数学建模(常用软件+基本算法)

合集下载

数学建模中常用的十种算法

数学建模中常用的十种算法

数学建模中常用的十种算法在数学建模中,有许多种算法可以用来解决不同类型的问题。

下面列举了数学建模中常用的十种算法。

1.线性规划算法:线性规划是一种优化问题,目标是找到一组线性约束条件下使目标函数最大或最小的变量的值。

常用的线性规划算法包括单纯形法、内点法和对偶法等。

2.非线性规划算法:非线性规划是一种目标函数或约束条件中存在非线性项的优化问题。

常见的非线性规划算法有牛顿法、拟牛顿法和遗传算法等。

3.整数规划算法:整数规划是一种线性规划的扩展,约束条件中的变量必须为整数。

常用的整数规划算法包括分支定界法、割平面法和混合整数线性规划法等。

4.动态规划算法:动态规划是一种通过将问题分解为更小的子问题来解决的算法。

它适用于一类有重叠子问题和最优子结构性质的问题,例如背包问题和最短路径问题。

5.聚类算法:聚类是一种将数据集划分为不同群组的算法。

常见的聚类算法有K均值算法、层次聚类法和DBSCAN算法等。

6.回归分析算法:回归分析是一种通过拟合一个数学模型来预测变量之间关系的算法。

常见的回归分析算法有线性回归、多项式回归和岭回归等。

7.插值算法:插值是一种通过已知数据点推断未知数据点的数值的算法。

常用的插值算法包括线性插值、拉格朗日插值和样条插值等。

8.数值优化算法:数值优化是一种通过改变自变量的取值来最小化或最大化一个目标函数的算法。

常见的数值优化算法有梯度下降法、共轭梯度法和模拟退火算法等。

9.随机模拟算法:随机模拟是一种使用概率分布来模拟和模拟潜在结果的算法。

常见的随机模拟算法包括蒙特卡洛方法和离散事件仿真等。

10.图论算法:图论是一种研究图和网络结构的数学理论。

常见的图论算法有最短路径算法、最小生成树算法和最大流量算法等。

以上是数学建模中常用的十种算法。

这些算法的选择取决于问题的特性和求解的要求,使用合适的算法可以更有效地解决数学建模问题。

数学建模常用方法

数学建模常用方法

数学建模常用方法建模常用算法,仅供参考:1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法)2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用M a t l a b作为工具)3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用L i n d o、L i n g o软件实现)4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备)5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中)6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用)7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具)8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的)9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用)10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用M a t l a b进行处理)一、在数学建模中常用的方法:1.类比法2.二分法3.量纲分析法4.差分法5.变分法6.图论法7.层次分析法8.数据拟合法9.回归分析法10.数学规划(线性规划、非线性规划、整数规划、动态规划、目标规划)11.机理分析12.排队方法13.对策方法14.决策方法15.模糊评判方法、16.时间序列方法17.灰色理论方法18.现代优化算法(禁忌搜索算法、模拟退火算法、遗传算法、神经网络)二、用这些方法可以解下列一些模型:优化模型、微分方程模型、统计模型、概率模型、图论模型、决策模型。

数学建模10种常用算法

数学建模10种常用算法

数学建模10种常用算法1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法)2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具)3、线性规划、整数规划、多元规划、二次规划等规划类问 题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现)4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备)5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中)6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用)7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具)8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的)9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用)10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab进行处参数估计C.F.20世纪60年代,随着电子计算机的。

参数估计有多种方法,有最小二乘法、极大似然法、极大验后法、最小风险法和极小化极大熵法等。

数学建模常用算法和模型全集

数学建模常用算法和模型全集

数学建模常用算法和模型全集数学建模是一种将现实世界的问题转化为数学问题,并通过建立数学模型来求解的方法。

在数学建模中,常常会用到各种算法和模型,下面是一些常用的算法和模型的全集。

一、算法1.线性规划算法:用于求解线性规划问题,例如单纯形法、内点法等。

2.非线性规划算法:用于求解非线性规划问题,例如牛顿法、梯度下降法等。

3.整数规划算法:用于求解整数规划问题,例如分支定界法、割平面法等。

4.动态规划算法:用于求解具有最优子结构性质的问题,例如背包问题、最短路径问题等。

5.遗传算法:模拟生物进化过程,用于求解优化问题,例如遗传算法、粒子群算法等。

6.蚁群算法:模拟蚂蚁寻找食物的行为,用于求解优化问题,例如蚁群算法、人工鱼群算法等。

7.模拟退火算法:模拟固体退火过程,用于求解优化问题,例如模拟退火算法、蒙特卡罗模拟等。

8.蒙特卡罗算法:通过随机抽样的方法求解问题,例如蒙特卡罗模拟、马尔科夫链蒙特卡罗等。

9.人工神经网络:模拟人脑神经元的工作原理,用于模式识别和函数逼近等问题,例如感知机、多层感知机等。

10.支持向量机:用于分类和回归问题,通过构造最大间隔超平面实现分类或回归的算法,例如支持向量机、核函数方法等。

二、模型1.线性模型:假设模型的输出与输入之间是线性关系,例如线性回归模型、线性分类模型等。

2.非线性模型:假设模型的输出与输入之间是非线性关系,例如多项式回归模型、神经网络模型等。

3.高斯模型:假设模型的输出服从高斯分布,例如线性回归模型、高斯朴素贝叶斯模型等。

4.时间序列模型:用于对时间序列数据进行建模和预测,例如AR模型、MA模型、ARMA模型等。

5.最优化模型:用于求解优化问题,例如线性规划模型、整数规划模型等。

6.图论模型:用于处理图结构数据的问题,例如最短路径模型、旅行商问题模型等。

7.神经网络模型:用于模式识别和函数逼近等问题,例如感知机模型、多层感知机模型等。

8.隐马尔可夫模型:用于对具有隐藏状态的序列进行建模,例如语音识别、自然语言处理等。

数学建模十大经典算法( 数学建模必备资料)

数学建模十大经典算法(  数学建模必备资料)

建模十大经典算法1、蒙特卡罗算法。

该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时通过模拟可以来检验自己模型的正确性。

2、数据拟合、参数估计、插值等数据处理算法。

比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具。

3、线性规划、整数规划、多元规划、二次规划等规划类问题。

建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo、MATLAB软件实现。

4、图论算法。

这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。

5、动态规划、回溯搜索、分治算法、分支定界等计算机算法。

这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中。

6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法。

这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。

7、网格算法和穷举法。

网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。

8、一些连续离散化方法。

很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。

9、数值分析算法。

如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。

10、图象处理算法。

赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab进行处理。

历年全国数学建模试题及解法赛题解法93A非线性交调的频率设计拟合、规划93B足球队排名图论、层次分析、整数规划94A逢山开路图论、插值、动态规划94B锁具装箱问题图论、组合数学95A飞行管理问题非线性规划、线性规划95B天车与冶炼炉的作业调度动态规划、排队论、图论96A最优捕鱼策略微分方程、优化96B节水洗衣机非线性规划97A零件的参数设计非线性规划97B截断切割的最优排列随机模拟、图论98A一类投资组合问题多目标优化、非线性规划98B灾情巡视的最佳路线图论、组合优化99A自动化车床管理随机优化、计算机模拟99B钻井布局0-1规划、图论00A DNA序列分类模式识别、Fisher判别、人工神经网络00B钢管订购和运输组合优化、运输问题01A血管三维重建曲线拟合、曲面重建01B 公交车调度问题多目标规划02A车灯线光源的优化非线性规划02B彩票问题单目标决策03A SARS的传播微分方程、差分方程03B 露天矿生产的车辆安排整数规划、运输问题04A奥运会临时超市网点设计统计分析、数据处理、优化04B电力市场的输电阻塞管理数据拟合、优化05A长江水质的评价和预测预测评价、数据处理05B DVD在线租赁随机规划、整数规划06A 出版资源配置06B 艾滋病疗法的评价及疗效的预测 07A 中国人口增长预测 07B 乘公交,看奥运 多目标规划 数据处理 图论 08A 数码相机定位 08B 高等教育学费标准探讨09A 制动器试验台的控制方法分析 09B 眼科病床的合理安排 动态规划 10A 10B赛题发展的特点:1.对选手的计算机能力提出了更高的要求:赛题的解决依赖计算机,题目的数据较多,手工计算不能完成,如03B ,某些问题需要使用计算机软件,01A 。

数学建模常用的30个常用算法(python代码)

数学建模常用的30个常用算法(python代码)

数学建模常用的30个常用算法(python代码) 数学建模中使用的算法涉及多个领域,包括优化、统计、机器学习等。

以下是一些在数学建模中常用的30个算法的简要说明和Python代码示例。

请注意,这只是一小部分,具体应用场景和需求可能需要使用其他算法。

1.线性规划(Linear Programming):from scipy.optimize import linprog2.整数规划(Integer Programming):from scipy.optimize import linprog3.非线性规划(Nonlinear Programming):from scipy.optimize import minimize4.蒙特卡洛模拟(Monte Carlo Simulation):import numpy as np5.差分方程(Difference Equations):import numpy as np6.梯度下降法(Gradient Descent):import numpy as np7.贪心算法(Greedy Algorithm):def greedy_algorithm(values, weights, capacity):n = len(values)ratio = [(values[i] / weights[i], i) for i in range(n)]ratio.sort(reverse=True)result = [0] * ntotal_value = 0current_weight = 0for _, i in ratio:if weights[i] + current_weight <= capacity: result[i] = 1current_weight += weights[i]total_value += values[i]return result, total_value8.动态规划(Dynamic Programming):def dynamic_programming(weights, values, capacity): n = len(values)dp = [[0] * (capacity + 1) for _ in range(n + 1)]for i in range(1, n + 1):for w in range(capacity + 1):if weights[i - 1] <= w:dp[i][w] = max(dp[i - 1][w], values[i - 1] + dp[i - 1][w - weights[i - 1]])else:dp[i][w] = dp[i - 1][w]return dp[n][capacity]9.遗传算法(Genetic Algorithm):import numpy as np10.模拟退火算法(Simulated Annealing):import numpy as np11.马尔可夫链(Markov Chains):import numpy as np12.蒙特卡洛树搜索(Monte Carlo Tree Search):import numpy as np13.K均值聚类(K-means Clustering):from sklearn.cluster import KMeans14.主成分分析(Principal Component Analysis):from sklearn.decomposition import PCA15.支持向量机(Support Vector Machine):from sklearn.svm import SVC16.朴素贝叶斯分类器(Naive Bayes Classifier):from sklearn.naive_bayes import GaussianNB17.决策树(Decision Tree):from sklearn.tree import DecisionTreeClassifier18.随机森林(Random Forest):from sklearn.ensemble import RandomForestClassifier19.K最近邻算法(K-Nearest Neighbors):from sklearn.neighbors import KNeighborsClassifier20.多层感知器(Multilayer Perceptron):from sklearn.neural_network import MLPClassifier21.梯度提升机(Gradient Boosting):from sklearn.ensemble import GradientBoostingClassifier22.高斯混合模型(Gaussian Mixture Model):from sklearn.mixture import GaussianMixture23.时间序列分析(Time Series Analysis):import statsmodels.api as sm24.马尔科夫链蒙特卡洛(Markov Chain Monte Carlo):import pymc3 as pm25.局部最小二乘回归(Local Polynomial Regression):from statsmodels.nonparametric.kernel_regression import KernelReg26.逻辑回归(Logistic Regression):from sklearn.linear_model import LogisticRegression27.拉格朗日插值法(Lagrange Interpolation):from scipy.interpolate import lagrange28.最小二乘法(Least Squares Method):import numpy as np29.牛顿法(Newton's Method):def newton_method(f, df, x0, tol=1e-6, max_iter=100):x = x0for i in range(max_iter):x = x - f(x) / df(x)if abs(f(x)) < tol:breakreturn x30.梯度下降法(Gradient Descent):def gradient_descent(f, df, x0, learning_rate=0.01, tol=1e-6, max_iter=100):x = x0for i in range(max_iter):x = x - learning_rate * df(x)if abs(df(x)) < tol:breakreturn x以上代码只是简单示例,实际应用中可能需要根据具体问题进行调整和扩展。

数学建模大赛常用算法

数学建模大赛常用算法

数学建模大赛常用算法
数学建模比赛是一项非常重要的比赛,旨在培养学生的数学建模能力。

在数学建模比赛中,常用的算法有很多,下面我们来介绍一些常用的算法。

1. 图论算法
图论是数学建模中一个非常重要的分支,其应用广泛,包括交通规划、电路设计、网络安全等领域。

图的数据结构包括邻接矩阵和邻接表,常用的算法有最短路径算法、最小生成树算法、拓扑排序算法等。

2. 数值计算算法
数值计算是数学建模中另一个重要的分支,其应用广泛,包括金融、天气预报、物理学等领域。

常用的算法有牛顿迭代法、龙格-库塔法等。

数值计算还包括数值积分、差分方程等方面。

3. 统计学算法
统计学是数学建模中另一个重要的分支,其应用广泛,包括医学、金融、社会学等领域。

常用的算法有假设检验、方差分析等。

统计学还包括回归分析、时间序列分析等方面。

4. 优化算法
优化算法是数学建模中另一个重要的分支,其应用广泛,包括运筹学、金融、工程等领域。

常用的算法有线性规划、整数规划、动态规划等。

总之,数学建模常用的算法非常多,学生需要掌握其中的一些算
法,才能在数学建模比赛中脱颖而出。

数学建模基本算法

数学建模基本算法

数学建模基本算法数学建模是一种通过数学方法来描述和解决实际问题的过程。

在数学建模中,有一些基本的算法被广泛应用,这些算法对于解决各种实际问题具有重要的作用。

本文将介绍数学建模的一些基本算法,包括最优化算法、插值算法和统计分析算法。

最优化算法是数学建模中常用的一类算法,它用于寻找问题的最优解。

其中,最常见的算法之一是线性规划。

线性规划是一种用于求解线性约束条件下的最优解的方法。

它通过建立目标函数和约束条件,将问题转化为线性优化问题,并利用线性规划算法求解最优解。

除了线性规划,还有一些其他的最优化算法,如整数规划、非线性规划和动态规划等,它们在解决实际问题中发挥着重要的作用。

插值算法是数学建模中常用的另一类算法,它用于在已知数据点之间进行数据的估计或预测。

其中,最常见的算法之一是拉格朗日插值法。

拉格朗日插值法通过构造拉格朗日多项式,将已知数据点连接起来,并利用多项式的性质进行数据的估计。

除了拉格朗日插值法,还有一些其他的插值算法,如牛顿插值法和样条插值法等,它们在数据分析和预测中具有重要的应用。

统计分析算法是数学建模中的另一个重要领域,它用于从已有数据中提取有用的信息。

其中,最常见的算法之一是回归分析。

回归分析通过建立回归模型,利用已有数据来预测和解释变量之间的关系。

除了回归分析,还有一些其他的统计分析算法,如聚类分析和因子分析等,它们在数据挖掘和模式识别中具有广泛的应用。

除了最优化算法、插值算法和统计分析算法,数学建模中还有一些其他的基本算法,如数值积分算法、概率分布算法和图论算法等。

这些算法通过数学方法对实际问题进行建模和求解,为解决实际问题提供了有力的工具和方法。

数学建模是一种通过数学方法来描述和解决实际问题的过程。

在数学建模中,有一些基本的算法被广泛应用,包括最优化算法、插值算法和统计分析算法。

这些算法在解决实际问题中发挥着重要的作用,通过数学建模,我们可以更好地理解和解决实际问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

主要用到的软件有:Matlab、Mathmatic、Lingo/LinDo、SAS、SPSS。

其中前两个主要为计算软件(也可做优化),中间的那个为优化软件,最后两个为统计分析软件。

十类算法的详细说明
1、蒙特卡罗算法:
在大多数建模赛题中都离不开计算机的仿真,随机性模拟是非常常见的算法之一。

举个例子就是97年的A题,每个零件都有自己的标定值,也都有自己的容差等级,而求解最优的组合方案将要面对着的是一个极其复杂的公式和108种容差选取方案,根本不可能去解析求解的,那如何去找到最优的方案呢?随机性模拟搜索最优方案就是其中的一种方法,在每个零件可行的区间中按照正态分布随机的选取一个标定值和选取一个容差值作为一种方案,然后通过蒙特卡罗算法仿真出大量的方案,从中选取一个最佳的。

另一个例子就是去年的彩票第二问,要求设计一种更好的方案,首先方案的优劣决定于很多复杂的因素,同样不可能刻画出一个模型进行求解,只能靠随机仿真模拟。

2、数据拟合、参数估计、插值等算法:
数据拟合在很多赛题中有应用,与图形处理有关的问题很多与拟合有关系,一个例子就是98年美赛A题,生物组织切片的三维插值处理,94年A题逢山开路,山体海拔高度的插值计算,还有吵的沸沸扬扬可能会考的非典问题也要用到数据拟合算法,观察数据的走向进行处理。

此类问题在Matlab中有很多数据处理现成的函数可以调用,熟悉Matlab,这些方法都能游刃有余的做好。

3、规划类问题算法:
竞赛中很多问题都和数学规划有关,可以说不少的模型都可以归结为一组不等式组作为约束条件、几个函数表达式作为目标函数的问题,遇到这类问题,求解就是关键了,比如98B,用很多不等式完全可以把问题刻画清楚,因此列举出规划后用Lindo、Lingo等软件来进行解决比较方便,所以还需要熟悉这两个软件。

4、图论问题:
98B、00B、95锁具装箱等问题体现了图论问题的重要性,这类问题算法有很多,包括:Dijkstra、Floyd、Prim、Bellman-Ford,最大流,二分匹配等问题。

每一个算法认真的话都应该写一遍,否则到比赛时再写就晚了。

5、计算机算法设计中的问题:
计算机算法设计包括很多内容:动态规划、回溯搜索、分治算法、分支定界。

比如92B用分支定界法,97B是典型的动态规划问题,此外98B体现了分治算法。

这方面问题和acm 中的问题类似,推荐的书籍有《计算机算法设计与分析》电子工业出版社等与计算机算法有关的书。

6、最优化理论的三大非经典算法:
模拟退火法、神经网络、遗传算法。

这十几年来最优化理论有了飞速发展,这三类算法发展很快,近几年的赛题越来越复杂,很多问题没有什么很好的模型可以借鉴,于是这三类算法很多时候可以派上用场,比如:97A的模拟退火算法、00B的神经网络分类算法、象01B 这种难题也可以使用神经网络、还有美国竞赛89A也和BP算法有关系,当时是86年刚提出BP算法,89年就考了,说明赛题可能是当今前沿科技的抽象体现。

03B伽马刀问题也是目前研究的课题,目前算法最佳的是遗传算法。

7、网格算法和穷举算法:
网格算法和穷举法一样,只是网格法是连续问题的穷举。

比如要求在N个变量情况下的最
优化问题,那么可以对这些变量可取的空间进行采点,比如在[a,b]区间内取M+1个点,就是在a、a+(b-a)/M、a+2*(b-a)/M、……、b那么这样循环就需要进行(M+1)^N次运算,所以计算量很大。

比如97年A题、99年B题都可以用网格法搜索,这种方法最好在运算速度叫快的计算机中进行,还有要用高级语言来做,最好不要用Matlab做网格,否则会算很久的。

穷举法大家都熟悉,就不说了。

8、一些连续离散化方法:
大部分物理问题的编程解决,都和这种方法有一定的联系,物理问题是反映我们生活在一个连续的世界中,计算机求解只认离散的变量,所以需要将连续量进行离散处理,这种方法应用很广,大都和上面的很多算法有关,事实上,网格算法、蒙特卡罗算法、模拟退火都用了这个思想。

9、数值分析算法:
这类算法是针对高级语言而专门设的,如果你用的是Matlab、Mathematica,大可不必准备,因为象数值分析中有很多函数一般的数学工具是具备的。

10、图象处理算法:
01A中需要你会读bmp图象、98美赛A需要你知道三维插值计算,03B要求更高,不但需要编程计算还要进行处理,而数模论文中也有很多图片需要展示,因此图象处理就是关键,做好这类问题,重要的是把Matlab学好,特别是图象处理的部分。

(这十个算法最好自己去查一下具体是怎么回事,这个算是比较重点的东西了)。

相关文档
最新文档