MATLAB产生信号波形的仿真实验

合集下载

matlab信号与系统实验报告

matlab信号与系统实验报告

实验一 基本信号的产生与运算一、 实验目的学习使用MATLAB 产生基本信号、绘制信号波形、实现信号的基本运算。

二、 实验原理MATLAB 提供了许多函数用于产生常用的基本信号:如阶跃信号、脉冲信号、指数信号、正弦信号和周期方波等等。

这些信号是信号处理的基础。

1、 利用MATLAB 产生下列连续信号并作图。

(1)51),1(2)(<<---=t t u t x (2)300),32sin()(3.0<<=-t t e t x t (3)1.01.0,3000cos 100cos )(<<-+=t t t t x (4)2000),8.0cos()1.0cos()(<<=t t t t x ππ 答:(1)、>> t=-1:0.02:5; >> x=(t>1);>> plot(t,-2*x);>> axis([-1,5,-3,1]);>> title('杨婕婕 朱艺星'); >> xlabel('x(t)=-2u(t-1)');(2)、>> t=0:0.02:30;>> x=exp(-0.3*t).*sin(2/3*t);>> plot(t,x);>> title('杨婕婕朱艺星');>> xlabel('x(t)=exp(-0.3*t).*sin(2/3*t)');因为原函数在t=15后x(t)取值接近于零,所以将横坐标改成0到15,看得更清晰axis([0,15,-0.2,0.6]);(3)>> t=-0.1:0.01:0.1;x=cos(100*t)+cos(3000*t);plot(t,x);>> title('杨婕婕朱艺星');>>xlabel('x=cos(100*t)+cos(3000*t)');因为t的间隔取太大,以至于函数不够准确,缩小t的间隔:t=-0.1:0.002:0.2;x=cos(100*t)+cos(3000*t);plot(t,x);title('杨婕婕')>> t=-0.1:0.0001:0.1;x=cos(100*t)+cos(3000*t);>> plot(t,x);title('杨婕婕朱艺星');>> xlabel('x=cos(100*t)+cos(3000*t)');(4)、t=0:0.01:200;>> x=cos(0.1*pi*t).*cos(0.8*pi*t);>> plot(t,x);>> title('杨婕婕朱艺星');>> xlabel('x=cos(0.1*pi*t).*cos(0.8*pi*t)');因为为周期函数,可以将横坐标t间隔扩大以便于观察图像>> axis([0,30,-1,1]);2、利用MATLAB 产生下列离散序列并作图。

信号与系统matlab实验及答案

信号与系统matlab实验及答案

产生离散衰减正弦序列()π0.8sin 4n x n n ⎛⎫= ⎪⎝⎭, 010n ≤≤,并画出其波形图。

n=0:10;x=sin(pi/4*n).*0.8.^n;stem(n,x);xlabel( 'n' );ylabel( 'x(n)' );用MATLAB 生成信号()0sinc at t -, a 和0t 都是实数,410t -<<,画波形图。

观察并分析a 和0t 的变化对波形的影响。

t=linspace(-4,7); a=1;t0=2;y=sinc(a*t-t0); plot(t,y);t=linspace(-4,7); a=2;t0=2;y=sinc(a*t-t0); plot(t,y);t=linspace(-4,7); a=1;t0=2;y=sinc(a*t-t0); plot(t,y);三组对比可得a 越大最大值越小,t0越大图像对称轴越往右移某频率为f 的正弦波可表示为()()cos 2πa x t ft =,对其进行等间隔抽样,得到的离散样值序列可表示为()()a t nT x n x t ==,其中T 称为抽样间隔,代表相邻样值间的时间间隔,1s f T=表示抽样频率,即单位时间内抽取样值的个数。

抽样频率取40 Hz s f =,信号频率f 分别取5Hz, 10Hz, 20Hz 和30Hz 。

请在同一张图中同时画出连续信号()a x t t 和序列()x n nT 的波形图,并观察和对比分析样值序列的变化。

可能用到的函数为plot, stem, hold on 。

fs = 40;t = 0 : 1/fs : 1 ;% ƵÂÊ·Ö±ðΪ5Hz,10Hz,20Hz,30Hz f1=5;xa = cos(2*pi*f1*t) ; subplot(1, 2, 1) ;plot(t, xa) ;axis([0, max(t), min(xa), max(xa)]) ;xlabel('t(s)') ;ylabel('Xa(t)') ;line([0, max(t)],[0,0]) ; subplot(1, 2, 2) ;stem(t, xa, '.') ;line([0, max(t)], [0, 0]) ;axis([0, max(t), min(xa), max(xa)]) ;xlabel('n') ;ylabel('X(n)') ;频率越高,图像更加密集。

matlab软件仿真实验(信号与系统)(1)

matlab软件仿真实验(信号与系统)(1)

matlab软件仿真实验(信号与系统)(1)《信号与系统实验报告》学院:信息科学与⼯程学院专业:物联⽹⼯程姓名:学号:⽬录实验⼀、MATLAB 基本应⽤实验⼆信号的时域表⽰实验三、连续信号卷积实验四、典型周期信号的频谱表⽰实验五、傅⽴叶变换性质研究实验六、抽样定理与信号恢复实验⼀MATLAB 基本应⽤⼀、实验⽬的:学习MATLAB的基本⽤法,了解 MATLAB 的⽬录结构和基本功能以及MATLAB在信号与系统中的应⽤。

⼆、实验内容:例⼀已知x的取值范围,画出y=sin(x)的图型。

x=0:0.05:4*pi;y=sin(x);plot(y)例⼆计算y=sin(π/5)+4cos(π/4)例三已知z 取值范围,x=sin(z);y=cos(z);画三维图形。

z=0:pi/50:10*pi;x=sin(z);y=cos(z);plot3(x,y,z)xlabel('x')ylabel('y')zlabel('z')例四已知x的取值范围,⽤subplot函数绘图。

参考程序:x=0:0.05:7;y1=sin(x);y2=1.5*cos(x);y3=sin(2*x);y4=5*cos(2*x);subplot(2,2,1),plot(x,y1),title('sin(x)')subplot(2,2,2),plot(x,y2),title('1.5*cos(x)')subplot(2,2,3),plot(x,y3),title('sin(2*x)')subplot(2,2,4),plot(x,y4),title('5*cos(2*x)')连续信号的MATLAB表⽰1、指数信号:指数信号Ae at在MATLAB中可⽤exp函数表⽰,其调⽤形式为:y=A*exp(a*t) (例取 A=1,a=-0.4)参考程序:A=1;a=-0.4;t=0:0.01:10;ft=A*exp(a*t);plot(t,ft);grid on;2、正弦信号:正弦信号Acos(w0t+?)和Asin(w0t+?)分别由函数cos和sin表⽰,其调⽤形式为:A*cos(w0t+phi) ;A*sin(w0t+phi) (例取A=1,w0=2π,?=π/6) 参考程序:A=1;w0=2*pi; phi=pi/6; t=0:0.001:8;ft=A*sin(w0*t+phi);plot(t,ft);grid on ;3、抽样函数:抽样函数Sa(t)在MATLAB中⽤sinc函数表⽰,其定义为:sinc(t)=sin(πt)/( πt)其调⽤形式为:y=sinc(t)参考程序:t=-3*pi:pi/100:3*pi;ft=sinc(t/pi);plot(t,ft);grid on;4、矩形脉冲信号:在MATLAB中⽤rectpuls函数来表⽰,其调⽤形式为:y=rectpuls(t,width),⽤以产⽣⼀个幅值为1,宽度为width,相对于t=0点左右对称的矩形波信号,该函数的横坐标范围由向量t决定,是以t=0为中⼼向左右各展开width/2的范围,width的默认值为1。

MATLAB实训实验

MATLAB实训实验

2015/2016学年下学期《信号与系统》实验报告班级:学号:学生姓名:指导教师:2016年3月8 日实验一 基本函数仿真实验项目: 基本函数仿真实验时间: 2016年 3 月 8 日 星期 二 第 34 节课 实验地点: 1501实验室 实验目的:1、 学习使用MATLAB 软件2、 学习MATLAB 中各种函数,并应用函数分析3、 对MATALB 的进一步的学习了解,熟练掌握MATALB 的各种操纵,学会使用MATALB 解决复杂的运算并学会用MATALB 解决平时学习4、 了解MATALB 的数值运算5、 了解MATALB 的基本函数和命令6、 学习掌握MATALB 有关命令 实验内容: 1、(1) 题目:应用MA TLAB 方法实现单位阶跃信号和矩形脉冲。

(2) 程序清单(源程序)解:对于阶跃函数,MATLAB 中有专门的stairs 绘图命令。

例如,实现)(t 和矩形脉冲的程序如下:t=-1:2; % 定义时间范围向量t x=(t>=0);subplot(1,2,1),stairs(t,x);axis([-1,2,-0.1,1.2]); grid on % 绘制单位阶跃信号波形 t=-1:0.001:1; % 定义时间范围向量t g=(t>=(-1/2))-(t>=(1/2));subplot(1,2,2),stairs(t,g);axis([-1,1,-0.1,1.2]); grid on % 绘制矩形脉冲波形(3) 运行结果(截图)00.20.40.60.8100.20.40.60.81图1 例1图(4)函数解析Subplot:使用方法:subplot (m,n,p )或者subplot (m n p )。

是将多个图画到一个平面上的工具。

其中,m 表示是图排成m 行,n 表示图排成n 列,也就是整个figure 中有n 个图是排成一行的,一共m 行,如果m=2就是表示2行图。

实验2利用MATLAB分析信号频谱及系统的频率特性

实验2利用MATLAB分析信号频谱及系统的频率特性

实验2利用MATLAB分析信号频谱及系统的频率特性引言:在信号处理和通信领域中,频谱分析是一项非常重要的技术。

频谱分析可以帮助我们了解信号的频率特性,包括频率成分和幅度。

MATLAB是一款功能强大的数学软件,提供了多种工具和函数用于信号处理和频谱分析。

本实验旨在通过MATLAB分析信号频谱及系统的频率特性,深入理解信号处理和频域分析的原理和应用。

实验步骤:1.生成一个信号并绘制其时域波形。

首先,我们可以使用MATLAB提供的函数生成一个信号。

例如,我们可以生成一个用正弦函数表示的周期信号。

```matlabt=0:0.001:1;%时间范围为0到1秒,采样率为1000Hzf=10;%信号频率为10Hzx = sin(2*pi*f*t); % 生成正弦信号plot(t,x) % 绘制信号的时域波形图title('Time domain waveform') % 添加标题```2.计算信号的频谱并绘制频谱图。

使用MATLAB中的FFT函数可以计算信号的频谱。

FFT函数将信号从时域转换为频域。

```matlabFs=1000;%采样率为1000HzL = length(x); % 信号长度NFFT = 2^nextpow2(L); % FFT长度X = fft(x,NFFT)/L; % 计算X(k)f = Fs/2*linspace(0,1,NFFT/2+1); % 计算频率轴plot(f,2*abs(X(1:NFFT/2+1))) % 绘制频谱图title('Frequency spectrum') % 添加标题```3.使用MATLAB分析系统的频率特性。

MATLAB提供了Signal Processing Toolbox,其中包含了分析系统频率特性的函数和工具。

```matlabHd = designfilt('lowpassfir', 'FilterOrder', 6,'CutoffFrequency', 0.3, 'SampleRate', Fs); % 设计一个低通滤波器fvtool(Hd) % 显示滤波器的频率响应``````matlab[W,F] = freqz(Hd); % 计算滤波器的频率响应plot(F,abs(W)) % 绘制滤波器的振幅响应title('Frequency response of lowpass filter') % 添加标题```实验结果:运行上述代码后,我们可以得到如下结果:1.时域波形图2.频谱图3.滤波器频率响应讨论与结论:本实验通过MATLAB分析信号频谱及系统的频率特性,深入理解了信号处理和频域分析的原理和应用。

MATLAB信号与系统实验报告19472[五篇范文]

MATLAB信号与系统实验报告19472[五篇范文]

MATLAB信号与系统实验报告19472[五篇范文]第一篇:MATLAB信号与系统实验报告19472信号与系统实验陈诉(5)MATLAB 综合实验项目二连续系统的频域阐发目的:周期信号输入连续系统的响应可用傅里叶级数阐发。

由于盘算历程啰嗦,最适适用MATLAB 盘算。

通过编程实现对输入信号、输出信号的频谱和时域响应的盘算,认识盘算机在系统阐发中的作用。

任务:线性连续系统的系统函数为11)(+=ωωjj H,输入信号为周期矩形波如图 1 所示,用MATLAB 阐发系统的输入频谱、输出频谱以及系统的时域响应。

-3-2-1 0 1 2 300.511.52Time(sec)图 1要领:1、确定周期信号 f(t)的频谱nF&。

基波频率Ω。

2、确定系统函数 )(Ω jn H。

3、盘算输出信号的频谱n nF jn H Y&&)(Ω=4、系统的时域响应∑∞-∞=Ω=nt jnn eY t y&)(MATLAB 盘算为y=Y_n*exp(j*w0*n“*t);要求(画出 3 幅图):1、在一幅图中画输入信号f(t)和输入信号幅度频谱|F(jω)|。

用两个子图画出。

2、画出系统函数的幅度频谱|H(jω)|。

3、在一幅图中画输出信号y(t)和输出信号幅度频谱|Y(jω)|。

用两个子图画出。

解:(1)阐发盘算:输入信号的频谱为(n)输入信号最小周期为=2,脉冲宽度,基波频率Ω=2π/ =π,所以(n)系统函数为因此输出信号的频谱为系统响应为(2)步伐:t=linspace(-3,3,300);tau_T=1/4;%n0=-20;n1=20;n=n0:n1;%盘算谐波次数20F_n=tau_T*Sa(tau_T*pi*n);f=2*(rectpuls(t+1.75,0.5)+rectpuls(t-0.25,0.5)+rectpuls(t-2.25,0.5));figure(1),subplot(2,1,1),line(t,f,”linewidth“,2);%输入信号的波形 axis([-3,3,-0.1,2.1]);grid onxlabel(”Time(sec)“,”fontsize“,8),title(”输入信号“,”fontweight“,”bold“)%设定字体巨细,文本字符的粗细text(-0.4,0.8,”f(t)“)subplot(2,1,2),stem(n,abs(F_n),”.“);%输入信号的幅度频谱xlabel(”n“,”fontsize“,8),title(”输入信号的幅度频谱“,”fontweight“,”bold“)text(-4.0,0.2,”|Fn|“)H_n=1./(i*n*pi+1);figure(2),stem(n,abs(H_n),”.“);%系统函数的幅度频谱xlabel(”n“,”fontsize“,8),title(”系统函数的幅度频谱“,”fontweight“,”bold“)text(-2.5,0.5,”|Hn|“)Y_n=H_n.*F_n;y=Y_n*exp(i*pi*n”*t);figure(3),subplot(2,1,1),line(t,y,“linewidth”,2);%输出信号的波形 axis([-3,3,0,0.5]);grid onxlabel(“Time(sec)”,“fontsize”,8),title(“输出信号”,“fontweight”,“bold”)text(-0.4,0.3,“y(t)”)subplot(2,1,2),stem(n,abs(Y_n),“.”);%输出信号的幅度频谱xlabel(“n”,“fontsize”,8),title(“输出信号的幅度频谱”,“fontweight”,“bold”)text(-4.0,0.2,“|Yn|”)(3)波形:-3-2-1 0 1 2 300.511.52Time(sec)输入信号f(t)-20-15-10-5 0 5 10 15 2000.10.20.30.4n输入信号的幅度频谱|Fn|-20-15-10-5 0 5 10 15 2000.10.20.30.40.50.60.70.80.91n系统函数的幅度频谱|Hn|-3-2-1 0 1 2 300.10.20.30.4Time(sec)输出信号y(t)-20-15-10-5 0 5 10 15 2000.10.20.30.4n输出信号的幅度频谱|Yn| 项目三连续系统的复频域阐发目的:周期信号输入连续系统的响应也可用拉氏变更阐发。

自动控制原理MATLAB仿真实验(于海春)

自动控制原理MATLAB仿真实验(于海春)

自动控制原理MATLAB仿真实验(于海春)实验一典型环节的MATLAB仿真一、实验目的1.熟悉MATLAB桌面和命令窗口,初步了解SIMULINK功能模块的使用方法。

2.通过观察典型环节在单位阶跃信号作用下的动态特性,加深对各典型环节响应曲线的理解。

3.定性了解各参数变化对典型环节动态特性的影响。

二、SIMULINK 的使用MATLAB中SIMULINK是一个用来对动态系统进行建模、仿真和分析的软件包。

利用SIMULINK功能模块可以快速的建立控制系统的模型,进行仿真和调试。

1.运行MATLAB软件,在命令窗口栏“>>”提示符下键入imulink命令,按Enter键或在工具栏单击按钮,即可进入如图1-1所示的SIMULINK仿真环境下。

2.选择File菜单下New下的Model命令,新建一个imulink仿真环境常规模板。

图1-1SIMULINK仿真界面图1-2系统方框图3.在imulink仿真环境下,创建所需要的系统。

以图1-2所示的系统为例,说明基本设计步骤如下:1)进入线性系统模块库,构建传递函数。

点击imulink下的“Continuou”,再将右边窗口中“TranferFen”的图标用左键拖至新建的“untitled”窗口。

2)改变模块参数。

在imulink仿真环境“untitled”窗口中双击该图标,即可改变传递函数。

其中方括号内的数字分别为传递函数的分子、分母各次幂由高到低的系数,数字之间用空格隔开;设置完成后,选择OK,即完成该模块的设置。

3)建立其它传递函数模块。

按照上述方法,在不同的imulink的模块库中,建立系统所需的传递函数模块。

例:比例环节用“Math”右边窗口“Gain”的图标。

4)选取阶跃信号输入函数。

用鼠标点击imulink下的“Source”,将右边窗口中“Step”图标用左键拖至新建的“untitled”窗口,形成一个阶跃函数输入模块。

5)选择输出方式。

实验一 MATLAB方法实现信号波形和微分方程的建立与求解

实验一 MATLAB方法实现信号波形和微分方程的建立与求解

实验一 MATLAB方法实现信号波形和微分方程的建立与求解一、实验目的1、熟悉和掌握常用的用于信号与系统时域仿真分析的MA TLAB函数;2、掌握连续时间和离散时间信号的MATLAB产生,掌握用周期延拓的方法将一个非周期信号进行周期信号延拓形成一个周期信号的MA TLAB编程;3、牢固掌握系统的单位冲激响应的概念,掌握LTI系统的卷积表达式及其物理意义,掌握卷积的计算方法、卷积的基本性质;4、掌握利用MA TLAB计算卷积的编程方法,并利用所编写的MA TLAB程序验证卷积的常用基本性质;掌握MATLAB描述LTI系统的常用方法及有关函数,并学会利用MATLAB求解LTI系统响应,绘制相应曲线。

基本要求:掌握用MATLAB描述连续时间信号和离散时间信号的方法,能够编写MA TLAB 程序,实现各种信号的时域变换和运算,并且以图形的方式再现各种信号的波形。

掌握线性时不变连续系统的时域数学模型用MATLAB描述的方法,掌握卷积运算、线性常系数微分方程的求解编程。

二、实验原理信号(Signal)一般都是随某一个或某几个独立变量的变化而变化的,例如,温度、压力、声音,还有股票市场的日收盘指数等,这些信号都是随时间的变化而变化的,还有一些信号,例如在研究地球结构时,地下某处的密度就是随着海拔高度的变化而变化的。

一幅图片中的每一个象素点的位置取决于两个坐标轴,即横轴和纵轴,因此,图像信号具有两个或两个以上的独立变量。

在《信号与系统》课程中,我们只关注这种只有一个独立变量(Independent variable)的信号,并且把这个独立变量统称为时间变量(Time variable),不管这个独立变量是否是时间变量。

在自然界中,大多数信号的时间变量都是连续变化的,因此这种信号被称为连续时间信号(Continuous-Time Signals)或模拟信号(Analog Signals),例如前面提到的温度、压力和声音信号就是连续时间信号的例子。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验一产生信号波形的仿真实验
一、实验目的:熟悉MATLAB软件的使用,并学会信号的表示和以及用MATLAB
来产生信号并实现信号的可视化。

二、实验内容:
对信号进行时域分析,首先需要将信号随时间变化的规律用二维曲线表示出来。

对于简单信号可以通过手工绘制其波形,但对于复杂的信号,手工绘制信号波形显得十分困难,且难以绘制精确的曲线。

一种是用向量来表示信号,另一种则是用符合运算的方法来表示信号。

用适当的MATLAB语句表示信号后,可以利用MATLAB的绘图命令绘制出直观的信号波形。

1.向量表示法
对于连续时间信号f(t),可以用两个行向量f和t来表示,其中向量t是
形如t=t
1:p:t
2
的MATLAB命令定义的时间范围向量,t
1
为信号起始时间,t
2
为信
号终止时间,p为时间间隔。

向量f为连续信号f(t)在向量t所定义的时间点上的样值。

下面分析连续时间信号f(t)=Sa(t)=sin(t)/t,可用如下的两个变量表示:
t= -10:0.02:10
f=sin(t)./t
命令运行结果为:
t =
Columns 1 through 8
-10.0000 -8.5000 -7.0000 -5.5000 -4.0000 -2.5000 -1.0000 0.5000 Columns 9 through 14
2.0000
3.5000 5.0000 6.5000 8.0000 9.5000
f =
Columns 1 through 8
-0.0544 0.0939 0.0939 -0.1283 -0.1892 0.2394 0.8415 0.9589
Columns 9 through 14
0.4546 -0.1002 -0.1918 0.0331 0.1237 -0.0079
用上述向量对连续信号进行表示后,就可以用plot命令来绘制出信号的时域波形。

plot命令可将点与点间用直线连接,当点与点间的距离很小时,绘出的波形就成了光滑的曲线。

MATLAB命令如下:
plot(t,f);
title(‘f(t)=Sa(t)’);
xlabel(‘t’);
axis([-10,10,-0.4,1.1]);
绘出的信号波形如图1所示(左图)。

当把时间间隔p取得更小(例如为0.02)时,就可得到Sa(t)较好的近似波形,如图1所示(右图)。

如图1 Sa(t)的近似波形
用以下程序可产生正弦波:
t=0:0.001:50;
y=sin(2*pi*50*t);
plot(t(1:50),y(1:50));
用以下程序可产生加入随机噪声的正弦波:t=0:0.001:50;
y=sin(2*pi*50*t);
s=y+randn(size(t));
plot(t(1:50),s(1:50));
用以下程序可产生周期方波:
t=0:0.001:2.5;
y=square(3*pi*30*t);
plot(t(1:50),y(1:50));
用以下程序可产生周期锯齿波:t=0:0.001:2.5;
y=sawtooth(2*pi*30*t);
plot(t,y);
axis([0 0.2 –1 1]);
用以下程序可产生sinc函数:x=linspace(-5,5);
y=sinc(x);
plot(x,y);
用以下程序可产生Dirichlet函数:
x=linspace(0,4*pi,300);
y1=diric(x,7);
y2=diric(x,8);
subplot(1,2,1);plot(x,y1);
subplot(1,2,2);plot(x,y2);
2.符合运算表示法
如果信号可以用一个符号表达式来表示它,则我们可用ezplot命令(缺省的区间为[-2*pi,2*pi])绘制出信号的波形,例如对于连续信号f(t)=sin(πt/4),我们可以用符号表达式表示为: f=sym(‘sin(pi/4*t)’);
f= sin(pi/4*t);
然后用ezplot命令绘制其波形:
ezplot(f,[-16,16]);
该命令绘制的信号波形如图2所示,
如图2 正弦信号波形图
要求:改用其它的信号来练习使用向量表示法和符号运算表示法来绘制信号波形,达到对两种方法的熟练掌握。

练习:
1.向量表示法绘制信号的波形:
1)矩阵图形的绘制:
x1=[1 2 3;4 5 6];
plot(x1);
>> x2=peaks;%产生一个49*49的矩阵
2)混合式图形的绘制:
>> x1=[1 2 3];
>> y1=[1 2 3;4 5 6];
>> x2=[1 1 1; 2 2 2];
>> y2=[1 2;3 4;5 6];
>> z1=x2+i*y1
z1 =
1.0000 + 1.0000i 1.0000 +
2.0000i 1.0000 +
3.0000i
2.0000 + 4.0000i 2.0000 + 5.0000i 2.0000 + 6.0000i >> plot(z1)
2.符号运算表示法来绘制信号的波形:
1)绘制出y=-1/3x^3+1/3x^4的波形:
>>y=sym(‘-1/3x^3+1/3x^4’)
>>ezplot(y,[0,100])
2)用ezplot3绘制三维符号表达式曲线>> x=sym('sin(t)');
>> z=sym('t');
>> y=sym('cos(t)');
>> ezplot3(x,y,z,[0,10*pi],'animate')
3)绘制如下图形:
>>syms x t
>>ezplot('t*cos(t)','t*sin(t)',[0,4*pi])。

相关文档
最新文档