新人教版八年级数学上《积的乘方》
积的乘方人教版数学八年级上学期(完整版)

板书设计
积的乘方
积的乘方的法则
语言叙述 积的乘方,把积的每一个因式分别乘方,再把所得的幂相乘.
符号叙述 (ab)n anbn (n是正整数)
.
作业布置【知识技能类作业】必做题:
1.计算:
(1)(ab)8; (2)(2m)3;
(3)(-xy)5;
(4)(5ab2)3; (5)(2×102)2; (6)(-3×103)3.
(4×3)2与42×32相等;(2×5)3与23×53相等.
新知讲解
看看运算过程中用到哪些运算律,从运算结果看能发现什么规律?
(1) (ab)2 =(ab)·(ab)=(a·a)·(b·b)2= a2( )b( ) (2) (ab)3 =_(_a_b_)_·__(_a_b_)_·__(_a_b_)__=(_a_·__a_·__a_)_·__(_b__·__b__·__b_)_3= a3( )b( )
(am)n=___a_m_n_ (m,n都是正整数).
幂的乘方,底数不变,指数相乘.
新知讲解
思考:
计算:(1) (4×3)2与42×32;(2) (2×5)3与23×53. 填空: ∵ (4×3)2 =1_2_2___=_1_4_4__ 42×3216=×__9___144=_____, ∴ (4×3)2=___42×32 ∵ (2×5)3 =1_0_3__1_0=0_0____ 23×538×=_1_2_5____1_0=0_0____, ∴ (2×5)3=___23×53 你发现了什么?
解:(1)原式=a8b8;
(2)原式=23•m3=8m3;
(3)原式=(-x)5•y5=-x5y5;
(4)原式=53•a3•(b2)3=125a3b6;
人教版八年级数学上册积的乘方

2、计算:
(1)(-2x2y3)3 (2) (-3a3b2c)4 答案 (1) -8x6y9 答案(2) 81a12b8c4
试一试:
1 计算: a3 ·a4·a+(a2)4+(-2a4)2 解:原式=a3+4+1+a2×4+(-2)2 ·(a4)2
=a8+a8+4a8 =6a8
2 计算: 2(x3)2 ·x3-(3x3)3+(5x)2 ·x7
解:原式=2x6 ·x3-27x9+25x2 ·x7
=2x9-27x9+25x9 =0 注意:运算顺序是先乘方,再乘除, 最后算加减。
一起探讨:(0.04)2004×[(-5)2004]2=? 解法一: (0.04)2004×[(-5)2004]2
=(0.22)2004 × 54008
=(0.2)4008 × 54008 =(0.2 ×5)4008 =14008
=1
解法二: (0.04)2004×[(-5)2004]2
=(0.04)2004 × [(-5)2]2004 = (0.04)2004 ×(25)2004 =(0.04×25)2004 =12004 =1 说明:逆用积的乘方法则 anbn = (ab)n可 以解一些复杂的计算。
小结: 1、本节课的主要内容: 积的乘方
问题;
(m,n都是正整数)
若已知一个正方体的棱长为2×103 cm ,
你能计算出它的体积是多少吗?
2、计算: (2×3)2与22 × 32,你会发现什么? 填空:
∵ (2×3)2= 62 = 36 22 ×32= 4×9 = 36
∴ (2×3)2 = 22 × 32
n个ab
八年级上册人教版数学积的乘方

八年级上册人教版数学积的乘方一、积的乘方的定义。
1. 文字表述。
- 积的乘方,先把积中的每一个乘数分别乘方,再把所得的幂相乘。
2. 公式表示。
- 对于(ab)^n(n为正整数),根据积的乘方的定义有(ab)^n = a^n× b^n。
- 这个公式可以推广到多个因数的积的乘方,例如(abc)^n=a^n× b^n× c^n(n 为正整数)。
二、积的乘方公式的推导。
1. 以(ab)^n为例(n为正整数)- 根据乘方的意义(ab)^n=⏟(ab)×(ab)×·s×(ab)_n个(ab)。
- 再根据乘法的交换律和结合律,可以将上式改写为⏟(a× a×·s× a)_n个a×⏟(b×b×·s× b)_n个b。
- 而⏟(a× a×·s× a)_n个a=a^n,⏟(b× b×·s× b)_n个b=b^n,所以(ab)^n = a^n×b^n。
三、积的乘方的应用。
(一)计算。
1. 简单计算示例。
- 计算(2x)^3。
- 根据积的乘方公式(ab)^n=a^n× b^n,这里a = 2,b=x,n = 3。
- 则(2x)^3=2^3× x^3=8x^3。
2. 多个因数积的乘方计算示例。
- 计算( - 3a^2b)^2。
- 这里a=-3,b = a^2b,n = 2。
- 根据公式(abc)^n=a^n× b^n× c^n,则( - 3a^2b)^2=( - 3)^2×(a^2)^2× b^2。
- 因为(-3)^2 = 9,(a^2)^2=a^2×2=a^4,所以( - 3a^2b)^2 = 9a^4b^2。
新人教版八年级上册初中数学 14-1-3 积的乘方 教学课件

新课导入
思 考 边长为 x 的正方形面积为 x2 ,将边长扩大3倍后,新的正方形的面
积为多少呢?
x
3x
边长扩大3倍后变为3x,则面积为(3x)2.
(3x)2应该怎么计
算呢?
第三页,共十九页。
新课导入
观察计算结果,你能发现什么规律?
(1) (3x)2=3x·3x=(3·3)(x·x)=32x2=9x2 ; (2) (ab)3=ab·ab·ab=(a·a·a)(b·b·b)=a3·b3=a3b3 .
第十八页,共十九页。
拓展与延伸
已知 xm=2,ym=9,求 (x2y)2m 的值.
解:(x2y)2m= (x2)2m∙y2m=x4m∙y2m= (xm)4 (ym)2 .
因为 xm=2,ym=9 ,
所以(x2y)2m=(xm)4 (ym)2=24 ×92=16×81=1296 .
第十九页,共十九页。
=12015×8 =8
第十六页,共十九页。
拓展与延伸
下列运算正确的是( A. m2+2m3=3m5 C. (-m)3=-m3
C) B. m2·m3=m6
C. (mn)3=mn3
分析:选项A中,m2和2m3不是同类项,不能合并,故而错误; 选项B中,m2·m3=m5,故而错误; 选项D中,(mn)3=m3n3,故而错误.
(3) (-a2b3)3 .
第十一页,共十九页。
新课讲解
练一练
3 计算:(- 3)2019 (- 4)2018 .
4
3
解:(- 3)2019 (4)2018 (- 3 4)2018 (- 3) - 3 .
4
3
43
44
人教版-积的乘方教学设计2024-2025学年八年级上册数学

《积的乘方》教学设计一、课题名称积的乘方二、课程课时1课时三、教材内容分析本节课是人教版八年级上册数学第十五章《整式的乘除与因式分解》中的内容。
积的乘方是整式乘法运算中的重要组成部分,它是在学习了同底数幂的乘法和幂的乘方之后进行的。
教材通过具体的实例引导学生观察、分析、归纳出积的乘方的运算法则,让学生体会从特殊到一般的数学思想方法。
四、课标目标1.理解积的乘方的运算法则。
2.能运用积的乘方的运算法则进行计算。
五、教学重点、难点1.教学重点积的乘方运算法则的推导过程。
运用积的乘方运算法则进行计算。
2.教学难点对积的乘方运算法则的理解。
法则中指数的运算及符号的确定。
六、课的类型及主要教学方法1.课的类型:新授课。
2.主要教学方法:讲授法、探究法、练习法。
七、教学过程1.导入新课教学环节:复习旧知。
教师活动:同学们,我们之前学习了同底数幂的乘法和幂的乘方,谁能来分别说一说它们的运算法则?学生活动:学生回答同底数幂的乘法法则是aᵐ×aⁿ=aᵐ⁺ⁿ(m、n都是正整数);幂的乘方法则是(aᵐ)ⁿ=aᵐⁿ(m、n都是正整数)。
设计意图:通过复习旧知,为学习积的乘方做铺垫。
目标达成预测:学生能够准确回答同底数幂的乘法和幂的乘方的运算法则。
2.讲授新课探索积的乘方运算法则教学环节:计算式子。
教师活动:现在我们来计算一下(ab)²和(2x)³,看看结果是多少?并观察式子的特点。
学生活动:(ab)²=ab×ab=a×a×b×b=a²b²;(2x)³=2x×2x×2x=2×2×2×x×x×x=8x³。
学生观察到式子是积的乘方形式。
设计意图:通过具体的计算,让学生初步感受积的乘方的特点。
目标达成预测:学生能够正确计算式子的结果,并观察到式子的特点。
人教版八年级数学上册第十四章 积的乘方

变式:已知xn=2,yn=6,求(x2y)2n的值. 解:∵xn=2,yn=6, ∴(x2y)2n=x4n·y2n=(xn)4·(yn)2=24×62=16×36=576.
1.我们这节课学习了哪些知识? ①积的乘方法则;②幂的三种运算法则的综合运用
底数是2和103的乘积,虽然103是幂,但整体看不 是幂的乘方的形式 3.体积的结果如何计算?能不能找到一个运算性质?
活动导入 请同学们拿出你们的正方形折纸,沿着虚线剪开,裁剪前后的图形面 积会改变吗?
在草稿本上画出裁剪前的图形和裁剪后的图形, 并分别计算其面积.
你发现了什么?
情境导入
老师今天早上收到了一个神秘的礼物,大家看一下它是什么? 说起魔方,大家会想到哪些与它相关的数学知识呢? 大家都知道魔方的每一面都是正方形,现在已知老师的魔方棱 长为3a,它的体积怎么计算呢? 3a×3a×3a=27a3或(3a)3 请同学们观察这个式子((3a)3),它的底数是和、差、积、 商哪一种运算?
14.1整式的乘法
14.1.3 积的乘方
1. 通过探究积的乘方的运算法则,进一步体会和巩固幂的 意义,理解并准确掌握积的乘方的运算法则,培养学生 实事求是、严谨、认真、务实的学习态度.
2.通过练习巩固积的乘方的运算法则,进一步提高应用意 识和创新意识,增强学生解决问题的能力.
3.通过推导法则进一步训练学生的抽象思维能力,完成利 用幂的三种运算性质的混合运算,培养学生综合运用知 识的能力.
【题型二】积的乘方的逆用
例2:计算:2
0252
025×2
1
025
2 024.
解:2
人教版八年级数学上册14.1.3积的乘方教学设计
(二)讲授新知,500字
1.概念讲解:介绍积的乘方的定义,通过具体实例让学生理解积的乘方的意义。
2.运算法则:详细讲解积的乘方的运算法则,并通过典型例题演示运算步骤,强调注意事项。
8.教学评价
采用多元化的评价方式,关注学生在知识掌握、能力提升、情感态度等方面的全面发展。
四、教学内容与过程
(一)导入新课,500字
1.回顾旧知:请学生回顾有理数的乘方、幂的乘方等概念及运算法则,为新课的学习做好知识准备。
2.创设情境:通过生活中的实例,如面积的估算、体积的计算等,让学生感受积的乘方在实际问题中的应用,激发学生学习的兴趣。
例题:已知a^2+b^2=8,求(a+b)^4的值。
4.思考总结题:要求学生结合本节课的学习,总结积的乘方的运算规律及在实际问题中的应用,用自己的语言进行表述。
5.家长评价:请家长对孩子的作业完成情况进行评价,并在作业本上留言,以促进家校共育,共同关注学生的学习成长。
作业布置要求:
1.作业量适中,难度分层,使不同层次的学生都能得到锻炼和提高。
3.通过积的乘方学习,引导学生体会数学在现实生活中的广泛应用,增强学生的应用意识。
1.导入新课
通过回顾有理数乘方、幂的乘方等知识,为新课学习做好铺垫。
2.自主探究
学生自主探究积的乘方法则,教师进行指导。
3.合作交流
学生分组讨论,分享自己的发现,共同总结积的乘方规律。
4.例题讲解
教师选取典型例题,讲解积的乘方运算步骤,强调注意事项。
2.实践应用题:设计2-3道与生活实际相结合的题目,让学生运用积的乘方解决实际问题,提高学生学以致用的能力。
八年级数学上人教版《积的乘方》教案
《积的乘方》教案一、教学目标:1.理解积的乘方的意义,掌握积的乘方的运算法则,并能运用法则进行熟练计算。
2.学会观察、分析、归纳和概括,通过具体实例体验数学化的过程。
3.培养学生对所学知识的归纳、概括和演绎的能力,以及应用意识和解决问题的能力。
二、教学重点:积的乘方的运算法则及其应用。
三、教学难点:灵活运用积的乘方的运算法则进行计算,解决实际问题。
四、教学准备:教师准备多媒体课件、小黑板;学生准备计算器、纸张等。
五、教学过程:1.导入新课:通过复习旧知,引出新课题。
2.新课学习:通过具体实例,引导学生探究积的乘方的意义和运算法则,并尝试用符号语言表示。
然后通过例题讲解和练习,让学生掌握法则的运用。
3.课堂练习:通过练习题,让学生巩固所学知识,加深对积的乘方的理解。
4.归纳小结:总结积的乘方的意义和运算法则,强调运算法则的关键是确定指数,并注意符号问题。
同时提醒学生注意计算过程中符号的变化规律。
5.布置作业:根据学生的实际情况,布置适当的课后练习题,并要求学生在规定的时间内完成。
同时可以安排一些拓展性的任务,如让学生自己设计一个与积的乘方相关的题目等。
6.教学反思:根据学生的学习情况,对教学方法和过程进行反思和总结,发现问题并及时改进。
同时可以引导学生思考积的乘方在现实生活中的应用和价值,培养学生的数学应用意识。
六、板书设计:积的乘方定义:几个数相乘,每个数都提到一个相同的幂次。
法则:a×b^n=a×b×…×b(n个b)。
运算顺序:先乘后指数化。
人教版八年级数学上册《14.1.3积的乘方》教学设计
1.分组讨论:将学生分成小组,针对积的乘方运算规则进行讨论,鼓励学生提出疑问,共同解决问题。
2.交流分享:小组代表分享讨论成果,展示积的乘方运算的解题过程,提高学生的表达能力和逻辑思维能力。
2.引导学生运用已学的乘方知识,发现并总结积的乘方运算规律,提高学生的观察、归纳能力。
3.设计丰富的例题和练习,让学生在实际操作中掌握积的乘方运算方法,提高解决问题的能力。
(三)情感态度与价值观
1.培养学生对数学学习的兴趣,激发学生的学习热情。
2.培养学生勇于尝试、善于思考的精神,增强学生的自信心。
②如果一个长方形的长是a厘米,宽是b厘米,求这个长方形的面积。
2.提高拓展题:设计一定数量的提高题,旨在培养学生的逻辑思维能力和数学应用能力。
-提高题:计算以下积的乘方,并解释计算过程。
① (2x - 3y)(3x + 2y)^2
② (a^2 + b^2)(a^2 - b^2)(a^2 + 2ab + b^2)
-拓展题:运用积的乘方运算,简化以下代数表达式。
① (x + y)(x^2 + xy + y^2)
② (2a - 3b)^3(2a + 3b)^3
3.课后反思:要求学生针对本节课的学习内容进行反思,总结自己在积的乘方运算中的优点和不足,并提出改进措施。
4.预习任务:布置下一节课的预习内容,让学生提前了解下节课的学习目标,培养学生的学习计划性和自主学习能力。
3.提出问题:引导学生思考,当两个数相乘后再进行乘方运算,应该如何计算?从而引出本节课的主题——积的乘方。
初中数学八年级上册 积的乘方 人教版
(3) (-xy)5
(4) (5ab2)3 (5) (2×102)2 解:(31×)原10式3)=3a8·b8
(2)原式= 23 ·m3=8m3
(6) (-
(3)原式=(-x)5 ·y5=-x5y5
(4)原式=53 ·a3 ·(b2)3=125 a3 b6
(5)原式=22 ×(102)2=4 ×104
4、计算:
0.75 2003-
42
003
3
m =___ n=_ __ _,_
,那么
课后作业
一.填空: (1)a6y3=( )3; (2)若(a3ym ) 2=any8,则 m=__, _n=__._ (3)32004(-1)200=4_____.___ 3
二 .计算: (1)( - xy 2 z 3 )2; (2)[-4(x - y)2 ]3; (3)(t - s)3 (s - t)4
n个ab
证明:(ab) n= (ab)·(ab)·····(ab)
n个a
n个b
=(a·a·····a)·(b·b·····b)
=anbn
因此可得:(ab)n=anbn (n为正整数)
新知归纳
积的乘方的运算法则: 积的乘方,等于把积的每个因式分别乘方,
再把所得的幂相乘。
(ab)n = anbn (n为正整数)
课后作业
1、填空: -2a5 3=______
-x2y7-2x3 y2y=_________
x 2、选择: 3m1 可以写成_____
A 、 x3 m1 D、
xm 31 B 、 x x3m
xm 2m1 C 、
3、填空:如果 xmyn3=x3y12
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
n个a
同底数幂的乘法运算法则:
a· a·… · a
=
an
am · an=am+n
幂的乘方运算法则: 积的乘方=
(ab)n=anbn
每个因式分别乘方后的积
反向使用am · an =am+n、(am)n =amn , (ab)n=anbn可使某些
计算简捷。
知识回顾
同底数幂相乘的法则是什么?
a a a (n, m为正整数)
m n
m n
幂的乘方的法则是什么?
m n mn
(a ) a (n, m为正整数)
1、计算:
10×102× 103 =_______ (x5 )2=_________
?思考:我们知道 a 表示n个 3 a相乘,那么 (ab) 表示什么呢?
= 14 =1.
拓展训练
逆用公式
(ab) a b
n n
n
n
n
即
ab) ab(
17 17
n
( 1)0.125) .(-8) (
5 (2)() 13
2004
3 2003 .(2 ) 5
15
(3)(0.125) .( -2 )
15 3
练习5:探讨--如何计算简便?
(0.04)2004×[(-5)2004]2=? 解法一: (0.04)2004×[(-5)2004]2 =(0.22)2004 × 54008 =(0.2)4008 × 54008 =(0.2 ×5)4008 =14008 =1
(3)原式= x2(y2)2 =x2y4
(4)原式= (-2)4x4(y3)4(z2)4 =16x4y12z8
补充例题: 计算
1 3 2 3 1 2 3 3 () (a ) (a+b) [a (a+b)] = 2 2 1 6 =- a (a+b)3 8
(ab)n = an· bn (m,n都是正整数) 反向使用: an· bn = (ab)n
n
=(a a) (b b)
n个ab
=a b
n
n
n个a
n个b
(ab) = a b (n为正整数)
n
n
n
(ab) = a b (n为正整数)
归纳:
n
n
n
积的乘方,等于把积的每一个因式分别 乘方,再把所得的幂相乘。
(ab) = a b (n为正整数)
n
n
n
公式的拓展
三个或三个以上的积的乘方,是否也具有 上面的性质?怎样用公式表示?
计算:
(1) (ab)4 ;
(2) (-2xy)3;
(3) (-3×102)3 ; (4) (2ab2)3.
(1)
a4b4 ;
(2) –8x3y3;
(4) 8a3b6.
(3) –2.7×107;
判断:
练习1:
(× ) (× ) (× ) (× )
(1)(ab2)3=ab6 (2) (3xy)3=9x3y3 (3) (-2a2)2=-4a4 (4) -(-ab2)2=a2b4
怎样证明 ? 试用第一 种方法证明:
(abc)n=an·bn · cn
积的乘方转化成两个因式积的乘方、再用积的乘方法则; 另一种思路是仍用推导两个因式的积的乘方的方法:乘方的意 义、乘法的交换律与结合律.
(abc)n=[(ab)·c]n =(ab)n·cn = ______ 一种思路是利用乘法结合律,把三个因式 方法提示有两种思路 an·bn·cn.
n
(ab) = ab ab ab
3
=(a a a) (b b b)
=a b
3
3
(ab) = a b
3
3 3
(ab) = a b
你能猜想
4
3
3 3
(ab) 、(xy) 、(abc) 、(mnpq)
b
4
5
的结果怎样呢?
n (ab) ( n为正整数)如何计算呢?
(ab) = ab ab ab
解法二: (0.04)2004×[(-5)2004]2
=(0.04)2004 × [(-5)2]2004 = (0.04)2004 ×(25)2004 =(0.04×25)2004 =12004 1 =1 都要转化为( a )n×an的形式
说明:逆用积的乘方法则 anbn = (ab)n可以 化简一些复杂的计算。如( 3 )2010 ×(-3)2010=?
1
练习6: 能力提升
如果(an•bm•b)3=a9b15,求m, n的值 解: (an•bm•b)3=a9b15
3n •b 3m•b3=a9b15 3n •b 3m+3=a9b15
(an)3•(bm)3•b3=a9b15 a a
3n=9 3m+3=15 n=3,m=4.
本节课你的收获是什么?
7 3 5 3 5 5 7 × (5) ( ) ( ) ( ) -1 ( √ ) 3 7 3 7
ห้องสมุดไป่ตู้ 例1:计算:
(1) (-2a)2 (3) (xy2)2
(2) (-5ab)3 (4) (-2xy3z2)4
解:(1)原式= (-2)2a2 = 4a2 (2)原式= (-5)3a3b3 =-125a3b3
试用简便方法计算:
(1) 23×53 ;= (2×5)3 = 103 (2) 28×58 ; = (2×5)8 = 108
(3) (-5)16 × (-2)15 ;= (-5)×[(-5)×(-2)]15 = -5×1015 ;
(4) 24 × 44 ×(-0.125)4 ; = [2×4×(-0.125)]4