数学建模常用的十种解题方法
数学建模中常用的十种算法

数学建模中常用的十种算法在数学建模中,有许多种算法可以用来解决不同类型的问题。
下面列举了数学建模中常用的十种算法。
1.线性规划算法:线性规划是一种优化问题,目标是找到一组线性约束条件下使目标函数最大或最小的变量的值。
常用的线性规划算法包括单纯形法、内点法和对偶法等。
2.非线性规划算法:非线性规划是一种目标函数或约束条件中存在非线性项的优化问题。
常见的非线性规划算法有牛顿法、拟牛顿法和遗传算法等。
3.整数规划算法:整数规划是一种线性规划的扩展,约束条件中的变量必须为整数。
常用的整数规划算法包括分支定界法、割平面法和混合整数线性规划法等。
4.动态规划算法:动态规划是一种通过将问题分解为更小的子问题来解决的算法。
它适用于一类有重叠子问题和最优子结构性质的问题,例如背包问题和最短路径问题。
5.聚类算法:聚类是一种将数据集划分为不同群组的算法。
常见的聚类算法有K均值算法、层次聚类法和DBSCAN算法等。
6.回归分析算法:回归分析是一种通过拟合一个数学模型来预测变量之间关系的算法。
常见的回归分析算法有线性回归、多项式回归和岭回归等。
7.插值算法:插值是一种通过已知数据点推断未知数据点的数值的算法。
常用的插值算法包括线性插值、拉格朗日插值和样条插值等。
8.数值优化算法:数值优化是一种通过改变自变量的取值来最小化或最大化一个目标函数的算法。
常见的数值优化算法有梯度下降法、共轭梯度法和模拟退火算法等。
9.随机模拟算法:随机模拟是一种使用概率分布来模拟和模拟潜在结果的算法。
常见的随机模拟算法包括蒙特卡洛方法和离散事件仿真等。
10.图论算法:图论是一种研究图和网络结构的数学理论。
常见的图论算法有最短路径算法、最小生成树算法和最大流量算法等。
以上是数学建模中常用的十种算法。
这些算法的选择取决于问题的特性和求解的要求,使用合适的算法可以更有效地解决数学建模问题。
上海市考研数学建模常用方法总结

上海市考研数学建模常用方法总结在上海市的考研数学建模中,有一些常用的方法,它们在解决问题过程中发挥着重要的作用。
本文将对这些常用方法进行总结,包括线性回归分析、优化算法、图论分析以及偏微分方程等方法。
通过对这些方法的学习与应用,考生能够更好地应对数学建模考试。
一、线性回归分析线性回归分析被广泛应用于数学建模过程中的数据拟合与预测问题。
在考研数学建模中,可以根据给定的数据集,利用最小二乘法求解最佳拟合直线或平面,从而对数据进行分析与预测。
线性回归分析具有计算简单、易于理解和应用的优点,因此在考试中经常使用。
二、优化算法优化算法是解决数学建模问题的重要手段之一。
通过建立数学模型并运用优化算法,可以求解最优化问题,如最大值、最小值等。
上海市考研数学建模中常用的优化算法包括求解线性规划问题的单纯形法以及求解非线性规划问题的梯度下降法、遗传算法等。
这些算法在实际问题中表现出良好的效果,考生需要熟悉其原理和应用。
三、图论分析图论分析是数学建模中常用的方法之一,它通过建立图模型来描述问题的结构和关系,并运用图论算法进行分析和求解。
在上海市考研数学建模中,常用的图论方法包括最短路径算法、最小生成树算法等。
通过对问题进行建模与分析,考生可以快速找到问题的最优解,提高解题效率。
四、偏微分方程偏微分方程是数学建模中的重要工具,它广泛应用于物理、工程和生物等领域。
在上海市考研数学建模中,通过建立适当的偏微分方程模型,可以对实际问题进行精确描绘和数值模拟。
常见的偏微分方程方法包括有限差分法、有限元法等。
考生需要掌握这些方法的基本原理和应用,以应对考试中的相关问题。
总结:在上海市考研数学建模中,线性回归分析、优化算法、图论分析以及偏微分方程等方法是常用且重要的。
考生需要通过对这些方法的学习与应用,提高数学建模的能力与水平。
除了掌握方法的原理和应用,考生还应该在实践中多加练习,尝试解决不同类型的数学建模问题,从而提升解题能力与经验。
数学建模方法-精品文档资料整理

数学建模方法一、机理分析法从基本物理定律以及系统的结构数据来推导出模型。
1. 比例分析法--建立变量之间函数关系的最基本最常用的方法。
2. 代数方法--求解离散问题(离散的数据、符号、图形)的主要方法。
3. 逻辑方法--是数学理论研究的重要方法,对社会学和经济学等领域的实际问题,在决策,对策等学科中得到广泛应用。
4. 常微分方程--解决两个变量之间的变化规律,关键是建立"瞬时变化率"的表达式。
5. 偏微分方程--解决因变量与两个以上自变量之间的变化规律。
二、数据分析法从大量的观测数据利用统计方法建立数学模型。
1. 回归分析法--用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法。
2. 时序分析法--处理的是动态的相关数据,又称为过程统计方法。
3. 回归分析法--用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法。
4. 时序分析法--处理的是动态的相关数据,又称为过程统计方法。
三、仿真和其他方法1. 计算机仿真(模拟)--实质上是统计估计方法,等效于抽样试验。
①离散系统仿真--有一组状态变量。
②连续系统仿真--有解析表达式或系统结构图。
2. 因子试验法--在系统上作局部试验,再根据试验结果进行不断分析修改,求得所需的模型结构。
3. 人工现实法--基于对系统过去行为的了解和对未来希望达到的目标,并考虑到系统有关因素的可能变化,人为地组成一个系统。
(参见:齐欢《数学模型方法》,华中理工大学出版社,1996)二、风扇的最优化布局设计为你上课的教室安装风扇,请你做风扇的最优化布局设计;建模提示:(1)在风扇数目一定的情况下,风扇的位置不同,效果也不同,是否一定存在一个最好的布局?(2)在风扇数目不定的情况下,就有一个安装多少台风扇为最佳方案的问题,自然也应该存在一个最佳数量结果。
数学建模十大经典算法

数学建模十大经典算法数学建模是将现实问题抽象化成数学问题,并通过数学模型和算法进行解决的过程。
在数学建模中,常用的算法能够帮助我们分析和求解复杂的实际问题。
以下是数学建模中的十大经典算法:1.线性规划算法线性规划是一种用于求解线性约束下的最优解的方法。
经典的线性规划算法包括单纯形法、内点法和对偶理论等。
这些算法能够在线性约束下找到目标函数的最大(小)值。
2.整数规划算法整数规划是在线性规划的基础上引入了整数变量的问题。
经典的整数规划算法包括分枝定界法、割平面法和混合整数线性规划法。
这些算法能够在整数约束下找到目标函数的最优解。
3.动态规划算法动态规划是一种将一个问题分解为更小子问题进行求解的方法。
经典的动态规划算法包括背包问题、最短路径问题和最长公共子序列问题等。
这些算法通过定义递推关系,将问题的解构造出来。
4.图论算法图论是研究图和图相关问题的数学分支。
经典的图论算法包括最小生成树算法、最短路径算法和最大流算法等。
这些算法能够解决网络优化、路径规划和流量分配等问题。
5.聚类算法聚类是将相似的数据点划分为不相交的群体的过程。
经典的聚类算法包括K均值算法、层次聚类算法和密度聚类算法等。
这些算法能够发现数据的内在结构和模式。
6.时间序列分析算法时间序列分析是对时间序列数据进行建模和预测的方法。
经典的时间序列分析算法包括平稳性检验、自回归移动平均模型和指数平滑法等。
这些算法能够分析数据中的趋势、周期和季节性。
7.傅里叶变换算法傅里叶变换是将一个函数分解成一系列基础波形的过程。
经典的傅里叶变换算法包括快速傅里叶变换和离散傅里叶变换等。
这些算法能够在频域上对信号进行分析和处理。
8.最优化算法最优化是研究如何找到一个使目标函数取得最大(小)值的方法。
经典的最优化算法包括梯度下降法、共轭梯度法和遗传算法等。
这些算法能够找到问题的最优解。
9.插值和拟合算法插值和拟合是通过已知数据点来推断未知数据点的方法。
经典的插值算法包括拉格朗日插值和牛顿插值等。
数学建模方法归类(很全很有用)

在数学建模中常用的方法:类比法、二分法、量纲分析法、差分法、变分法、图论法、层次分析法、数据拟合法、回归分析法、数学规划(线性规划,非线性规划,整数规划,动态规划,目标规划)、机理分析、排队方法、对策方法、决策方法、模糊评判方法、时间序列方法、灰色理论方法、现代优化算法(禁忌搜索算法,模拟退火算法,遗传算法,神经网络)。
用这些方法可以解下列一些模型:优化模型、微分方程模型、统计模型、概率模型、图论模型、决策模型。
拟合与插值方法(给出一批数据点,确定满足特定要求的曲线或者曲面,从而反映对象整体的变化趋势):matlab可以实现一元函数,包括多项式和非线性函数的拟合以及多元函数的拟合,即回归分析,从而确定函数;同时也可以用matlab实现分段线性、多项式、样条以及多维插值。
在优化方法中,决策变量、目标函数(尽量简单、光滑)、约束条件、求解方法是四个关键因素。
其中包括无约束规则(用fminserch、fminbnd实现)线性规则(用linprog实现)非线性规则、(用fmincon实现)多目标规划(有目标加权、效用函数)动态规划(倒向和正向)整数规划。
回归分析:对具有相关关系的现象,根据其关系形态,选择一个合适的数学模型,用来近似地表示变量间的平均变化关系的一种统计方法(一元线性回归、多元线性回归、非线性回归),回归分析在一组数据的基础上研究这样几个问题:建立因变量与自变量之间的回归模型(经验公式);对回归模型的可信度进行检验;判断每个自变量对因变量的影响是否显著;判断回归模型是否适合这组数据;利用回归模型对进行预报或控制。
相对应的有线性回归、多元二项式回归、非线性回归。
逐步回归分析:从一个自变量开始,视自变量作用的显著程度,从大到地依次逐个引入回归方程:当引入的自变量由于后面变量的引入而变得不显著时,要将其剔除掉;引入一个自变量或从回归方程中剔除一个自变量,为逐步回归的一步;对于每一步都要进行值检验,以确保每次引入新的显著性变量前回归方程中只包含对作用显著的变量;这个过程反复进行,直至既无不显著的变量从回归方程中剔除,又无显著变量可引入回归方程时为止。
数学建模方法大汇总

数学建模方法大汇总数学建模是数学与实际问题相结合,通过建立数学模型来解决实际问题的一种方法。
在数学建模中,常用的方法有很多种,下面将对常见的数学建模方法进行大汇总。
1.描述性统计法:通过总结、归纳和分析数据来描述现象和问题,常用的统计学方法有平均值、标准差、频率分布等。
2.数据拟合法:通过寻找最佳拟合曲线或函数来描述和预测数据的规律,常用的方法有最小二乘法、非线性优化等。
3.数理统计法:通过样本数据对总体参数进行估计和推断,常用的方法有参数估计、假设检验、方差分析等。
4.线性规划法:建立线性模型,通过线性规划方法求解最优解,常用的方法有单纯形法、对偶理论等。
5.整数规划法:在线性规划的基础上考虑决策变量为整数或约束条件为整数的情况,常用的方法有分支定界法、割平面法等。
6.动态规划法:通过递推关系和最优子结构性质建立动态规划模型,通过计算子问题的最优解来求解原问题的最优解,常用的方法有最短路径算法、最优二叉查找树等。
7.图论方法:通过图的模型来描述和求解问题,常用的方法有最小生成树、最短路径、网络流等。
8.模糊数学法:通过模糊集合和隶属函数来描述问题,常用的方法有模糊综合评价、模糊决策等。
9.随机过程法:通过概率论和随机过程来描述和求解问题,常用的方法有马尔可夫过程、排队论等。
10.模拟仿真法:通过构建系统的数学模型,并使用计算机进行模拟和仿真来分析问题,常用的方法有蒙特卡洛方法、事件驱动仿真等。
11.统计回归分析法:通过建立自变量与因变量之间的关系来分析问题,常用的方法有线性回归、非线性回归等。
12.优化方法:通过求解函数的最大值或最小值来求解问题,常用的方法有迭代法、梯度下降法、遗传算法等。
13.系统动力学方法:通过建立动力学模型来分析系统的演化过程,常用的方法有积分方程、差分方程等。
14.图像处理方法:通过数学模型和算法来处理和分析图像,常用的方法有小波变换、边缘检测等。
15.知识图谱方法:通过构建知识图谱来描述和分析知识之间的关系,常用的方法有图论、语义分析等。
数学建模大赛常用算法

数学建模大赛常用算法
数学建模比赛是一项非常重要的比赛,旨在培养学生的数学建模能力。
在数学建模比赛中,常用的算法有很多,下面我们来介绍一些常用的算法。
1. 图论算法
图论是数学建模中一个非常重要的分支,其应用广泛,包括交通规划、电路设计、网络安全等领域。
图的数据结构包括邻接矩阵和邻接表,常用的算法有最短路径算法、最小生成树算法、拓扑排序算法等。
2. 数值计算算法
数值计算是数学建模中另一个重要的分支,其应用广泛,包括金融、天气预报、物理学等领域。
常用的算法有牛顿迭代法、龙格-库塔法等。
数值计算还包括数值积分、差分方程等方面。
3. 统计学算法
统计学是数学建模中另一个重要的分支,其应用广泛,包括医学、金融、社会学等领域。
常用的算法有假设检验、方差分析等。
统计学还包括回归分析、时间序列分析等方面。
4. 优化算法
优化算法是数学建模中另一个重要的分支,其应用广泛,包括运筹学、金融、工程等领域。
常用的算法有线性规划、整数规划、动态规划等。
总之,数学建模常用的算法非常多,学生需要掌握其中的一些算
法,才能在数学建模比赛中脱颖而出。
数学建模各种分析方法

数学建模各种分析方法数学建模是指将实际问题转化为数学问题,然后利用数学方法求解的过程。
在数学建模中,有各种各样的分析方法可以辅助研究人员进行问题分析和求解。
下面将介绍一些常用的数学建模分析方法。
1.计算方法:计算方法是数学建模中最基础也是最常用的方法之一、它可以包括求解方程组、数值积分、数值微分、插值与拟合、数值优化等。
通过这些计算方法,可以将实际问题转化为数学模型,然后利用计算机进行数值计算和模拟实验。
2.统计分析方法:统计分析在数学建模中也起着非常重要的作用。
它可以用来分析数据、建立概率模型、进行参数估计和假设检验等。
统计分析可以帮助研究人员从大量数据中提取有用的信息,深入分析问题的特征和规律,为问题解决提供参考。
3.线性规划模型:线性规划是一种优化模型,常用于解决资源分配、生产计划、物流运输等问题。
线性规划模型的目标是最大化或最小化一些线性函数,同时满足一系列线性等式或不等式约束。
通过线性规划模型,可以确定最优决策和最优解。
4.非线性规划模型:非线性规划是一种更一般的优化模型,用于解决非线性约束条件下的最优化问题。
非线性规划模型常用于经济管理、工程设计、生物医学等领域。
非线性规划模型的求解较复杂,需要借助数值计算和优化算法。
5.动态规划模型:动态规划是一种用来解决决策问题的数学方法,其特点是将问题分解为多个阶段,并利用最优子结构的性质进行递推求解。
动态规划模型常用于决策路径规划、资源调度、序列比对等问题。
它优化了逐步贪心法的局部最优解,能够得到全局最优解。
6.图论模型:图论是一种数学工具,用于研究图或网络结构及其属性。
图论模型在数学建模中可以用来分析网络拓扑、路径优化、最短路径、最小生成树等问题。
图论模型的特点是简洁明了,适用于复杂问题的分析和求解。
7.随机过程模型:随机过程是一种描述随机变量随时间变化的数学模型,常用于建立概率模型和分析具有随机性的系统。
随机过程模型常用于金融风险评估、天气预测、信号处理、优化设计等问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学建模常用的十种解题方法 摘要
当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言,把它表述为数学式子,也就是数学模型,然后用通过计算得到的模型结果来解释实际问题,并接受实际的检验。
这个建立数学模型的全过程就称为数学建模。
数学建模的十种常用方法有蒙特卡罗算法;数据拟合、参数估计、插值等数据处理算法;解决线性规划、整数规划、多元规划、二次规划等规划类问题的数学规划算法;图论算法;动态规划、回溯搜索、分治算法、分支定界等计算机算法;最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法;网格算法和穷举法;一些连续离散化方法;数值分析算法;图象处理算法。
关键词:数学建模;蒙特卡罗算法;数据处理算法;数学规划算法;图论算法 一、蒙特卡罗算法
蒙特卡罗算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法。
在工程、通讯、金融等技术问题中, 实验数据很难获取, 或实验数据的获取需耗费很多的人力、物力, 对此, 用计算机随机模拟就是最简单、经济、实用的方法; 此外, 对一些复杂的计算问题, 如非线性议程组求解、最优化、积分微分方程及一些偏微分方程的解⑿, 蒙特卡罗方法也是非常有效的。
一般情况下, 蒙特卜罗算法在二重积分中用均匀随机数计算积分比较简单, 但精度不太理想。
通过方差分析, 论证了利用有利随机数, 可以使积分计算的精度达到最优。
本文给出算例, 并用MA TA LA B 实现。
1蒙特卡罗计算重积分的最简算法-------均匀随机数法
二重积分的蒙特卡罗方法(均匀随机数)
实际计算中常常要遇到如()dxdy y x f D ⎰⎰,的二重积分, 也常常发现许多时候被积函数的原函数很难求出, 或者原函数根本就不是初等函数, 对于这样的重积分, 可以设计一种蒙特卡罗的方法计算。
定理 1 )1( 设式()y x f ,区域 D 上的有界函数, 用均匀随机数计算()⎰⎰D dxdy
y x f ,的方法:
(l) 取一个包含D 的矩形区域Ω,a ≦x ≦b, c ≦y ≦d , 其面积A =(b 一a) (d 一c) ;
()j i y x ,,i=1,…,n 在Ω上的均匀分布随机数列,不妨设()j
i y x ,, j=1,…k 为落在D 中的k 个随机数,
则n 充分大时, 有
定理2 用定理1的公式(1)作近似计算时,其方差为
证略。
2 蒙特卡罗计算重积分的一般方法-----任意随机数法
2.1 二重积分的蒙特卡罗算法(一般随机数)
定理3 设()y x f ,区域D 上的有界函数,用一般的随机数计算()⎰⎰D dxdy y x f ,的方法:
(l) 取一个包含D 的矩形区域Ω,a ≦x ≦b, c ≦y ≦d , 其面积A =(b 一a) (d 一c) ;
取任一概率密度函数()y x g ,,满足
()⎰⎰Ω=1,dxdy y x g ; ()i i y x ,,i=1,…,n,是以()y x g ,为概率密度的随机数列,设()i i y x ,,i-1,…k,为落在D 中的随机数,则n 充分大时,有
证略。
3 蒙特卡罗计算重积分的最优算法—有利随机数法
任意随机数都能用于积分计算, 对于不同的随机数, 计算结果的方差显然不同, 在定理 3 中, 取
时,计算方差为零,即方差最小,
称为有利密度函数,以()y x g ,为概率密度的随机数称为有利随
机数。
这样得到方差最优的蒙特卡罗算法, 叙述如下:
定理5 根据二重积分的最优蒙特卡罗算法(有利随机数), 设()y x f ,区域D 上的有界函数,()y x f ,≧0,那么按如下步骤得到
()⎰⎰D dxdy y x f ,方差最优值。
(l) 取一个包含D 的矩形区域Ω; 取有利概率密度
其中c=()⎰⎰D dxdy y x f ,; ()i i y x ,,i=1,…,n,是以()y x g ,为概率密度的随机数列,设()i i y x ,,i-1,…k,为落在D
中的随机数,则n充分大时,有
实际计算中, 由于c 是要计算的, 不可能事先得到, 所以只能先估算c 。
二、数据处理算法
数据处理算法有数据拟合、参数估计、插值等,比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具。
1数据拟合
在实验中,实验和戡测常常会产生大量的数据。
为了解释这些数据或者根据这些数据做出预测、判断,给决策者提供重要的依据。
需要对测量数据进行拟合,寻找一个反映数据变化规律的函数。
它所处理的数据量大而且不能保证每一个数据没有误差,所以要求一个函数严格通过每一个数据点是不合理的。
数据拟合方法求拟合函数。
例:在某化学反应中,测得生成物的质量浓度y(103-g/cm3)与时间t(min)的
关系如表所示
显然,连续函数关系y(t)是客观存在的。
但是通过表中的数据不可能确切地得到这种关系。
何况,由于仪器和环境的影响,测量数据难免有误差。
因此只能寻求一个近拟表达式
y= (t)
寻求合理的近拟表达式,以反映数据变化的规律,这种方法就是数据拟合方法。
数据拟合需要解决两个问题:第一,选择什么类型的函数ϕ(t)作为拟合函数(数学模型);第二,对于选定的拟合函数,如何确定拟合函数中的参数。
数学模型应建立在合理假设的基础上,假设的合理性首先体现在选择某种类型的拟合函数使之符合数据变化的趋势(总体的变化规律)。
拟合函数的选择比较灵活,可以选择线性函数、多项式函数、指数函数、三角函数或其它函数,这应根据数据分布的趋势作出选择。
为了问题叙述的方便,将例1的数据表写成一般的形式
(1).线性拟合(线性模型)
假设拟合函数是线性函数,即拟合函数的图形是一条平面上的直线。
而表中的数据点未能精确地落在一条直线上的原因是实验数据的误差。
则下一步是确定函数 y= a + b x
中系数a 和b 各等于多少?从几何背景来考虑,就是要以a 和b 作为待定系数,确定一条平面直线使得表中数据所对应的10个点尽可能地靠近这条直线。
一般来讲,数据点将不会全部落在这条直线上,如果第k 个点的数据恰好落在这条直线上,则这个点的坐标满足直线的方程,即
a+bx k =y k
如果这个点不在直线上,则它的坐标不满足直线方程,有一个绝对值为|a+bx k -y k |的差异(残差)。
于是全部点处的总误差是∑=10
1k |a+bx k -y k |
这是关于a 和b 的一个二元函数,合理的做法是选取a 和b ,使得这个函数取最小值。
但是在实际求解问题时为了操作上的方便,常常是求a 和b 使得函数 F ()b a ,=∑=10
1k (a+bx k -y k )2
达到极小。
为了求该函数的极小值点,令
得
求解这个二元线性方程组便得待定系数a 和b ,从而得线性拟合函数y=a+bx 。
下图中直线是数据的线性拟合的结果。
(2).二次函数拟合(二次多项式模型)
假设拟合函数不是线性函数,而是一个二次多项式函数。
即拟合函数的图形是一条平面上的抛物线,而表中的数据点未能精确地落在这条抛物线上的原因是实验数据的误差。
则下一步是确定函数
y=a
0+a
1
x+a
2
x2
中系数a
0,a
1
和a
2
各等于多少?从几何背景来考虑,就是要以a
,a
1
和a
2
为待定
系数,确定二次曲线使得表中数据所对应的10个点尽可能地靠近这条曲线。
一般来讲,数据点将不会全部落在这条曲线上,如果第k个点的数据恰好落在曲线上,则这个点的坐标满足二次曲线的方程,即
a 0+a
1
x
k
+a
2
x
k
2=y
k
这是关于a
0,a
1
和a
2
的一个三元函数,合理的做法是选取a
,a
1
和a
2
,使得这个
函数取最小值。
为了求该函数的极小值点,令得
这是关于待定系数a
0,a
1
和a
2
的线性方程组,写成等价的形式为
这就是法方程,求解这一方程组可得二次拟合函数中的三个待定系数。
下图反映了例题所给数据的二次曲线拟合的结果
(3)数据的n 次多项式拟合(略)
2.参数估计
数学建模的一个重要工作是建立变量间的数学关系式,但公式中总是涉及一些参数。
求模型中的参数的估计值有三种常用的方法:图解法,统计法,机理分析法 。
(1)图解法:对经验模型的精度不高,只需对参数做出粗略估计时刻采用图解法。
(2)统计法:参数估计的统计处理,往往用最小二乘法估计。
(3)机理分析法:统计分析法应用于变量间存在相关关系的情形,并且需要较多数据位基础。
3.插值
插值的基本思想 ·
◎已知有n +1个节点()j y x ,j ,j = 0,1,…, n ,其中j x 互不相同,节点(j j y x )可看成由某个函数 y= f (x )产生;
◎构造一个相对简单的函数 y=P(x);
◎使P 通过全部节点,即 P (k x ) = k y ,k=0,1,…, n ;
◎用P (x)作为函数f ( x )的近似。