管理:具有绞线式列车总线WTB的管理能力 3)列车级数据通信:与TCMS系统的车辆控制模块VCM 进行与机车重联运行有关的数据交换。
二、机车网络控制系统基础知识
1、车辆总线MVB
4)通过设置总线重复器,网络拓扑可为总线型、星型或
混合型,每个总线段内互联的设备最多可达32个;
5)数据链路层支持三种基本的数据传输模式:过程数据、 消息数据、监督数据。
二、机车网络控制系统基础知识
2、MVB插头接线图
XD11 (9 芯布孔)

HXD3电气系统介绍

HXD3电气系统介绍

【引言概述】本文将对HXD3电气系统进行介绍,该系统是HXD3型电力机车中的核心部分之一。

电气系统作为机车的重要组成部分之一,对机车的运行和性能起着至关重要的作用。

本文将从五个大点来详细阐述HXD3电气系统的组成和功能。

【正文内容】一、主控制系统1.牵引控制模块功能及原理2.制动控制模块功能及原理3.辅助控制模块功能及原理4.信号处理模块功能及原理5.数据通信模块功能及原理二、直流传动系统1.逆变器模块功能及原理2.励磁系统功能及原理3.牵引电机功能及原理4.制动电阻功能及原理5.母线和变压器功能及原理三、辅助供电系统1.电池组功能及原理2.静止变流器功能及原理3.馈电变压器和整流充电机功能及原理4.辅助电源开关装置功能及原理5.辅助负载装置功能及原理四、智能检测与保护系统1.灵敏系数与接线方式功能及原理2.过载保护功能及原理3.短路保护功能及原理4.电源低压保护功能及原理5.温度保护功能及原理五、列车接口系统1.车载监控系统功能及原理2.通信系统功能及原理3.车载信息系统功能及原理4.列车自动控制系统功能及原理5.转向架接口装置功能及原理【总结】HXD3电气系统作为HXD3型电力机车中的核心部分,包含主控制系统、直流传动系统、辅助供电系统、智能检测与保护系统以及列车接口系统等五个大点。

每个大点下又包含59个小点来详细阐述其功能和原理。

HXD3电气系统的合理设计与运行稳定性直接影响着机车的牵引力、制动力及其他性能指标的表现,因此,了解和熟悉HXD3电气系统的结构和原理对于保证机车的正常运行具有重要意义。

电力机车整备作业下位机控制系统软硬件设计与实现

电力机车整备作业下位机控制系统软硬件设计与实现

结构, 实现了 机车停车住置检测 、 I D卡身  ̄i q通过与单片机交互式通信 , /- , m 获取机车号并按照操作流程进行语音提示; 同时接牧 E 住机指令 , 控制电动操纵 机构动作。该 系 统经过单机 试和联调后 , 调 能够按照预先设计的控制流 程进行整备作业。系统可靠性高, 可以运用于实际整备作业现场。
科 技 论坛 ll I
刘 战 尚 丽琴 冯 作 全

电 力机车整备作业下位 机控制系统 软硬件 设计与 实现
( 兰州交通大学机 电工程 学院 , 甘肃 兰州 7 0 7 ) 30 0
摘 要 : 对 电力机车 整备 作 业安 全监 控下 位机 控制 系统软 硬件 进行设 计 , 用 s — 0 P C为 主站 ,7 2 0 L 主要 采 7 30L s — 0 P C为从 站 的 P ROFB — I US DP网络
关 键 词 : 备 作 业 ;L PL IUS DP 通 信 整 P C;1OFB - ;
1 述 概
电力机车承担若干牵引任务后 , 必须返回机 务段或整备场进行整备。 传统的作业模式采用人工 方式对接地杆 、 隔离开关进行操作, 如果作业过程 中联系不周, 操作不当, 就会严重威胁到登顶作业 人员的生命安全和供电设备安全。由 , 此 我们开发 了基于P C的电力机擎罄 乍 I L 监控系统, 本 系统采用 P O IU — P总线 网络结构, 6从 R FB S D 下岱 L 『 站选用 s — 0 P C, 7 2 0 L 主站选用 s — 0 P C, 7 30 L 上位机 八 来自,_一
2 3—

和输出指示灯、 液晶 显示屏、 薄膜键盘。 下面对控制箱各主要部件进行 简要的说明。 S — O P C选用 S— 2 N C U +E 7 72OL : 7 2 6C P M27 喉 口 模块, 通过 I / O口实现停车位置信息采集 , 控 制电动执行机 构动作, P R O O T 分别 通过 O T . R 13 P 1 连接 I 读卡器和单片机交互式系统 , I 卡号 D 获取 D 和机车号, 并按照整备作业操作步骤进行语音提 示, 能够依照预先系统设计的 逻辑互锁关系控制车 顶门电子锁。 控制按钮和输出 指示灯: 主要用于现场操作和 输出显示, 人 其输 操作按钮包括启动 、 紧急停止 、 作 业 申 同意分闸、 请、 同意合闸; 输出指示灯能够显示 系统启动与停止、 机车停车位置是否正确、 隔离开 关分闸和合闸限位指示。 ’ 单片机控制单元 : 0 3 0 由8 c 2 单片机作为主控 芯片开发, 要对整备作业 主 过程中 作业步骤进行语 音提示并按照逻辑关系遥控车顶门电子锁 , 同时扩 展键盘输入和液晶显示功能。 4 L 统软件设计 C系 P 4 . 1主站 s— O P C翟 睛 殳 7 3 0 L ≈ 计 从 机车整备作业 控制过程中s — 0P C主站 7 30 L 要实现的功能考虑 , 软件程序设计采用模块化编程 方式。 其中主婚陧 . 括 1 畸 咆 个组织块 O 1 个共享 B, 1 数据块 D I 个功能 F 。组织块 O I B, 5 C B( 主程序) 用 于循环处理, 是用户程序中的主程序 其主程序各 功能描述如下:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电力机车网络化电气控制系统设计
发表时间:2019-04-03T09:59:46.197Z 来源:《电力设备》2018年第29期作者:魏强[导读] 摘要:交流传动电力机车对自动控制和人工智能的应用和需求是时代发展的必然,通过引进消化吸收,我国电力机车交流传动技术有了质的飞跃,普遍采用基于网络的控制系统,以模块化、通用化、分布式为特征,便于二次开发、现场调试和维护。

(中车大同电力机车有限公司技术工程部山西大同 037038)摘要:交流传动电力机车对自动控制和人工智能的应用和需求是时代发展的必然,通过引进消化吸收,我国电力机车交流传动技术有了质的飞跃,普遍采用基于网络的控制系统,以模块化、通用化、分布式为特征,便于二次开发、现场调试和维护。

本文对我国目前电力机车网络化电气控制系统进行了阐述,并提出了设计思路。

关键字:电力机车;网络化;电气控制系统 1.我国电力机车网络控制现状电传动控制是交流传动技术中的核心,通过引进西门子、庞巴迪、阿尔斯通等公司的技术,我国交流传动电力机车控制已发展成为基于网络(现场总线)的控制系统。

通信协议大多采用 TCN 国际标准(IEC61375-1);大都是主变流控制、辅变流控制和微机网络控制整合在一起的控制平台,广泛用于轨道交通领域。

2.电力机车网络化电气控制系统总体设计方案本文设计的电力机车网络控制系统采用当前轨道交通行业技术先进的TCN总线,其中主控单元具有热备冗余功能,最大程度的确保系统安全。

同时通过使用专用事件记录仪,将车辆运行过程中一些重要的行车数据与故障数据记录下来,便于车辆的维护保养。

系统符合IEC61375-1标准要求,使用二级总线结构,列车级采用WTB重联总线,传输速率为1Mbit/s;车辆总线采用多功能车辆总线MVB,其电气接口为电气中距离(EMD)介质,传输速率为1.5Mbit/s。

连接到多功能车辆总线(MVB)上各个子系统的控制单元包括:电气牵引控制单元、辅助系统单元等。

要求所有的子系统必须提供MVB(EMD)电气接口。

整个列车管理系统包括设备硬件、操作系统、控制软件、诊断软件、监视软件和维护工具等。

列车管理系统为所有子系统设备留有标准的通信接口,并具有成熟可靠的接口通讯规范,使得所有车辆子系统能可靠接入。

设计符合以下标准。

表1 设计标准
图1控制系统网络拓扑图如图1所示,其中TCMS系统设备主要包括中央控制单元,实现了车辆的MVB总线管理与列车运行控制功能;事件记录仪ERM,实现了故障数据与运行数据的记录功能;RIOM单元,用于实现TCMS与车辆硬线信号的交互(硬线信号的输入与输出);HMI智能显示单元,用来显示车辆子系统的状态及提供人机交互的接口;GW列车网关,用于实现车辆的重联功能。

TCMS系统与车辆其他设备间采用网络通信或硬线连接,为了满足列车安全性,可靠性要求,MVB总线都采用双线冗余结构,符合IEC61375-1 的要求。

对于和行车安全有关的输入输出信号,采用网络加硬线的冗余设计,优先采用网络信号,当网络故障时,采用硬线信号。

4.系统配置
按照硬件组成及各个硬件在车辆中的安装位置不同,TCMS系统设备主要包含:中央控制单元机箱、RIOM机箱、显示屏及重联网关机箱。

各个部件在车上的分布如下所示。

表1.TCMS设备列表
5.通信接口
列车管理系统采用TCN列车总线,车辆级总线采用MVB连接,不具备MVB接口的智能设备必须通过必要的MVB网关与列车管理系统连接,MVB总线接口特征如下:
接口类型:电气中距离(EMD),双通道冗余。

传输介质:MVB专用线缆(2组屏蔽绞式电缆分别用于传输A/B路)
波特率:1.5Mbps
总线跨距:200米
传输周期可以为32、64、128…1024ms
列车级总线采用WTB连接,WTB总线特征如下:
传输介质:WTB专用线缆(两芯屏蔽绞式电缆)
波特率:1.0Mbps
总线跨距:860米
6.系统冗余设计
6.1 CCU主控冗余方案
中央控制单元分别安装在两个车中央控制机箱中,两台CCU硬件完全相同,具备同样的功能,互为热备冗余,因此它们在工程实现上具备相同配置,包括相同的应用级过程数据源端口及宿端口配置。

正常情况下,节点号小的CCU激活作为主控CCU,实现网络管理与运行控制功能;节点号大的CCU作为备用CCU,执行监视功能。

当主控CCU出现故障时,自动退出主控功能,备用CCU转为主控CCU,接替原来的CCU工作,从而确保网络系统的正常运行。

6.2 RIOM电源冗余方案
每辆车配置一个RIOM机箱,机箱中的电源板采用冗余的设计,外接双路电源以保证在一路电源故障时不影响机箱内的IO板卡工作。

6.3 MVB线路冗余方案
为提高列车运行的安全性和可靠性,MVB总线采用符合IEC-61375标准的MVB EMD电缆,具有冗余结构,即线路A、线路B两路通道,线路A和线路B都有独立的总线接口和通信线缆。

多功能车辆总线(MVB)通过总线连接器或RIOM与各子系统连接,控制各子系统完成相应的功能。

6.4 WTB列车总线冗余方案
WTB每个节点均有两路互为冗余的线路进行连接。

WTB网关采用冗余配置,同一机箱内上下布置的两个网关,互为冗余,独立供电。

正常情况下只有一个网关参与总线通信,称为激活网关,另一个网关处于备份状态,称为备份网关,激活网关故障后,备份网关切换为激活网关。

结束语:
电力机车在交通方式中的地位越来越重要,保证电力机车的可操作性与可控制性,可以调高电力机车的安全与稳定。

电力机车网络化电气控制系统对电力机车的控制具有重要作用,在电气控制系统的建立与完善的过程中,要保证电气控制系统硬件的完备性、软件的可使用性,大力提高电力机车在我国的使用效率。

参考文献:
[1]李建龙,俎以宏.TCN网络应用机制的机车电传动系统探讨[J].科技与创新,2018,(12):86-87.
[2]王志国.对HXD2型电力机车TCMS系统故障分析[J].内蒙古科技与经济,2017,(17):93-95.。

相关文档
最新文档