2021年潮流计算的基本算法及使用方法
电力系统潮流计算

S 0 (GT jBT )U 2
注意单位! (4-29) (4-31)
双绕组变压器功率损耗计算
总的有功损耗:PT PTS P0 总的无功损耗:
QT QTS Q0
(一)电力网的功率损耗 ▪三绕组变压器的功率损耗计算
PT PTS1 PTS 2 PTS 3 P0 QT QTS1 QTS 2 QTS 3 Q0
开式电力网的潮流计算
解:
1)根据已知条件,进行各元件参数计算;
画出计算用等值电路:
已知量
待求量
2) 应用前述阻抗环节的功率、电压计算方法,由 末端往始端逐环节递推计算……
开式电力网的潮流计算
2)已知末端功率及始端电压,
求网络潮流分布
✓ 计算网络元件参数并作等值电路;
✓ 设全网为UN,从末端向始端逐段近似推算各元 件的功率损耗和功率分布;
➢ 给定网络始端(或末端)的功率及电压, 求潮流分布。(两种,但都属于已知为 同侧量)
➢ 给定网络末端功率及始端电压(或始端 功率及末端电压)求潮流分布。(两种, 但都属于已知为异侧量)
开式电力网的潮流计算 1)已知末端功率及电压,作潮流计算:
将电压和功率由末端向始端交替推进 ;
对于110KV及以下网络,可略去电压降落的 横分量,从而使计算简化;
电压的降落、损耗及偏移
输电系统其它相关技术经济指标: 电压损耗率% U1 U2 100 UN
始端电压偏移% U1 U N 100 UN
末端电压偏移% U 2 U N 100 UN
输电效率% P2 100 P1
二、开式电力网的潮流计算
简称”开式网”,可分为: ➢ 同一电压等级的开式网(无变压器) ➢ 多级电压开式网(含变压器)
潮流跟踪算法及应用

3 潮流(CHÁOLIÚ)跟踪算法 3.顺流(shùn liú)跟踪法 考察节点j,根据流过功率等于总流进
功率的条件,节点j的流过功率也可以写 为
是节点j的上游节点集合,上式可改写成
精品资料
3 潮流跟踪(GĒNZŌNG)算法
用矩阵形式表示,即 式中, 为发电机功率矢量; ,是上游分布矩阵,其元素按下式计算: 该矩阵就是顺流跟踪公式(gōngshì),它建立了节点流过功率与发电机 节点功率间的关系。
精品资料
3 潮流跟踪(GĒNZŌNG)算法
由于节点流过功率也是发电机功率与上游节点 流入功率之和,可得逆流跟踪法的两个应用: (1)发电机功率对各负荷及网损的贡献。设网络 中发电机母线i上的注入功率为,由比例分配原则, 该发电机对系统的功率贡献可以(kěyǐ)表示为
式中,,是第i个分量为1、其余分量为0的单位列 矢量。于是节点i上的发电机对节点k的负荷的贡 献份额为
节点重新编号的原则:定义潮流流入节点的支 路为进线;将进线数目为0的节点排在前面;每次 对一个(yī ɡè)节点排序后,及将该节点及与之相连 的支路小区,而后在余下的网络中重复以上过程。
无环流有向图的节点排序特点:在消去过程中, 不会有新的支路产生,对应于和矩阵不会产生非 零注入元,这是与常规的网络消去过程的根本不 同之处。排序后, 是稀疏下三角阵, 是稀疏上三 角阵,直接具有稀疏因子表的形式,给计算带来 极大的方便。
精品资料
3 潮流跟踪(GĒNZŌNG)算法
4.和的关系 因为(yīn wèi)节点i上发电机对节点k上负荷的贡献
的功率份额等于节点k上负荷从节点i上的电源汲取的 功率份额,所以
进一步,根据和的定义,可得
其中,因此和阵中只要确定其中一个即可。
潮流计算的基本算法及使用方法

潮流计算的基本算法及使用方法Company number:【0089WT-8898YT-W8CCB-BUUT-202108】潮流计算的基本算法及使用方法一、 潮流计算的基本算法1.牛顿-拉夫逊法1.1 概述牛顿-拉夫逊法是目前求解非线性方程最好的一种方法。
这种方法的特点就是把对非线性方程的求解过程变成反复对相应的线性方程求解的过程,通常称为逐次线性化过程,就是牛顿-拉夫逊法的核心。
牛顿-拉夫逊法的基本原理是在解的某一邻域内的某一初始点出发,沿着该点的一阶偏导数——雅可比矩阵,朝减小方程的残差的方向前进一步,在新的点上再计算残差和雅可矩阵继续前进,重复这一过程直到残差达到收敛标准,即得到了非线性方程组的解。
因为越靠近解,偏导数的方向越准,收敛速度也越快,所以牛顿法具有二阶收敛特性。
而所谓“某一邻域”是指雅可比方向均指向解的范围,否则可能走向非线性函数的其它极值点,一般来说潮流由平电压即各母线电压(相角为0,幅值为1)启动即在此邻域内。
1.2 一般概念对于非线性代数方程组即 ()0,,,21=n i x x x f ()n i ,2,1= (1-1)在待求量x 的某一个初始计算值()0x 附件,将上式展开泰勒级数并略去二阶及以上的高阶项,得到如下的线性化的方程组()()()()()0000=∆'+x x f x f (1-2)上式称之为牛顿法的修正方程式。
由此可以求得第一次迭代的修正量()()()[]()()0100x f x f x -'-=∆ (1-3)将()0x ∆和()0x 相加,得到变量的第一次改进值()1x 。
接着再从()1x 出发,重复上述计算过程。
因此从一定的初值()0x 出发,应用牛顿法求解的迭代格式为()()()()()k k k x f x x f -=∆' (1-4)()()()k k k x x x ∆+=+1 (1-5)上两式中:()x f '是函数()x f 对于变量x 的一阶偏导数矩阵,即雅可比矩阵J ;k 为迭代次数。
潮流计算的基本算法及使用方法之欧阳理创编

潮流计算的基本算法及使用方法一、二、潮流计算的基本算法1.牛顿-拉夫逊法1.1 概述牛顿-拉夫逊法是目前求解非线性方程最好的一种方法。
这种方法的特点就是把对非线性方程的求解过程变成反复对相应的线性方程求解的过程,通常称为逐次线性化过程,就是牛顿-拉夫逊法的核心。
牛顿-拉夫逊法的基本原理是在解的某一邻域内的某一初始点出发,沿着该点的一阶偏导数——雅可比矩阵,朝减小方程的残差的方向前进一步,在新的点上再计算残差和雅可矩阵继续前进,重复这一过程直到残差达到收敛标准,即得到了非线性方程组的解。
因为越靠近解,偏导数的方向越准,收敛速度也越快,所以牛顿法具有二阶收敛特性。
而所谓“某一邻域”是指雅可比方向均指向解的范围,否则可能走向非线性函数的其它极值点,一般来说潮流由平电压即各母线电压(相角为0,幅值为1)启动即在此邻域内。
1.2一般概念对于非线性代数方程组即 ()0,,,21=n i x x x f ()n i ,2,1= (1-1)在待求量x 的某一个初始计算值()0x 附件,将上式展开泰勒级数并略去二阶及以上的高阶项,得到如下的线性化的方程组()()()()()0000=∆'+x x f x f (1-2)上式称之为牛顿法的修正方程式。
由此可以求得第一次迭代的修正量()()()[]()()0100x f x f x -'-=∆ (1-3)将()0x ∆和()0x 相加,得到变量的第一次改进值()1x 。
接着再从()1x 出发,重复上述计算过程。
因此从一定的初值()0x 出发,应用牛顿法求解的迭代格式为()()()()()k k k x f x x f -=∆' (1-4)()()()k k k x x x ∆+=+1 (1-5)上两式中:()x f '是函数()x f 对于变量x 的一阶偏导数矩阵,即雅可比矩阵J ;k 为迭代次数。
由式(1-4)和式子(1-5)可见,牛顿法的核心便是反复形成求解修正方程式。
潮流计算的主要方法

潮流计算的主要方法
最近几年,随着计算机仿真技术和复杂系统全面发展,潮流计算也受到越来越多的重视。
潮流计算是研究不同电力网络的物理特性和操作规律的一项重要工作。
针对潮流计算的主要方法,总结如下:
一、基于动力学的方法
1. 碰撞模型:根据动力学方法,计算电力系统的运行稳定性。
基于动力学的碰撞模型能够快速而精确地预测两个潮流的变化情况。
2. 时变快速收敛:在碰撞模型的基础上,为快速求解电力系统潮流,提出了时变快速收敛算法。
可以更快地获得潮流解。
二、基于牛顿迭代法的方法
1.牛顿迭代潮流计算方法:根据牛顿迭代法,采用迭代算法,求解电力系统潮流运行状态。
2. 功率流计算方法:计算机基于牛顿迭代法,快速求解节点电能的功率流公式。
可以有效的缩短潮流计算的时间,提高计算效率。
三、基于模糊聚类算法的方法
1. 基于模糊聚类的潮流计算方法:采用模糊聚类算法,对潮流计算进行多维度分析,可以得出最优的潮流结果。
2. 基于模糊划分的多目标模糊控制:根据模糊聚类理论,对潮流算法进行最佳控制,以满足电力网不同优化目标。
四、基于期望最大化的方法
1、基于粒子群优化的潮流计算方法:采用粒子群优化算法,将电力网潮流计算定义为多目标最优化问题,以期望最大化来求解潮流值,提高计算效率。
2、基于遗传算法的潮流计算方法:遗传算法利用进化过程来搜索全局最优解,使用遗传变异原则来改变候选解,以期望最大化来求解潮流计算问题。
一、潮流计算概述、基本方法

主要内容(二)
电力系统状态估计 概述 电力系统运行状态的表征与可观察性 最小二乘估计 不良数据的检测、不良数据的辩识 非二次准则的电力系统状态估计方法简介
电气工程学院
主要内容(三)
电力系统静态安全分析 概述 电力系统静态等值 支络开断模拟 发电机开断模拟 预想事故的自动选择
y5
5
以基尔霍夫第一定律可以列出节点电流方程:
V ) y (V V ) yV y4 (V 2 1 5 3 1 6 1 0 V ) y (V V ) y (V V ) 0 y1 (V 4 2 3 3 2 4 1 2 V ) y (V V ) y (V V ) 0 y2 (V 5 3 3 2 3 5 1 3 V )i y1 (V 4 2 1 V )i y2 (V 5 3 2
.
节点自导纳Yii =节点i加单位电压,其它节点接地 时,节点i向电网注入的电流。 节点互导纳Yji=节点i加单位电压,其它节点接地时, 节点j向电网注入的电流。
电气工程学院
举例
例,有以下三节点网络
2 1 3
z12
z10
z13
导纳矩阵有如下形式,现考虑如何求其中各元素
Y11 Y12 Y13 Y Y Y Y 21 22 23 Y31 Y32 Y33
电气工程学院
举例
形成导纳阵第二列元素 Y12,Y22,Y32。应在节点2加单位电压, 节点1、3接地。
2 1 3
I 2
1 V 2
I 21
z12 z10
I1
潮流计算的公式

潮流计算的公式
近年来,人工智能在各个领域的应用日益广泛,其中有一项技术受到了众多关注,这就是潮流计算。
潮流计算是一种利用机器学习技术去解决复杂问题的方法,它可以帮助企业更好地洞察市场,根据市场潮流更好地定位和涵盖用户,改善用户体验,提高企业竞争力,实现可持续发展。
其核心概念主要集中在“潮流”上,它是一种从大量数据中挖掘出独特的模式,以更好地理解当前的行为模式和趋势的数据挖掘技术,它可以帮助企业分析历史趋势、市场规律以及趋势变化,以便更好地把握未来趋势。
潮流计算的基本公式为中心理念,也是潮流计算实施思路的基础,其原理分以下几步:
①首先,从主题中提取可用的数据,并利用一定的算法进行分类;
②其次,采用相应的数据挖掘技术,从中挖掘出特征,有助于理解模型的内容;
③第三,构建具有有效潮流计算的模型,并加以测试;
④最后,对潮流计算的有效性进行评估,提取出有效的潮流计算公式。
以上就是潮流计算的基本方法。
通过潮流计算技术可以看到更多有用信息,从而解决复杂的挑战,帮助企业发现有价值的信息,发掘潮流变化趋势,有助于企业提高竞争力。
同时,也可以帮助企业更好地洞察用户行为,为用户提供定制化的服务,改善用户体验,从而促
进可持续发展。
潮流计算的发展趋势也越来越明显,近年来,潮流计算的应用越来越广泛,其中包括市场分析、品牌经营和客户关系管理等等。
随着人工智能和机器学习技术的发展,潮流计算也将有更多的发展,它可以帮助企业更好地洞察市场,提高企业的竞争力。
总之,潮流计算公式是一种有效的技术,能够有效地发现和挖掘各种类型的数据,从而有助于企业在市场中发掘价值,提高竞争力,实现可持续发展。
(完整)电力系统潮流计算方法分析

电力系统潮流分析—基于牛拉法和保留非线性的随机潮流姓名:***学号:***1 潮流算法简介1.1 常规潮流计算常规的潮流计算是在确定的状态下.即:通过已知运行条件(比如节点功率或网络结构等)得到系统的运行状态(比如所有节点的电压值与相角、所有支路上的功率分布和损耗等)。
常规潮流算法中的一种普遍采用的方法是牛顿-拉夫逊法.当初始值和方程的精确解足够接近时,该方法可以在很短时间内收敛.下面简要介绍该方法。
1.1。
1牛顿拉夫逊方法原理对于非线性代数方程组式(1-1),在待求量x 初次的估计值(0)x 附近,用泰勒级数(忽略二阶和以上的高阶项)表示它,可获得如式(1-2)的线性化变换后的方程组,该方程组被称为修正方程组。
'()f x 是()f x 对于x 的一阶偏导数矩阵,这个矩阵便是重要的雅可比矩阵J 。
12(,,,)01,2,,i n f x x x i n ==(1-1)(0)'(0)(0)()()0f x f x x +∆=(1—2)由修正方程式可求出经过第一次迭代之后的修正量(0)x ∆,并用修正量(0)x ∆与估计值(0)x 之和,表示修正后的估计值(1)x ,表示如下(1—4).(0)'(0)1(0)[()]()x f x f x -∆=-(1—3)(1)(0)(0)x x x =+∆(1-4)重复上述步骤.第k 次的迭代公式为: '()()()()()k k k f x x f x ∆=-(1—5)(1)()()k k k x x x +=+∆(1-6)当采用直角坐标系解决潮流方程,此时待解电压和导纳如下式:i i i ij ij ijV e jf Y G jB =+=+ (1-7)假设系统的网络中一共设有n 个节点,平衡节点的电压是已知的,平衡节点表示如下.n n n V e jf =+(1-8)除了平衡节点以外的所有2(1)n -个节点是需要求解的量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
潮流计算的基本算法及使用方法一、欧阳光明(2021.03.07)二、 潮流计算的基本算法1.牛顿-拉夫逊法1.1 概述牛顿-拉夫逊法是目前求解非线性方程最好的一种方法。
这种方法的特点就是把对非线性方程的求解过程变成反复对相应的线性方程求解的过程,通常称为逐次线性化过程,就是牛顿-拉夫逊法的核心。
牛顿-拉夫逊法的基本原理是在解的某一邻域内的某一初始点出发,沿着该点的一阶偏导数——雅可比矩阵,朝减小方程的残差的方向前进一步,在新的点上再计算残差和雅可矩阵继续前进,重复这一过程直到残差达到收敛标准,即得到了非线性方程组的解。
因为越靠近解,偏导数的方向越准,收敛速度也越快,所以牛顿法具有二阶收敛特性。
而所谓“某一邻域”是指雅可比方向均指向解的范围,否则可能走向非线性函数的其它极值点,一般来说潮流由平电压即各母线电压(相角为0,幅值为1)启动即在此邻域内。
1.2一般概念对于非线性代数方程组即 ()0,,,21=n i x x x f ()n i ,2,1= (1-1)在待求量x 的某一个初始计算值()0x 附件,将上式展开泰勒级数并略去二阶及以上的高阶项,得到如下的线性化的方程组()()()()()0000=∆'+x x f x f (1-2)上式称之为牛顿法的修正方程式。
由此可以求得第一次迭代的修正量()()()[]()()0100x f x f x -'-=∆ (1-3)将()0x ∆和()0x 相加,得到变量的第一次改进值()1x 。
接着再从()1x 出发,重复上述计算过程。
因此从一定的初值()0x 出发,应用牛顿法求解的迭代格式为()()()()()k k k x f x x f -=∆' (1-4)()()()k k k x x x ∆+=+1 (1-5)上两式中:()x f '是函数()x f 对于变量x 的一阶偏导数矩阵,即雅可比矩阵J ;k 为迭代次数。
由式(1-4)和式子(1-5)可见,牛顿法的核心便是反复形成求解修正方程式。
牛顿法当初始估计值()0x 和方程的精确解足够接近时,收敛速度非常快,具有平方收敛特性。
1.3潮流计算的修正方程运用牛顿-拉夫逊法计算潮流分布时,首先要找出描述电力系统的非线性方程。
这里仍从节点电压方程入手,设电力系统导纳矩阵已知,则系统中某节点(i 节点)电压方程为从而得∑=**••=nj j ij i i U Y U S 1进而有()01=-+*=*•∑j nj ij i i i U Y U jQ P(1-6)式(1-6)中,左边第一项为给定的节点注入功率,第二项为由节点电压求得的节点注入功率。
他们二者之差就是节点功率的不平衡量。
现在有待解决的问题就是各节点功率的不平衡量都趋近于零时,各节点电压应具有的价值。
由此可见,如将式(1-6)作为牛顿-拉夫逊中的非线性函数()0=X F ,其中节点电压就相当于变量X。
建立了这种对应关系,就可列出修正方程式,并迭代求解。
但由于节点电压可有两种表示方式——以直角做表或者极坐标表示,因而列出的迭代方程相应地也有两种,下面分别讨论。
1.3.1 直角坐标表示的修正方程节点电压以直角坐标表示时,令i i i jf e U +=•、j j j jf e U +=•,且将导纳矩阵中元素表示为ij ij ij jB G Y +=,则式(1-7)改变为()()()()01=--+-+∑=nj j j ij ij i i i i jf e jB G jf e jQ P (1-7)再将实部和虚部分开,可得()()[]()()[]⎪⎪⎭⎪⎪⎬⎫=+---=++--∑∑==0011nj j ij j ij i j ij j ij i i nj j ij j ij i j ij j ij i i e B f G e f B e G f Q e B f G f f B e G e P (1-8)这就是直角坐标下的功率方程。
可见,一个节点列出了有功和无功两个方程。
对于PQ 节点(1,,21-=m i ,),给定量为节点注入功率,记为i P '、i Q ',则由式(2-8)可得功率的不平衡量,作为非线性方程()()[]()()[]⎪⎪⎭⎪⎪⎬⎫+---'=∆++--'=∆∑∑==nj j ij j ij i j ij j ij i i i nj j ij j ij i j ij j ij i i i e B f G e f B e G f Q Q e B f G f f B e G e P P 11 (1-9)式中i P ∆、i Q ∆——分别表示第i 节点的有功功率的不平衡量和无功功率的不平衡量。
对于PV 节点(n m m i ,,2,1 ++=),给定量为节点注入有功功率及电压数值,记为i P '、i U ',因此,可以利用有功功率的不平衡量和电压的不平衡量表示出非线性方程,即有()()[]()⎪⎭⎪⎬⎫+-'=∆++--'=∆∑=22221i i i i nj j ij j ij i j ij j ij i i i f e U U e B f G f f B e G e P P(1-10)式中i U ∆为电压的不平衡量。
对于平衡节点(m i =),因为电压数值及相位角给定,所以S s S jf e U +=•也确定,不需要参加迭代求节点电压。
因此,对于n 个节点的系统只能列出()12-n 个方程,其中有功功率方程()1-n 个,无功功率方程()1-m 个,电压方程()m n -个。
将式(1-9)、式(1-10) 非线性方程联立,称为n 个节点系统的非线性方程组,且按泰勒级数在()0i f 、()0i e (m i n i ≠=,,,2,1 )展开,并略去高次项,得到以矩阵形式表示的修正方程如下⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡∆∆∆∆∆∆∆∆⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡∆∆∆∆∆∆∆∆n n p p nn nnnpnpn n n n nn nn np np n n n n pn pn pp pp p p p p pn pn pp pp p p p p n n p p n n p p n n p p n n p p n n pp e f e f e f e f S R S R S R S R N H N H N H N H S R S R S R S R N H N H N H N H L J L J L J L J N H N H N H N H L J L J L J L J N H N H N H N H U P U P Q P Q P 22112211221122112211222222222121222222222121111112121111111112121111222211 (1-11) 上式中雅可比矩阵的各个元素则分别为 将(1-11)写成缩写形式[]⎥⎦⎤⎢⎣⎡∆∆=⎥⎦⎤⎢⎣⎡∆∆⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡∆∆∆e f e f S RL J N HU Q P J 2 (1-12)对雅可比矩阵各元素可做如下讨论:当i j ≠时,对于特定的j ,只有该特定点的i f 和i e 是变量,于是雅可比矩阵中各非对角元素表示为当i j =时,雅可比矩阵中各对角元素的表示式为由上述表达式可知,直角坐标的雅可比矩阵有以下特点:1)雅可比矩阵是()12-n 阶方阵,由于ji ij H H ≠、ji ij N N ≠等等,所以它是一个不对称的方阵。
2)雅可比矩阵中诸元素是节点电压的函数,在迭代过程中随电压的变化而不断地改变。
3)雅可比矩阵的非对角元素与节点导纳矩阵B Y 中对应的非对角元素有关,当B Y 中的ij Y 为零时,雅可比矩阵中相应的ij H 、ij N 、ij J 、ij L 也都为零,因此,雅可比矩阵也是一个稀疏矩阵。
1.3.2 极坐标表示的修正方程在牛顿-拉夫逊计算中,选择功率方程∑=**•=-+nj j ij i i i U Y U jQ P 10作为非线性函数方程,把式中电压向量表示为极坐标形式 则节点功率方程变为 将上式分解成实部和虚部这就是功率方程的极坐标形式,由此可得到描述电力系统的非线性方程。
对于PQ 节点,给定了()()⎪⎪⎭⎪⎪⎬⎫--'=+-'=∆∑∑==nj ij ij ij ij j i i i nj ij ij ij ij j i i i B G U U Q Q B G U U P P 11cos sin sin cos δδδδ()121-=m i 、、 (1-13)对于PV 节点,给定了i P '、i U ',而i Q '未知,式(1-13)中i Q ∆将失去作用,于是PV 节点仅保留i P ∆方程,以求得电压的相位角。
(1-14)对于平衡节点,同样因为s U 、s δ已知,不参加迭代计算。
将式(1-13)、式(1-14)联立,且按泰勒级数展开,并略去高次项后,得出矩阵形式的修正方程⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡∆∆∆∆∆∆⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡∆∆∆∆∆∆n p nnnpn n n n pn pp p p p p n p n p n p n p n p U UU U H H N H N H H H N H N H L J L J L J N H N H N H L J L J L J H H N H N H P P Q P Q P δδδδ 2221112211221122212121212221212121111212111111121211112211(1-15)雅可比矩阵终,对PV 节点,仍可写出两个方程的形式,但其中的元素以零元素代替,从而显示了雅可比矩阵的高度稀疏性。
式中电压幅值的修正量采用U U ∆的形式,并没有什么特殊意义,仅是为了雅可比矩阵中各元素具有相似的表达式。
雅可比矩阵的各元素如下将式(1-15)写成缩写形式⎥⎥⎦⎤⎢⎢⎣⎡∆∆⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡∆∆U U L J N HQ P δ (1-16)以上得到了两种坐标系下的修正方程,这是牛顿-拉夫逊潮流计算中需要反复迭代求解的基本方程式。
2.快速分解法2.1 概述快速分解法的基本思想是:把节点功率表示为电压向量的极坐标方程式,抓主要矛盾,以有功功率误差作为修正电压向量角度的依据,以无功功率误差作为修正电压幅值的依据,把有功功率和无功功率的迭代分开来进行。