实验四-二叉树操作实现
二叉树的实现实验原理

二叉树的实现实验原理二叉树是一种常见的数据结构,它由节点组成,每个节点最多有两个子节点,通常称为左子节点和右子节点。
二叉树的实现原理如下:1. 节点的定义:每个节点包含一个值和两个指针,分别指向左子节点和右子节点。
节点可以使用类或结构体来表示,具体的实现方式取决于编程语言。
2. 树的定义:树由节点组成,其中一个节点被指定为根节点。
根节点没有父节点,其他节点都有且只有一个父节点。
每个节点最多有两个子节点,即左子节点和右子节点。
3. 添加节点:向二叉树中添加节点时,需要遵循以下规则:- 如果树为空,将节点作为根节点添加到树中。
- 如果节点的值小于当前节点的值,将节点添加为当前节点的左子节点。
- 如果节点的值大于等于当前节点的值,将节点添加为当前节点的右子节点。
4. 遍历树:遍历二叉树可以按照不同的顺序进行,常见的遍历方式有三种:- 前序遍历(Preorder Traversal):先访问根节点,然后按照前序遍历方式遍历左子树,最后按照前序遍历方式遍历右子树。
- 中序遍历(Inorder Traversal):先按照中序遍历方式遍历左子树,然后访问根节点,最后按照中序遍历方式遍历右子树。
- 后序遍历(Postorder Traversal):先按照后序遍历方式遍历左子树,然后按照后序遍历方式遍历右子树,最后访问根节点。
遍历树的过程可以使用递归或迭代的方式来实现,具体的实现方法取决于编程语言和使用的数据结构。
5. 删除节点:删除二叉树中的节点时,需要考虑多种情况。
如果要删除的节点是叶子节点,可以直接删除它。
如果要删除的节点只有一个子节点,可以将子节点移动到要删除的节点的位置。
如果要删除的节点有两个子节点,可以选择将其中一个子节点替代要删除的节点,或者选择左子树的最大节点或右子树的最小节点替代要删除的节点。
根据上述原理,可以使用类或结构体等数据结构和递归或迭代的方式来实现二叉树。
具体的实现方法和细节可能因编程语言而异,但以上原理是通用的。
实验四 二叉树操作实现

实验四二叉树操作实现
一、目的:
掌握二叉树的定义、性质及存储方式,各种遍历算法。
二、要求:
采用二叉树链表作为存储结构,完成二叉树的建立,先序、中序和后序以及按层次遍历的操作,求所有叶子及结点总数的操作。
三、实验内容
1、二叉树的基本操作。
2、调试程序,设计一棵二叉树,输入完全二叉树的先序序列,用#代表虚结点(空指针),
如ABD###CE##F##,建立二叉树,求出先序、中序和后序以及按层次遍历序列,求所有叶子及结点总数。
四、实验报告要求
要求所编的程序能正确运行,并提交实验报告。
实验报告的基本要求为:
1、陈述程序设计的任务,强调程序要做什么,明确规定:
(1)输入的形式和输出值的范围;
(2)输出的形式;
(3)程序所能达到的功能;
(4)测试数据:包括正确的输入输出结果和错误的输入及输出结果。
2、说明用到的数据结构定义、主程序的流程及各程序模块之间的调用关系。
3、提交带注释的源程序或者用伪代码写出每个操作所涉及的算法。
4、调试分析:
(1)调试过程中所遇到的问题及解决方法;
(2)算法的时空分析;
(3)经验与体会。
5、用户使用说明:说明如何使用你的程序,详细列出每一步操作步骤。
6、测试结果:列出对于给定的输入所产生的输出结果。
数据结构实验报告(四)

《数据结构》实验报告班级:学号:姓名:实验四二叉树的基本操作实验环境:Visual C++实验目的:1、掌握二叉树的二叉链式存储结构;2、掌握二叉树的建立,遍历等操作。
实验内容:通过完全前序序列创建一棵二叉树,完成如下功能:1)输出二叉树的前序遍历序列;2)输出二叉树的中序遍历序列;3)输出二叉树的后序遍历序列;4)统计二叉树的结点总数;5)统计二叉树中叶子结点的个数;实验提示://二叉树的二叉链式存储表示typedef char TElemType;typedef struct BiTNode{TElemType data;struct BiTNode *lchild,*rchild;}BiTNode,*BiTree;一、程序源代码#include <stdio.h>#include <stdlib.h>#define MAXSIZE 30typedef char ElemType;typedef struct TNode *BiTree;struct TNode {char data;BiTree lchild;BiTree rchild;};int IsEmpty_BiTree(BiTree *T) { if(*T == NULL)return 1;elsereturn 0;}void Create_BiTree(BiTree *T){char ch;ch = getchar();//当输入的是"#"时,认为该子树为空if(ch == '#')*T = NULL;//创建树结点else{*T = (BiTree)malloc(sizeof(struct TNode)); (*T)->data = ch; //生成树结点//生成左子树Create_BiTree(&(*T)->lchild);//生成右子树Create_BiTree(&(*T)->rchild);}}void TraverseBiTree(BiTree T) { //先序遍历if(T == NULL)return;else {printf("%c ",T->data);TraverseBiTree(T->lchild);TraverseBiTree(T->rchild);}}void InOrderBiTree(BiTree T) { //中序遍历if(NULL == T)return;else {InOrderBiTree(T->lchild);printf("%c ",T->data);InOrderBiTree(T->rchild);}}void PostOrderBiTree(BiTree T) {if(NULL == T)return;else {InOrderBiTree(T->lchild);InOrderBiTree(T->rchild);printf("%c ",T->data);}}int TreeDeep(BiTree T) {int deep = 0;if(T){int leftdeep = TreeDeep(T->lchild);int rightdeep = TreeDeep(T->rchild);deep = leftdeep+1 > rightdeep+1 ? leftdeep+1 : rightdeep+1;}return deep;}int Leafcount(BiTree T, int &num) {if(T){if(T->lchild ==NULL && T->rchild==NULL){num++;printf("%c ",T->data);}Leafcount(T->lchild,num);Leafcount(T->rchild,num);}return num;}void LevelOrder_BiTree(BiTree T){//用一个队列保存结点信息,这里的队列采用的是顺序队列中的数组实现 int front = 0;int rear = 0;BiTree BiQueue[MAXSIZE];BiTree tempNode;if(!IsEmpty_BiTree(&T)){BiQueue[rear++] = T;while(front != rear){//取出队头元素,并使队头指针向后移动一位tempNode = BiQueue[front++];//判断左右子树是否为空,若为空,则加入队列 if(!IsEmpty_BiTree(&(tempNode->lchild))) BiQueue[rear++] = tempNode->lchild;if(!IsEmpty_BiTree(&(tempNode->rchild))) BiQueue[rear++] = tempNode->rchild;printf("%c ",tempNode->data);}}}int main(void){BiTree T;BiTree *p = (BiTree*)malloc(sizeof(BiTree));int deepth,num=0 ;Create_BiTree(&T);printf("先序遍历二叉树:\n");TraverseBiTree(T);printf("\n");printf("中序遍历二叉树:\n");InOrderBiTree(T);printf("\n");printf("后序遍历二叉树:\n");PostOrderBiTree(T);printf("\n层次遍历结果:");LevelOrder_BiTree(T);printf("\n");deepth=TreeDeep(T);printf("树的深度为:%d",deepth);printf("\n");printf("树的叶子结点为:");Leafcount(T,num);printf("\\n树的叶子结点个数为:%d",num);return 0;}二、运行结果(截图)三、遇到的问题总结通过死循环的部分可以看出,在判断时是不能进入结点为空的语句中的,于是从树的构建中寻找问题,最终发现这一条语句存在着问题:这里给T赋值为空,也就是给整个结构体地址赋值为空,但是我们的目的是给该结构体中的内容,即左孩子的地址指向的内容赋为空。
二叉树的基本操作实验报告

二叉树的基本操作实验报告学号姓名实验日期 2012-12-26实验室计算机软件技术实验指导教师设备编号 401实验内容二叉树的基本操作一实验题目实现二叉树的基本操作的代码实现二实验目的1、掌握二叉树的基本特性2、掌握二叉树的先序、中序、后序的递归遍历算法3、通过求二叉树的深度、度为2的结点数和叶子结点数等算法三实习要求(1)认真阅读书上给出的算法(2)编写程序并独立调试四、给出二叉树的抽象数据类型ADT BinaryTree{//数据对象D:D是具有相同特性的数据元素的集合。
//数据关系R:// 若D=Φ,则R=Φ,称BinaryTree为空二叉树;// 若D?Φ,则R={H},H是如下二元关系;// (1)在D中存在惟一的称为根的数据元素root,它在关系H下无前驱; // (2)若D-{root}?Φ,则存在D-{root}={D1,Dr},且D1?Dr =Φ; // (3)若D1?Φ,则D1中存在惟一的元素x1,<root,x1>?H,且存在D1上的关系H1 ?H;若Dr?Φ,则Dr中存在惟一的元素xr,<root,xr>?H,且存在上的关系Hr ?H;H={<root,x1>,<root,xr>,H1,Hr};// (4)(D1,{H1})是一棵符合本定义的二叉树,称为根的左子树;(Dr,{Hr})是一棵符合本定义的二叉树,称为根的右子树。
//基本操作:CreateBiTree( &T, definition ) // 初始条件:definition给出二叉树T的定义。
// 操作结果:按definiton构造二叉树T。
BiTreeDepth( T )// 初始条件:二叉树T存在。
// 操作结果:返回T的深度。
PreOrderTraverse( T, visit() ) // 初始条件:二叉树T存在,Visit是对结点操作的应用函数。
二叉树操作设计和实现实验报告

二叉树操作设计和实现实验报告一、目的:掌握二叉树的定义、性质及存储方式,各种遍历算法。
二、要求:采用二叉树链表作为存储结构,完成二叉树的建立,先序、中序和后序以及按层次遍历的操作,求所有叶子及结点总数的操作。
三、实验内容:1、分析、理解程序程序的功能是采用二叉树链表存储结构,完成二叉树的建立,先序、中序和后序以及按层次遍历的操作。
如输入二叉树ABD###CE##F##,链表示意图如下:2、添加中序和后序遍历算法//========LNR 中序遍历===============void Inorder(BinTree T){if(T){Inorder(T->lchild);printf("%c",T->data);Inorder(T->rchild);}}//==========LRN 后序遍历============void Postorder(BinTree T){if(T){Postorder(T->lchild);Postorder(T->rchild);printf("%c",T->data);}}3、调试程序,设计一棵二叉树,输入完全二叉树的先序序列,用#代表虚结点(空指针),如ABD###CE##F##,建立二叉树,求出先序、中序和后序以及按层次遍历序列,求所有叶子及结点总数。
(1)输入完全二叉树的先序序列ABD###CE##F##,程序运行结果如下:(2)先序序列:(3)中序序列:(4)后序序列:(5)所有叶子及结点总数:(6)按层次遍历序列:四、源程序代码#include"stdio.h"#include"string.h"#include"stdlib.h"#define Max 20 //结点的最大个数typedef struct node{char data;struct node *lchild,*rchild;}BinTNode; //自定义二叉树的结点类型typedef BinTNode *BinTree; //定义二叉树的指针int NodeNum,leaf; //NodeNum为结点数,leaf为叶子数//==========基于先序遍历算法创建二叉树==============//=====要求输入先序序列,其中加入虚结点"#"以示空指针的位置========== BinTree CreatBinTree(void){BinTree T;char ch;if((ch=getchar())=='#')return(NULL); //读入#,返回空指针else{T=(BinTNode *)malloc(sizeof(BinTNode)); //生成结点T->data=ch;T->lchild=CreatBinTree(); //构造左子树T->rchild=CreatBinTree(); //构造右子树return(T);}}//========NLR 先序遍历=============void Preorder(BinTree T){if(T) {printf("%c",T->data); //访问结点Preorder(T->lchild); //先序遍历左子树Preorder(T->rchild); //先序遍历右子树}}//========LNR 中序遍历===============void Inorder(BinTree T){if(T){Inorder(T->lchild);printf("%c",T->data);Inorder(T->rchild);}}//==========LRN 后序遍历============void Postorder(BinTree T){if(T){Postorder(T->lchild);Postorder(T->rchild);printf("%c",T->data);}}//=====采用后序遍历求二叉树的深度、结点数及叶子数的递归算法======== int TreeDepth(BinTree T){int hl,hr,max;if(T){hl=TreeDepth(T->lchild); //求左深度hr=TreeDepth(T->rchild); //求右深度max=hl>hr? hl:hr; //取左右深度的最大值NodeNum=NodeNum+1; //求结点数if(hl==0&&hr==0) leaf=leaf+1; //若左右深度为0,即为叶子。
二叉树的各种基本运算的实现实验报告

二叉树的各种基本运算的实现实验报告
一、实验目的
实验目的为了深入学习二叉树的各种基本运算,通过操作实现二叉树的建立、存储、查找、删除、遍历等各种基本运算操作。
二、实验内容
1、构造一个二叉树。
我们首先用一定的节点来构建一棵二叉树,包括节点的左子节点和右子节点。
2、实现查找二叉树中的节点。
在查找二叉树中的节点时,我们根据二叉树的特点,从根节点开始查找,根据要查找的节点的值与根节点的值的大小的关系,来决定接下来查找的方向,直到找到要查找的节点为止。
3、实现删除二叉树中的节点。
在删除二叉树节点时,我们要做的是找到要删除节点的父节点,然后让父节点的链接指向要删除节点的子节点,有可能要删除节点有一个子节点,有可能有两个极点,有可能没有子节点,我们要根据每种情况进行处理,来保持二叉树的结构不变。
4、对二叉树进行遍历操作。
二叉树的遍历有多种方法,本实验使用的是先序遍历。
首先从根节点出发,根据先序遍历的顺序,先访问左子树,然后再访问右子树,最后访问根节点。
三、实验步骤
1、构建二叉树:
我们用一个数组代表要构建的二叉树,第一项为根节点,第二项和第三项是根节点的子节点。
数据结构实验报告—二叉树

数据结构实验报告—二叉树数据结构实验报告—二叉树引言二叉树是一种常用的数据结构,它由节点和边构成,每个节点最多有两个子节点。
在本次实验中,我们将对二叉树的基本结构和基本操作进行实现和测试,并深入了解它的特性和应用。
实验目的1. 掌握二叉树的基本概念和特性2. 熟练掌握二叉树的基本操作,包括创建、遍历和查找等3. 了解二叉树在实际应用中的使用场景实验内容1. 二叉树的定义和存储结构:我们将首先学习二叉树的定义,并实现二叉树的存储结构,包括节点的定义和节点指针的表示方法。
2. 二叉树的创建和初始化:我们将实现二叉树的创建和初始化操作,以便后续操作和测试使用。
3. 二叉树的遍历:我们将实现二叉树的前序、中序和后序遍历算法,并测试其正确性和效率。
4. 二叉树的查找:我们将实现二叉树的查找操作,包括查找节点和查找最大值、最小值等。
5. 二叉树的应用:我们将探讨二叉树在实际应用中的使用场景,如哈夫曼编码、二叉搜索树等。
二叉树的定义和存储结构二叉树是一种特殊的树形结构,它的每个节点最多有两个子节点。
节点被表示为一个由数据和指向其左右子节点的指针组成的结构。
二叉树可以分为三类:满二叉树、完全二叉树和非完全二叉树。
二叉树可以用链式存储结构或顺序存储结构表示。
- 链式存储结构:采用节点定义和指针表示法,通过将节点起来形成一个树状结构来表示二叉树。
- 顺序存储结构:采用数组存储节点信息,通过计算节点在数组中的位置来进行访问和操作。
二叉树的创建和初始化二叉树的创建和初始化是二叉树操作中的基础部分。
我们可以通过手动输入或读取外部文件中的数据来创建二叉树。
对于链式存储结构,我们需要自定义节点和指针,并通过节点的方式来构建二叉树。
对于顺序存储结构,我们需要定义数组和索引,通过索引计算来定位节点的位置。
一般来说,初始化一个二叉树可以使用以下步骤:1. 创建树根节点,并赋初值。
2. 创建子节点,并到父节点。
3. 重复步骤2,直到创建完整个二叉树。
二叉树的基本操作实现(数据结构实验)

⼆叉树的基本操作实现(数据结构实验)实验题⽬:⼆叉树的基本操作实现实验⽬的:掌握⼆叉树的⼆叉链存储结构及表⽰。
掌握⼆叉树的三种遍历算法(递归和⾮递归两类)。
运⽤三种遍历的⽅法求解⼆叉树的有关问题。
实验内容:实现⼆叉树的⼆叉链表存储结构;实现先序、中序和后序遍历⼆叉树;遍历⼆叉树的应⽤:计算叶⼦结点、左右⼦树交换等。
要求:1、⼆叉树基本操作已实现,学习和进⼀步理解。
2 、在求总结点的程序中加⼊求叶⼦结点的功能。
3 、左右⼦树交换,按中序和后序是否也可以?4 、选作:按层遍历⼆叉树。
实验代码:#include<stdio.h>#include<malloc.h>#include<string.h>#include<stdlib.h>#include<iostream>#define MAXTSIZE 1000using namespace std;/*测试数据: abc##de#g##f###*/typedef struct BiTNode{char data; // 结点数据域struct BiTNode *lchild,*rchild; // 左右孩⼦指针}BiTNode,*BiTree;void CreateBiTree(BiTree &T) // 先序遍历建⽴⼆叉链表{char ch;cin>>ch;// scanf("%c",&ch);if(ch=='#')T=NULL;else{T=(BiTNode *)malloc(sizeof(BiTNode));T->data=ch;CreateBiTree(T->lchild);CreateBiTree(T->rchild);}}void travel1(BiTree T) // 先序遍历{if(T){printf("%c",T->data);travel1(T->lchild);travel1(T->rchild);}}void travel2(BiTree T) // 中序遍历{if(T){travel2(T->lchild);printf("%c",T->data);travel2(T->rchild);}}void travel3(BiTree T) // 后序遍历{if(T){travel3(T->lchild);travel3(T->rchild);printf("%c",T->data);}}int count(BiTree T) // 计算叶⼦结点的个数{if(T==NULL) return0;int cnt=0;if((!T->lchild)&&(!T->rchild)){cnt++;}int leftcnt=count(T->lchild);int rightcnt=count(T->rchild);cnt+=leftcnt+rightcnt;return cnt;}int Depth(BiTree T) // 计算⼆叉树的深度{if(T==NULL) return0;else{int m=Depth(T->lchild);int n=Depth(T->rchild);return m>n?(m+1):(n+1);}}void exchange(BiTree T,BiTree &NewT) // 交换左右⼦树{if(T==NULL){NewT=NULL;return ;}else{NewT=(BiTNode *)malloc(sizeof(BiTNode));NewT->data=T->data;exchange(T->lchild,NewT->rchild); // 复制原树的左⼦树给新树的右⼦树 exchange(T->rchild,NewT->lchild); // 复制原树的右⼦树给新树的左⼦树 }}int main(){puts("**************************");puts("1. 建⽴⼆叉树");puts("2. 先序遍历⼆叉树");puts("3. 中序遍历⼆叉树");puts("4. 后序遍历⼆叉树");puts("5. 计算叶⼦结点个数");puts("6. 计算⼆叉树的深度");puts("7. 交换⼆叉树的左右⼦树");puts("0. 退出");puts("**************************");BiTree Tree,NewTree;int choose;while(~scanf("%d",&choose),choose){switch(choose){case1:puts("温馨提醒:输⼊请以 '#' 为左/右⼦树空的标志!");CreateBiTree(Tree);break;case2:printf("先序遍历结果为:");travel1(Tree);puts("");break;case3:printf("中序遍历结果为:");travel2(Tree);puts("");break;case4:printf("后序遍历结果为:");travel3(Tree);puts("");break;case5:printf("叶⼦结点个数为:%d\n",count(Tree));break;case6:printf("⼆叉树的深度为:%d\n",Depth(Tree));break;case7:exchange(Tree,NewTree);Tree=NewTree;puts("交换成功!\n");break;}}system("pause");return0;}。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验四-二叉树操作实现实验四二叉树操作实现实验日期:2017 年 4 月20 日实验目的及要求1. 熟练掌握树的基本概念、二叉树的基本操作及在链式存储结构上的实现;2. 重点掌握二叉树的创建、遍历及求深度等算法;3. 掌握运用递归方式描述算法及编写递归C程序的方法,提高算法分析和程序设计能力。
实验内容键盘输入一个字符串,利用二叉树前序遍历的结果建成一棵二叉树,并用三种遍历方法打印,比较是否与自己预先想象的相一致。
再求树的深度、1度结点数、2度节点数,交换二叉树的左右子树并输出交换后的中序遍历结果验证交换的正确性。
找到二叉树中序遍历最后一个结点并输出结点值。
二叉树结点类型定义:typedef char datatype;typedef struct tnode{datatype data;struct tnode *lchild,*rchild;} BiTNode,*BiTree;任务1.题目要求创建一个程序文件sy4.cpp,自定义相应函数完成以下操作:(1)void visit(BiTree p) /*输出p指针指向的结点*/(2)void Preorder(BiTree T) /*前序遍历*/(3)void Inorder(BiTree T) /*中序遍历*/(4)void Postorder(BiTree T) /*后序遍历*/(5)BiTree CreateTree( ) /*以前序遍历的顺序建立二叉树*/(6)int deep(BiTree T) /*求二叉树深度*/(7)int leaf(BiTree T) /*求叶子结点数*/(8)int OneChild(BiTree T) /*求1度结点数*/(9)int TwoChild(BiTree T) /*求2度结点数*/(10)void Exchange(BiTree T) /*二叉树左右子树交换*/(11)BiTree InorderLastNode(BiTree T); /*找二叉树中序遍历最后一个结点*/2.请回答下列问题(1)在n个结点二叉树的二叉链表存储中,其指针域的总数为2n 个,其中n-1 个用于链接孩子结点,n+1 个空闲着。
(2)在二叉链表存储中,数据域值为data,左右子树的指针分别为left和right,则判断:指针p所指结点为0度结点的条件是p->left==NULL&&p->right==NULL ;指针p所指结点为1度结点的条件是(p->left==NULL&&p->right!=NULL)||(p->left!=NULL&&p->right==NULL);指针p所指结点为2度结点的条件是p->left!=NULL&&p->right!=NULL 。
(3)T为二叉树的根的地址,该树是空二叉树满足条件:T==NULL 。
3.sy14.cpp源程序清单(含必要的注释)#include<stdio.h>#include<stdlib.h>typedef char datatype;typedef struct tnode {datatype data;struct tnode *lchild, *rchild;} BiTNode, *BiTree;void visit(BiTree p); /*输出p指针指向的结点*/void Preorder(BiTree T); /*前序遍历*/void Inorder(BiTree T); /*中序遍历*/void Postorder(BiTree T); /*后序遍历*/BiTree CreateTree(); /*以前序遍历的顺序建立二叉树*/int deep(BiTree T); /*求二叉树深度*/int leaf(BiTree T); /*求叶子结点数*/int OneChild(BiTree T); /*求1度结点数*/int TwoChild(BiTree T); /*求2度结点数*/void Exchange(BiTree T); /*二叉树左右子树交换*/BiTree InorderLastNode(BiTree T); /*找二叉树中序遍历最后一个结点*/ void visit(BiTree p) { /*输出p指针指向的结点*/if (p->data != '#') {printf("%c ", p->data);}}void Preorder(BiTree T) { /*前序遍历*/if (T != NULL) {visit(T); //访问根节点Preorder(T->lchild); //访问左子节点Preorder(T->rchild); //访问右子节点}}void Inorder(BiTree T) { /*中序遍历*/if (T != NULL) {Inorder(T->lchild); //访问左子节点visit(T); //访问根节点Inorder(T->rchild); //访问右子节点}}void Postorder(BiTree T) { /*后序遍历*/if (T != NULL) {Postorder(T->lchild); //访问左子节点Postorder(T->rchild); //访问右子节点visit(T); //访问根节点}}BiTree CreateTree() { /*以前序遍历的顺序建立二叉树*/ char ch;BiTree T;if ((ch = getchar()) == '#') { /*#表示空树*/return NULL;}else {T = (BiTree)malloc(sizeof(BiTNode)); //生成根节点T->data = ch;T->lchild = CreateTree(); //构造左子树T->rchild = CreateTree(); //构造右子树return T;}}int deep(BiTree T) { /*求二叉树深度*/int lh, rh;if (T == NULL) {return 0;}else {lh = deep(T->lchild);rh = deep(T->rchild);}return (lh > rh ? lh : rh) + 1;}int leaf(BiTree T) { /*求叶子结点数*/int m, n;if (!T) { /*空树没有叶子*/return 0;}else if (!T->lchild && !T->rchild) { /*叶子结点*/return 1;}else { /*左子树的结点数加上右子树的结点数*/m = leaf(T->lchild);n = leaf(T->rchild);return m + n;}}int OneChild(BiTree T) { /*求1度结点数*/int n = 0;if (T == NULL) {return 0;}else if ((T->lchild == NULL&&T->rchild != NULL) || (T->lchild != NULL&&T->rchild == NULL)) {n = 1;}return OneChild(T->lchild) + OneChild(T->rchild) + n;}int TwoChild(BiTree T) { /*求2度结点数*/int n = 0;if (T == NULL) {return 0;}else if ((T->lchild != NULL&&T->rchild != NULL)){n = 1;}return TwoChild(T->lchild) + TwoChild(T->rchild) + n;}void Exchange(BiTree T) { /*二叉树左右子树交换*/BiTree temp;if (T) {temp = T->lchild;T->lchild = T->rchild;T->rchild = temp;Exchange(T->lchild);Exchange(T->rchild);}}BiTree InorderLastNode(BiTree T) { /*找二叉树中序遍历最后一个结点*/if(T)while (T->rchild){T = T->rchild;}return T;}int main() {BiTree T;printf("以前序遍历的二叉树:");T = CreateTree();printf("\n先序遍历:");Preorder(T);printf("\n");printf("\n中序遍历:");Inorder(T);printf("\n");printf("\n后序遍历:");Postorder(T);printf("\n");printf("\n树的深度=%d\n", deep(T));printf("叶子结点数=%d\n", leaf(T));printf("1度结点数=%d\n", OneChild(T));printf("2度结点数=%d\n", TwoChild(T));printf("\n二叉树中序遍历最后一个结点为:%c", InorderLastNode(T)->data);printf("\n");printf("\n交换后的二叉树先序遍历为:");Exchange(T); Preorder(T);printf("\n交换后的二叉树中序遍历为:");Inorder(T);printf("\n交换后的二叉树后序遍历为:");Postorder(T);printf("\n");printf("\n交换后的二叉树中序遍历最后一个结点为:%c", InorderLastNode(T)->data);printf("\n");return 0;}4.程序执行后屏幕上的输入输出内容A/B/ \C D/ \E F\G实验总结分析(本程序的重点与难点,调试中出现的问题及解决方法等)。