江苏省南京市九年级(上)期末数学试卷
南京市第一学期九年级数学期末试卷(含解析)

南京市第一学期九年级数学期末试卷(含解析)一、选择题1.如果两个相似多边形的面积比为4:9,那么它们的周长比为() A .2:3B .2:3C .4:9D .16:812.在半径为3cm 的⊙O 中,若弦AB =32,则弦AB 所对的圆周角的度数为( ) A .30°B .45°C .30°或150°D .45°或135°3.如图,AB 为圆O 直径,C 、D 是圆上两点,∠ADC=110°,则∠OCB 度( )A .40B .50C .60D .704.已知34a b=(0a ≠,0b ≠),下列变形错误的是( ) A .34a b = B .34a b =C .43b a = D .43a b =5.两个相似三角形的面积比是9:16,则这两个三角形的相似比是( ) A .9︰16B .3︰4C .9︰4D .3︰166.在△ABC 中,若|sinA ﹣12|+2cosB )2=0,则∠C 的度数是( ) A .45° B .75° C .105°D .120°7.方程(1)(2)0x x --=的解是( )A .1x =B .2x =C .1x =或2x =D .1x =-或2x =- 8.已知圆锥的底面半径为5cm ,母线长为13cm ,则这个圆锥的全面积是( ) A .265cm πB .290cm πC .2130cm πD .2155cm π9.电影《我和我的祖国》讲述了普通人与国家之间息息相关的动人故事.一上映就获得全国人民的追捧,第一天票房约3亿元,以后每天票房按相同的增长率增长,三天后累计票房收入达10亿元,若把平均每天票房的增长率记作x ,则可以列方程为( ) A .3(1)10x += B .23(1)10x +=C .233(1)10x ++=D .233(1)3(1)10x x ++++=10.将抛物线23y x =向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )A .23(2)3y x =++B .23(2)3y x =-+C .23(2)3y x =+-D .23(2)3y x =-- 11.已知α、β是一元二次方程22210x x --=的两个实数根,则αβ+的值为( ) A .-1 B .0 C .1 D .2 12.方程2x x =的解是( )A .x=0B .x=1C .x=0或x=1D .x=0或x=-113.如图,AB 为⊙O 的直径,点C 、D 在⊙O 上,∠BAC=50°,则∠ADC 为( )A .40°B .50°C .80°D .100°14.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点M ,若CD =8 cm ,MB =2 cm ,则直径AB 的长为( )A .9 cmB .10 cmC .11 cmD .12 cm15.如图,AB 为O 的切线,切点为A ,连接AO BO 、,BO 与O 交于点C ,延长BO 与O 交于点D ,连接AD ,若36ABO ∠=,则ADC ∠的度数为( )A .54B .36C .32D .27二、填空题16.如图,为了测量某棵树的高度,小明用长为2m 的竹竿做测量工具,移动竹竿,使竹竿、树的顶端的影子恰好落在地面的同一点.此时,竹竿与这一点距离相距6m ,与树相距15m ,则树的高度为_________m.17.圆锥的母线长为5cm ,高为4cm ,则该圆锥的全面积为_______cm 2.18.如图,四边形ABCD 内接于⊙O ,AB 是⊙O 的直径,过点C 作⊙O 的切线交AB 的延长线于点P ,若∠P =40°,则∠ADC =____°.19.某企业2017年全年收入720万元,2019年全年收入845万元,若设该企业全年收入的年平均增长率为x ,则可列方程____.20.某一时刻身高160cm 的小王在太阳光下的影长为80cm ,此时他身旁的旗杆影长10m ,则旗杆高为______. 21.方程22x x =的根是________.22.如图,五边形 ABCDE 是⊙O 的内接正五边形, AF 是⊙O 的直径,则∠ BDF 的度数是___________°.23.如图,45AOB ∠=,点P 、Q 都在射线OA 上,2OP =,6OQ =,M 是射线OB 上的一个动点,过P 、Q 、M 三点作圆,当该圆与OB 相切时,其半径的长为__________.24.如图,已知△ABC 3的等边三角形,△ABC ∽△ADE ,AB =2AD ,∠BAD =45°,AC 与DE 相交于点F ,则△AEF 的面积等于_____(结果保留根号).25.圆锥的底面半径是4cm ,母线长是6cm ,则圆锥的侧面积是______cm 2(结果保留π).26.如图,在Rt ABC ∆中,90ACB ∠=,6AC =,8BC =,D 、E 分别是边BC 、AC 上的两个动点,且4DE =,P 是DE 的中点,连接PA ,PB ,则14PA PB +的最小值为__________.27.二次函数y =2x 2﹣4x +4的图象如图所示,其对称轴与它的图象交于点P ,点N 是其图象上异于点P 的一点,若PM ⊥y 轴,MN ⊥x 轴,则2MNPM =_____.28.如图,在四边形ABCD 中,∠BAD =∠BCD =90°,AB +AD =8cm .当BD 取得最小值时,AC 的最大值为_____cm .29.如图,四边形ABCD 中,∠A =∠B =90°,AB =5cm ,AD =3cm ,BC =2cm ,P 是AB 上一点,若以P 、A 、D 为顶点的三角形与△PBC 相似,则PA =_____cm .30.已知二次函数y =ax 2+bx +c (a >0)图象的对称轴为直线x =1,且经过点(﹣1,y 1),(2,y 2),则y 1_____y 2.(填“>”“<”或“=”)三、解答题31.⊙O 中,直径AB 和弦CD 相交于点E ,已知AE =1cm ,EB =5cm ,且60DEB ∠=︒,求CD 的长.32.如图,在△ABC 中,AB=AC ,AD 是△ABC 的角平分线,E ,F 分别是BD ,AD 上的点,取EF 中点G ,连接DG 并延长交AB 于点M ,延长EF 交AC 于点N 。
江苏省南京市九年级(上)期末数学试卷解析版

27.已知 3a=4b≠0,那么 a =_____. b
28.像 2x 3 =x 这样的方程,可以通过方程两边平方把它转化为 2x+3=x2,解得 x1= 3,x2=﹣1.但由于两边平方,可能产生增根,所以需要检验,经检验,当 x1=3 时, 9 =3 满足题意;当 x2=﹣1 时, 1 =﹣1 不符合题意;所以原方程的解是 x=3.运用以上 经验,则方程 x+ x 5 =1 的解为_____.
A.3
B.6
C.5
D.7
3.关于 x 的一元一次方程 2xa1 m 2 的解为 x 1 ,则 a m 的值为( )
A.5
B.4
C.3
D.2
4.抛物线 y x2 2x 3 与 y 轴的交点为( )
A. (0, 2)
B. (2, 0)
C. (0,3)
D. (3,0)
5.为了比较甲乙两足球队的身高谁更整齐,分别量出每人身高,发现两队的平均身高一
域的概率为( )
A. 1 2
B. 1 4
C. 1 3
D. 1 9
15.如图,A,B,C,D 四个点均在⊙O 上,∠AOB=40°,弦 BC 的长等于半径,则∠ADC
的度数等于( )
A.50°
B.49°
C.48°
D.47°
二、填空题
16.如图,点 A、B 分别在 y 轴和 x 轴正半轴上滑动,且保持线段 AB=4,点 D 坐标为
江苏省南京市九年级(上)期末数学试卷解析版
一、选择题
1.如图,等边三角形 ABC 的边长为 5,D、E 分别是边 AB、AC 上的点,将△ADE 沿 DE 折 叠,点 A 恰好落在 BC 边上的点 F 处,若 BF=2,则 BD 的长是( )
江苏省南京市九年级上学期期末数学试卷

江苏省南京市九年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)已知如图,一张矩形报纸ABCD的长AB=acm,宽BC=bcm,E、F分别为AB、CD的中点.若矩形AEFD 与矩形ABCD相似,则a:b等于()A . :1B . 1:C . :1D . 1:2. (2分)如图,在△ABC中,点D、E分别在AB、AC边上,DE∥BC.若=, AD=9,则AB等于()A . 10B . 11C . 12D . 163. (2分)(2018·洛阳模拟) 如图,平面直角坐标系中,直线y=-x+a与x、y轴的正半轴分别交于点B 和点A,与反比例函数y=-(x<0)的图像交与点C,若BA∶AC=2∶1,则a的值为()A . -3B . -2C . 3D . 24. (2分)某校为了了解九年级学生的体能情况,随机抽查了其中30名学生,测试了他们做1min仰卧起坐的次数,并制成了如图所示的频数分布直方图,根据图示计算仰卧起坐次数在25~30次的频率是().A . 0.1B . 0.2C . 0.3D . 0.45. (2分)(2017·芜湖模拟) 如图,点P在△ABC的边AC上,要判断△ABP∽△ACB,添加一个条件,不正确的是()A . =B . ∠APB=∠ABCC . =D . ∠ABP=∠C6. (2分)(2018·潍坊) 在平面直角坐标系中,点是线段上一点,以原点为位似中心把放大到原来的两倍,则点的对应点的坐标为()A .B . 或C .D . 或7. (2分)如图,A,B,E为⊙0上的点,⊙O的半径OC⊥AB于点D,若∠CEB=30°,OD=1,则AB的长为()A .B . 4C . 2D . 68. (2分)如图,AB是⊙O的直径,C、D是圆上的两点.若BC=8,cosD=,则AB的长为()A .B .C .D . 129. (2分)(2016·孝义模拟) 如图,正六边形ABCDEF内接于⊙O,点P为上一点,则tan∠APC的值为()A .B .C .D . 110. (2分)若关于x的方程2x2-ax+2=0有两个相等的实数根,则a的值是()A . 2B . ±4C . 6D . 811. (2分) (2018九上·大庆期末) 一人乘雪橇沿坡比1:的斜坡笔直滑下,滑下的距离s(m)与时间t(s)间的关系为s=10t+2t2 ,若滑到坡底的时间为4s,则此人下降的高度为()A . 72mB . 36 mC . 36mD . 18 m12. (2分)如图,△AOB是直角三角形,∠AOB=90°,OB=2OA,点A在反比例函数y=的图象上.若点B在反比例函数y=的图象上,则k的值为()A . -4B . 4C . -2D . 2二、填空题 (共5题;共5分)13. (1分)(2019·高台模拟) 有七张正面分别标有数字﹣1、﹣2、0、1、2、3、4的卡片,除数字不同外其余全部相同,现将它们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为m,则使关于x的方程x2﹣2(m ﹣1)x+m2﹣3m=0有实数根,且不等式组无解的概率是________.14. (1分)(2020·武汉模拟) 如图,已知四边形ABCD与四边形CFGE都是矩形,点E在CD上,点H为AG 的中点,,,,,则DH的长为________ .15. (1分)如图,小明利用正五边形ABCDE以对角线AC、BD、CE、DA、EB为边,在正五边形内作了一个五角星,则这个五角星的∠C AD的度数为________ .16. (1分)(2017·徐州模拟) 设函数y= 与y=x﹣1的图象的交点坐标为(a,b),则﹣的值为________.17. (1分)如图,在▱ABCD中,BE平分∠ABC,CE平分∠BCD,BC=3,EF∥BC,EF的长为________。
2023-2024学年江苏省南京市鼓楼区九年级(上)期末数学试卷+答案解析

一、选择题:本题共6小题,每小题3分,共18分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.平面内,的半径为3,若点P 在外,则OP 的长可能为( )A. 4B. 3C. 2D. 12.一元二次方程的根的情况是2023-2024学年江苏省南京市鼓楼区九年级(上)期末数学试卷( )A. 没有实数根B. 有一个实数根C. 有两个不相等的实数根D. 有两个相等的实数根3.下列实际问题中的y 与x 之间的函数表达式是二次函数的是( )A. 正方体集装箱的体积,棱长xmB. 高为14m 的圆柱形储油罐的体积,底面圆半径xmC. 妈妈买烤鸭花费86元,烤鸭的重量y 斤,单价为x 元/斤D. 小莉驾车以的速度从南京出发到上海,行驶xh ,距上海ykm 4.如图,D ,E 分别是的边AB ,AC 上的点,,,若的周长为6,则的周长等于( )A. 24B. 18C. 12D. 95.在地球上同一地点,不同质量的物体从同一高度同时下落,如果除地球引力外不考虑其他外力的作用,那么它们的落地时间相同.物体的下落距离与下落时间之间的函数表达式为其中g 取值为小莉进行自由落体实验,她从某建筑物抛下一个小球,经过4s 后落地,则该建筑物的高度约为( )A. 98mB.C. 49mD. 6.平面直角坐标系内,已知点,,当时,若最大,则t 的值为( )A.B.C.D.二、填空题:本题共10小题,每小题3分,共30分。
7.若,则为__________.8.点C是线段AB的黄金分割点,若,则__________9.某汽车厂商经过两次增产,将汽车年产量由万辆提升至6万辆,设平均每次增产的百分率是x,可列方程为__________.10.一个圆锥的底面圆半径是1,母线长是3,沿着一条母线将圆锥侧面剪开并展平,得到一个扇形,则这个扇形的圆心角度数为__________11.将二次函数的图象向左平移1个单位,再向上平移一个单位,得到的新图象函数的表达式为__________.12.有3个样本如图所示,关于它们的离散程度有下列几种说法:①样本1与样本3的离散程度相同;②样本2的离散程度最小;③三组数据的离散程度从小到大依次为:样本2、样本3、样本正确的序号为__________.13.如图,AB是的直径,弦于点E,若,,则OA长为__________.14.分别以等边的三个顶点为圆心,边长为半径画弧得到的曲边三角形叫莱洛三角形.如图,等边的边长为2cm,则图中阴影部分的面积为__________15.如图,夜晚路灯下,小莉在点D处测得自己影长,在点G处测得自己影长,E、D、G、B在同一条直线上.已知小莉身高为,则灯杆AB的高度为__________16.中,,,点I是的内心,点O是的外心,则__________.三、计算题:本大题共1小题,共6分。
江苏省南京市联合体2023-2024学年九年级上学期期末数学试卷

2023-2024学年江苏省南京市联合体九年级(上)期末数学试卷一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合1.(2分)一元二次方程x2=3x的解是()A.x1=x2=0B.x1=x2=3C.x1=0,x2=3D.x1=0,x2=﹣32.(2分)如图,转盘中各个扇形的面积相等,任意转动转盘1次,当转盘停止转动时,指针指向白色区域的概率为()A.B.C.D.3.(2分)若一组数据1、3、5、7、x的方差比另一组数据11、13、15、17、19的方差小,则x不可以是()A.10B.8C.6D.44.(2分)如图,△ABC内接于⊙O,若,∠C=45°,则⊙O的半径为()A.1B.2C.D.5.(2分)如图,在△ABC中,点D,E,F分别在AB,AC,BC上.若DE∥BC,DF∥AC,则下列式子正确的是()A.B.C.D.6.(2分)二次函数y=ax2+bx+c的图象如图所示.下列结论:①2a+b=0;②a+b+c>0;③方程ax2+bx+c=a有两个不相等的实数根;④不等式a(x+1)2+b(x+1)+c<0的解集是﹣2<x<2.其中所有正确结论的序号是()A.①③B.②④C.①③④D.①②③④二、填空题(本大题共10小题,每小题2分,共20分.请把答案填写答题卡相应位置上)7.(2分)若=,则=.8.(2分)二次函数y=﹣(x+1)2+2的图象的顶点坐标是.9.(2分)已知点P是线段AB的黄金分割点,且AP>BP,AB=4,那么AP=.10.(2分)设x1,x2是方程x2﹣4x+m=0的两个根,且x1=x2,则m的值为.11.(2分)一个扇形的圆心角为120°,半径为4,则该扇形的弧长为.12.(2分)已知△ABC∽△DEF,△ABC与△DEF面积的比为1:4.若AB=2,则DE的长为.13.(2分)如图,AB∥CD,AD与BC相交于点E.若AB=2,CD=3,AD=4,则AE的长为.14.(2分)已知二次函数y=(x﹣1)2﹣3,当0<x<3时,y的取值范围是.15.(2分)如图,过四边形ABCD的顶点A,C,D的圆,分别交AB,BC于点E,F.若∠B=50°,的度数为56°,则∠D=°.16.(2分)如图,在Rt△ABC中,∠ACB=90°,过点B作BD⊥AB,交∠ACB的平分线于点D,AB与CD相交于点E.若BE=3,BD=6,则AC的长为.三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明17.(8分)解方程:(1)x2﹣4x+3=0;(2)x﹣2﹣x(x﹣2)=0.18.(8分)甲、乙两人在相同的条件下各射靶5次,每次射靶的成绩情况如下:甲:5,6,7,6,6;乙:3,6,6,7,8;(1)根据所给数据填写下表:平均数中位数众数甲66乙6(2)利用方差判断这5次射靶是甲的成绩波动大还是乙的成绩波动大.19.(8分)某校开设了插花、烹饪、种植3个劳动课程,每位同学可以随机选择其中一个课程参加学习.(1)甲同学选择插花课程的概率是;(2)求甲、乙两名同学选择同一个课程的概率.20.(7分)如图,在菱形ABCD中,过D作DE⊥BC交BC的延长线于点E,过E作EF⊥AB交AB于点F.(1)求证△DEC∽△EFB;(2)若BC=6,CE=2,求AF的长.21.(7分)已知y是x的二次函数,y与x的部分对应值如下表:x…﹣2﹣10123…y…941014…(1)求该二次函数的表达式;(2)将该函数图象沿直线x=﹣1翻折,所得图象的函数表达式为.22.(8分)如图,AB是⊙O的弦,C是的中点.(1)连接OC,求证:OC垂直平分AB;(2)若AB=8,,求⊙O的半径.23.(8分)如图,AD,BC相交于点E,AB∥CD∥EF,B,F,D在一条直线上.AB=10,CD=15.(1)求的值;(2)求EF的长.24.(8分)某游乐城销售一种玩具,当售价为50元/件时,每天可以销售40件.现游乐城对该玩具开展酬谢促销活动,通过市场调研发现,该玩具单价每降1元,销量增加4件.若该玩具进价为30元/件.(1)售价为多少元时,每天的利润为864元?(2)售价为多少元时,每天的利润最大,最大利润为多少元?25.(8分)已知二次函数y=ax2﹣4ax(a为常数).(1)求证:该函数的图象与x轴总有两个公共点;(2)该函数图象必过两个定点,它们的坐标分别为、;(3)当0<x<4时,y<4,直接写出a的取值范围.26.(9分)如图,⊙O是Rt△ABC的外接圆,∠ACB=90°,点D在AB上,AC=AD,连接CD并延长交⊙O于点E,点F在AB的延长线上,且∠AFE=∠ABC.(1)连接BE,求证BE=DE;(2)求证:EF是⊙O的切线;(3)若AC=8,BC=6,则DE的长为.27.(9分)【经验积累】如图①,在正方形ABCD中,E是AB上任意一点,连接DE,CE,过点A作AF⊥DE,垂足为F.(1)求证AD2=DF•DE.(2)(Ⅰ)求证△CDF∽△EDC;(Ⅱ)若,则的值为.【方法迁移】(3)如图②,C是∠AOB平分线上的一点,过点C作CP⊥OA,垂足为P,Q是直线OB上的一个动点.若∠AOB=60°,CP=2,则的最大值为.2023-2024学年江苏省南京市联合体九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合1.(2分)一元二次方程x2=3x的解是()A.x1=x2=0B.x1=x2=3C.x1=0,x2=3D.x1=0,x2=﹣3【解答】解:x2=3x,x2﹣3x=0,x(x﹣3)=0,解得:x1=0,x2=3.故答案为:C.2.(2分)如图,转盘中各个扇形的面积相等,任意转动转盘1次,当转盘停止转动时,指针指向白色区域的概率为()A.B.C.D.【解答】解:∵圆被等分成4份,其中白色区域占3份,∴指针落在白色区域的概率为.故选:D.3.(2分)若一组数据1、3、5、7、x的方差比另一组数据11、13、15、17、19的方差小,则x不可以是()A.10B.8C.6D.4【解答】解:数据11、13、15、17、19中,相邻两个数相差为2,一组数据1,3,5,7,x前4个数据也是相差2,若x=9或x=﹣1时,两组数据方差相等,数据1、3、5、7、x的方差比另一组数据11、13、15、17、19的方差小,则x的值不可能是10.故选:A.4.(2分)如图,△ABC内接于⊙O,若,∠C=45°,则⊙O的半径为()A.1B.2C.D.【解答】解:连接AO,并延长交⊙O于点D,连接BD,∵∠C=45°,∴∠D=45°,∵AD为⊙O的直径,∴∠ABD=90°,∴∠DAB=∠D=45°,∵AB=2,∴BD=2,∴AD===2,∴⊙O的半径AO==.故选:C.5.(2分)如图,在△ABC中,点D,E,F分别在AB,AC,BC上.若DE∥BC,DF∥AC,则下列式子正确的是()A.B.C.D.【解答】解:∵DE∥BC,DF∥AC,∴△ADE∽△ABC,△BDF∽△BAC,∴,=,==,=,故A,B,C错误,D正确,故选:D.6.(2分)二次函数y=ax2+bx+c的图象如图所示.下列结论:①2a+b=0;②a+b+c>0;③方程ax2+bx+c=a有两个不相等的实数根;④不等式a(x+1)2+b(x+1)+c<0的解集是﹣2<x<2.其中所有正确结论的序号是()A.①③B.②④C.①③④D.①②③④【解答】解:由图象得:a>0,与x轴相交于点(﹣1,0)和(3,0),∴抛物线的对称轴为x==1,即﹣=1,∴b+2a=0,故①是正确的;由图象得:当x=1,y<0,即a+b+c<0,故②是错误的;∵a>0,∴y=a在x轴的上方,∴y=ax2+bx+c的图象与y=a有两个交点,故③是正确的;根据平移得:y=ax2+bx+c的图象向左平移1个单位得y=a(x+1)2+b(x+1)+c的图象,∴y=a(x+1)2+b(x+1)+c的图象与x轴的交点为(﹣2,0)(2,0),∴不等式a(x+1)2+b(x+1)+c<0的解集是﹣2<x<2.故④是正确的;故选:C.二、填空题(本大题共10小题,每小题2分,共20分.请把答案填写答题卡相应位置上)7.(2分)若=,则=﹣.【解答】解:∵=,∴设x=2k,y=3k(k≠0),则==﹣.故答案为:﹣.8.(2分)二次函数y=﹣(x+1)2+2的图象的顶点坐标是(﹣1,2).【解答】解:∵抛物线解析式为y=﹣(x+1)2+2,∴二次函数图象的顶点坐标是(﹣1,2).故答案为:(﹣1,2).9.(2分)已知点P是线段AB的黄金分割点,且AP>BP,AB=4,那么AP=2﹣2.【解答】解:由于P为线段AB=4的黄金分割点,且AP是较长线段;则AP=AB=×4=2﹣2.故答案为2﹣2.10.(2分)设x1,x2是方程x2﹣4x+m=0的两个根,且x1=x2,则m的值为4.【解答】解:根据题意得x1+x2=4,x1x2=m,∵x1=x2,∴x1=x2=2,∴m=2×2=4.故答案为:4.11.(2分)一个扇形的圆心角为120°,半径为4,则该扇形的弧长为π.【解答】解:根据弧长的公式l=,得到:l==π,故答案为:π.12.(2分)已知△ABC∽△DEF,△ABC与△DEF面积的比为1:4.若AB=2,则DE的长为4.【解答】解:∵△ABC∽△DEF,△ABC与△DEF面积之比为1:4,∴△ABC与△DEF相似比为1:2,即=,∵AB=2,∴DE=4.故答案为:4.13.(2分)如图,AB∥CD,AD与BC相交于点E.若AB=2,CD=3,AD=4,则AE的长为.【解答】解:∵AB∥CD,∴△ABE∽△DCE,∵AB=2,CD=3,AD=4,∴==,∴AE=AD=AD=×4=,故答案为:.14.(2分)已知二次函数y=(x﹣1)2﹣3,当0<x<3时,y的取值范围是﹣3<y<1.【解答】解:∵二次函数y=(x﹣1)2﹣3中a=1>0,∴有最小值﹣3,当x=3时y有最大值=(3﹣1)2﹣3=1,∴当0<x<3时,y的取值范围﹣3≤y<1,故答案为:﹣3≤y<1.15.(2分)如图,过四边形ABCD的顶点A,C,D的圆,分别交AB,BC于点E,F.若∠B=50°,的度数为56°,则∠D=102°.【解答】解:如图,连接AF,∵的度数为56°,∴∠F AE=×56°=28°,∴∠AFC=∠F AE+∠B=28°+50°=78°,∵四边形AFCD为圆内接四边形,∴∠D+∠AFC=180°,∴∠D=180°﹣78°=102°,故答案为:102.16.(2分)如图,在Rt△ABC中,∠ACB=90°,过点B作BD⊥AB,交∠ACB的平分线于点D,AB与CD相交于点E.若BE=3,BD=6,则AC的长为4.【解答】解:作EF⊥CB于点F,DH⊥CB交CB的延长线于点H,则∠H=∠BFE=∠CFE=90°,∵BD⊥AB,BE=3,BD=6,∴∠EBD=90°,∴∠BDH=∠EBF=90°﹣∠DBH,∴△BDH∽△EBF,∴====2,∴BH=2EF,DH=2BF,∵∠ACB=90°,CD平分∠ACB,∴∠FCE=∠ACE=∠ACB=45°,∴∠FEC=∠HDC=∠FCE=45°,∴CF=EF,CH=DH=2BF,∴BH=2CF,∴CF+BF+2CF=2BF,∴BF=3CF=3EF,∴BE===EF=3,∴CF=EF=3,BF=3EF=3×3=9,∴BC=BF+CF=9+3=12,∵∠ACB=∠EFB=90°,∠ABC=∠EBF,∴△ABC∽△EBF,∴===,∴AC=EF=×3=4,故答案为:4.三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明17.(8分)解方程:(1)x2﹣4x+3=0;(2)x﹣2﹣x(x﹣2)=0.【解答】解:(1)x2﹣4x+3=0,(x ﹣3)(x ﹣1)=0,x ﹣3=0或x ﹣1=0,解得:x 1=3,x 2=1;(2)x ﹣2﹣x (x ﹣2)=0,(x ﹣2)(1﹣x )=0,x ﹣2=0或1﹣x =0,解得:x 1=2,x 2=1.18.(8分)甲、乙两人在相同的条件下各射靶5次,每次射靶的成绩情况如下:甲:5,6,7,6,6;乙:3,6,6,7,8;(1)根据所给数据填写下表:平均数 中位数 众数 甲 6 66乙 6 6 6(2)利用方差判断这5次射靶是甲的成绩波动大还是乙的成绩波动大.【解答】解:(1)甲射靶的成绩为:5,6,6,6,7,乙射靶的成绩为:3,6,6,7,8,∴甲的中位数为:6,乙的平均数为:=6,众数为:6, 故答案为:6,6,6;(2)S 甲2=×[(6﹣5)2+(6﹣6)2+(6﹣6)2+(6﹣6)2+(7﹣6)2]=0.4,S 乙2=×[(3﹣6)2+(6﹣6)2+(6﹣6)2+(7﹣6)2+(8﹣6)2]=2.8,因为S 甲2<S 乙2,所以乙的成绩波动大.19.(8分)某校开设了插花、烹饪、种植3个劳动课程,每位同学可以随机选择其中一个课程参加学习.(1)甲同学选择插花课程的概率是 ;(2)求甲、乙两名同学选择同一个课程的概率.【解答】解:(1)∵某校开设了插花、烹饪、种植3个劳动课程,∴甲同学选择插花课程的概率是,故答案为:;(2)把插花、烹饪、种植3个劳动课程分别记为A,B,C,画树状图如下:共有9种等可能的结果,其中甲、乙两名同学选择同一个课程的结果有3种,∴甲、乙两名同学选择同一个课程的概率为=.20.(7分)如图,在菱形ABCD中,过D作DE⊥BC交BC的延长线于点E,过E作EF⊥AB交AB于点F.(1)求证△DEC∽△EFB;(2)若BC=6,CE=2,求AF的长.【解答】(1)证明:∵四边形ABCD是菱形,∴CD∥AB,∴∠DCE=∠EBF,∵DE⊥BC交BC的延长线于点E,EF⊥AB于点F,∴∠DEC=∠EFB=90°,∴△DEC∽△EFB.(2)解:∵BC=6,CE=2,∴AB=CD=BC=6,BE=BC+CE=6+2=8,∵△DEC∽△EFB,∴=,∴BF===,∴AF=AB﹣BF=6﹣=,∴AF的长是.21.(7分)已知y是x的二次函数,y与x的部分对应值如下表:x…﹣2﹣10123…y…941014…(1)求该二次函数的表达式;(2)将该函数图象沿直线x=﹣1翻折,所得图象的函数表达式为y=x2+6x+9.【解答】解:(1)由表格得:抛物线的顶点为(1,0),设函数关系式为y=a(x﹣1)2,则1=a(0﹣1)2,解得:a=1,∴y=(x﹣1)2=x2﹣2x+1,∴该二次函数的表达式为y=x2﹣2x+1;(2)由(1)得抛物线的顶点为(1,0),点(1,0)关于直线x=﹣1的对称点为(﹣3,0),∴该函数图象沿直线x=﹣1翻折,所得图象的函数表达式为y=(x+3)2=x2+6x+9.故答案为:y=x2+6x+9.22.(8分)如图,AB是⊙O的弦,C是的中点.(1)连接OC,求证:OC垂直平分AB;(2)若AB=8,,求⊙O的半径.【解答】(1)证明:连接OA,OB,OC,∵由C是的中点,∴=,∴∠AOC=∠BOC,∵OA=OB,∴OC垂直平分AB;(2)解:由(1)知,OC垂直平分AB,∵AB=8,,∴AD=AB=4,∴CD===2,设⊙O的半径为r,则OD=r﹣2,OA=r,在Rt△AOD中,AD2+OD2=OA2,即42+(r﹣2)2=r2,解得r=5.23.(8分)如图,AD,BC相交于点E,AB∥CD∥EF,B,F,D在一条直线上.AB=10,CD=15.(1)求的值;(2)求EF的长.【解答】解:(1)∵AB∥CD,∴===,又∵AB∥EF,∴==;(2)∵CD∥EF,∴=,又∵CD=15,=,∴EF=CD•=15×=6.24.(8分)某游乐城销售一种玩具,当售价为50元/件时,每天可以销售40件.现游乐城对该玩具开展酬谢促销活动,通过市场调研发现,该玩具单价每降1元,销量增加4件.若该玩具进价为30元/件.(1)售价为多少元时,每天的利润为864元?(2)售价为多少元时,每天的利润最大,最大利润为多少元?【解答】解:(1)设售价为x元时,每天的利润为864元,由题意得:(x﹣30)[4+4×(50﹣x)]=864,解得:x1=46,x2=44,答:售价为46或44元时,每天的利润为864元,(2)设售价为x元时,每天的利润为w元,由题意得:w=(x﹣30)[4+4×(50﹣x)],=﹣4x2+280x﹣6000,当x=﹣=35时,w有最大值,最大值为900元,答:售价为35元时,每天的利润最大,最大利润为900元.25.(8分)已知二次函数y=ax2﹣4ax(a为常数).(1)求证:该函数的图象与x轴总有两个公共点;(2)该函数图象必过两个定点,它们的坐标分别为(0,0)、(4,0);(3)当0<x<4时,y<4,直接写出a的取值范围.【解答】(1)证明:由题知,(﹣4a)2﹣4a×0=16a2,因为a≠0,所以16a2>0,故该函数的图象与x轴总有两个公共点.(2)解:因为y=ax2﹣4ax=(x2﹣4x)a,又因为函数图象必过两个定点,即与a的取值无关,所以x2﹣4x=0,解得x=0或4,所以定点的坐标为(0,0)和(4,0).故答案为:(0,0),(4,0).(3)解:因为抛物线过定点(0,0)和(4,0),若a>0,0<x<4时,此时抛物线都在x轴下方,满足y<4.若a<0,0<x<4时,当x=2时的函数值小于4,即4a﹣8a<4,解得a>﹣1,所以﹣1<a<0.综上所述,﹣1<a<0或a>0.26.(9分)如图,⊙O是Rt△ABC的外接圆,∠ACB=90°,点D在AB上,AC=AD,连接CD并延长交⊙O于点E,点F在AB的延长线上,且∠AFE=∠ABC.(1)连接BE,求证BE=DE(2)求证:EF是⊙O的切线;(3)若AC=8,BC=6,则DE的长为.【解答】(1)证明:∵AC=AD,∴∠ACD=∠ADC,∵,∴∠ACD=∠EBD,∵∠EDB=∠ADC,∴∠EDB=∠EBD,∴BE=DE;(2)证明:如图1,连接OE,∵OB=OE,∴∠DBE=∠OEB,∵∠DBE=∠ACD=∠ADC,∴∠OEB=∠ADC,∴∠EOB=∠CAD,∵AB是⊙O的直径,∴∠CAD+∠ABC=90°,∵∠ABC=∠AFE,∴∠OEB+∠AFE=90°,∴∠OEF=90°,∴OE⊥EF,∴EF是⊙O的切线;(3)解:如图2,作CG⊥AB于G,∵∠ACB=90°,AC=8,BC=6,∴AB=10,∴BD=AB﹣AD=AB﹣AC=2,∵sin A=,cos A=,∴,,∴CG=,AG=,∴DG=AD﹣AG=AC﹣AG=8﹣,∴CD==,∵∠ACD=∠ADC=∠EDB=∠EBD,∴△EDB∽△ADC,∴,∴,∴DE=,故答案为:.27.(9分)【经验积累】如图①,在正方形ABCD中,是AB上任意一点,连接DE,CE,过点A作AF⊥DE,垂足为F.(1)求证AD2=DF•DE.(2)(Ⅰ)求证△CDF∽△EDC;(Ⅱ)若,则的值为.【方法迁移】(3)如图②,C是∠AOB平分线上的一点,过点C作CP⊥OA,垂足为P,Q是直线OB上的一个动点.若∠AOB=60°,CP=2,则的最大值为.【解答】(1)证明:∵四边形ABCD是正方形,∴∠DAE=90°,∴∠AED+∠ADE=90°,∵AF⊥DE,∴∠DAF+∠ADE=90°,∴∠ADF=∠AED,∵∠ADF=∠EDA,∴△ADF∽△EDA,∴,∴AD2=DF•DE.(2)①∵四边形ABCD是正方形,∴AD=DC,由(1)知,∴,∵∠CDF=∠EDC,∴△CDF∽△EDC,②∵,∴,∵=,∴=,∴=,故答案为:;(3)过点P作PM⊥OB于点M,过点Q作QN⊥OB,如图:∵OC平分∠AOB,∠AOB=60°,CP=2,∴∠POC=∠CON=30°,OC=4,OP=2,∴CN=2,PM=3,OM=,ON=2,MN=,∴PQ≤3,CQ≤2,当PQ最小时,即Q在M处,∴CM=,当CQ最小时,即点Q在点N处,∴PN=2,∴≤≤,∴,∴,即,∴的最大值为:,故答案为:.。
江苏省南京市秦淮区2023-2024学年上学期期末检测九年级数学试卷(含解析)

2023-2024学年江苏省南京市秦淮区九年级(上)期末数学试卷一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卷相应位置上)1.(2分)下列函数中,y与x之间的关系是二次函数的是( )A.y=1﹣3x3B.y=x2﹣5xC.y=x4+2x2﹣1D.2.(2分)若⊙O的半径为2,在同一平面内,点P与圆心O的距离为1,则点P与⊙O的位置关系是( )A.点P在⊙O外B.点P在⊙O上C.点P在⊙O内D.无法确定3.(2分)某班5名学生的体重(单位:kg)分别为:51,53,47,51,60,则这组数据的众数与中位数分别是( )A.60kg,51kg B.51kg,47kg C.60kg,47kg D.51kg,51kg 4.(2分)下列图形中,既是轴对称图形又是中心对称图形的是( )A.等边三角形B.平行四边形C.正五边形D.正八边形5.(2分)一元二次方程﹣2(2x+1)2+a2=0(a是常数,a≠0)的根的情况是( )A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定有没有实数根6.(2分)如图,在平面直角坐标系中,A,B两点的坐标分别为(2,0),(0,2),二次函数y=x2﹣2ax+b(a,b是常数)的图象的顶点在线段AB上,则b的最小值为( )A.0B.C.D.2二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请7.(2分)一元二次方程x2﹣x=0的根是 .8.(2分)若x1,x2是一元二次方程2x2﹣7x+5=0的两根,则x1+x2的值是 .9.(2分)若△ABC内接于⊙O,∠AOB=120°,则圆周角∠ACB的度数 .10.(2分)如图,四边形ABCD内接于⊙O,E为BC延长线上一点,若∠A=80°,则∠DCE = °.11.(2分)某产品原来每件成本是36元,连续两次降低成本后,现在成本是25元.设平均每次降低成本的百分率为x,可得方程 .12.(2分)圆锥的底面半径为3cm,母线长为5cm,则圆锥的表面积为 cm2.13.(2分)杭州亚运会射箭比赛中,某运动员6箭的成绩(单位:环)依次是x1,x2,x3,x1+1,x2+2,x3+3.若前3箭的平均成绩为7环,则这6箭的平均成绩为 环.14.(2分)如图,点B,C在⊙O上,D为的中点,直径AD交BC于点E,AD=6,,则DE的长为 .15.(2分)在平面直角坐标系中,函数y=x2﹣2x﹣3的图象与x轴交于点A,B,将函数y =x2﹣2x﹣3的图象向上平移,平移后的图象与x轴交于点C,D.若AB=2CD,则平移后的图象对应的函数表达式为 .16.(2分)如图,在△ABC中,∠ACB=90°,点D,E分别在BC,AC上,DE与△ABC 的内切圆O相切.若△ABC的面积是30,△CDE的周长是4,则AB的长为 .三、解答题(本大题共11小题,共88分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(8分)解下列方程:(1)x2+2x﹣4=0;(2)x(x﹣3)=3﹣x.18.(6分)已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表:x…0123…y…5212…(1)求该二次函数的表达式;(2)若点A(﹣1,y1),B(4,y2)在这个函数的图象上,则y1 y2.(填“>”“<”或“=”)19.(8分)如图,用篱笆围成一块矩形花圃,该花圃一侧靠墙,而且有一道隔栏(隔栏也用篱笆制作),已知所用篱笆的总长为24m,花圃的面积为45m2,墙的最大可用长度为10m,求边AB的长.20.(8分)如图,已知△ABC内接于⊙O,AD是⊙O的直径,连接BD,CD,BC平分∠ABD.(1)求证∠CAD=∠ABC;(2)若AD=6,则AC的长为 .21.(8分)一只不透明的袋子中装有1个白球和a个红球,这些球除颜色外都相同.已知从袋中任意摸出1个球是白球的概率是.(1)a的值是 ;(2)先从袋中任意摸出1个球,记录颜色后放回、搅匀,再从中任意摸出1个球,求2次摸到的球颜色不同的概率.22.(8分)已知P是⊙O上一点,在⊙O上作两点A,B,使得∠APB分别满足以下条件:(1)在图①中,∠APB=90°;(2)在图②中,∠APB=30°.(说明:第(1)题只用无刻度的直尺作图,第(2)题只用圆规作图;保留作图痕迹,不写作法.)23.(8分)已知关于x的方程x2﹣(2m+2)x+m2+2m=0.(1)求证:无论m取何值,方程总有两个不相等的实数根;(2)若方程有一个根为1,求m的值.24.(7分)2023年12月14日,一股冷空气开始影响我市,我市连续7天的天气情况如下:上述天气情况包括了每天的天气状况(如阴转小雨,小雨转多云等)、气温(如“5/17℃”指当天最低和最高气温分别是5℃和17℃)、风向和风级.(1)计算这7天最低气温的平均数和方差.(2)阅读冷空气等级标准表:序号等级冷空气来临的48小时内日最低气温变化情况①弱冷空气降温幅度小于6℃②中等强度冷空气降温幅度大于或等于6℃,但小于8℃③较强冷空气降温幅度大于或等于8℃且日最低气温超过8℃④强冷空气降温幅度大于或等于8℃,且日最低气温不超过8℃⑤寒潮降温幅度大于或等于10℃且日最低气温不超过4℃本次来临的冷空气的等级是 .(填序号)(3)本次冷空气来临后,除导致气温下降外,还带来哪些天气情况的变化?请写出一个结论.25.(8分)2023年12月18日晚,甘肃省积石山县发生6.2级地震.“一方有难,八方支援”,某商家决定将后续一个月销售某商品获得的利润全部捐赠给灾区.已知购进该商品的成本为10元/件,当售价为12元时,平均每天可以卖出1200件.调查发现,该商品每涨价1元,平均每天少售出100件.当每件商品的售价是多少元时,该商家捐赠的金额最大?最大捐赠金额是多少?(一个月按30天计算)26.(9分)阅读下列内容:如果点P(a,b)在一次函数y=x+1的图象上,那么点(2a,2b)一定在哪个函数的图象上呢?下面是解决问题的一种途径.所以点(2a,2b)一定在函数y=x+2的图象上.根据阅读内容解决下列问题:(1)如果点P(a,b)在反比例函数的图象上,那么点(2a,2b)一定在哪个函数的图象上呢?填写下面的空格.(2)如果点P(a,b)在一次函数y=2x的图象上,判断点(a+b,ab)一定在哪个函数的图象上?说明理由.27.(10分)如图,已知A,B是⊙O的2个三等分点,C是优弧AB上的一个动点(点C不与A,B两点重合),连接AB,BC,AC.D,E分别是,的中点,连接DE,分别交AC,BC于点F,G.(1)当点C运动到优弧AB的中点时,直接写出DE与AB的关系.(2)求证FG+AB=AF+BG.(说明:第(2)题共5分,如果你觉得困难,可以在(1)的条件下证明,证明正确得2分.)(3)若I是AE,BD的交点,点O与点I的距离记为d.当AB=6时,d取值范围是 .2023-2024学年江苏省南京市秦淮区九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卷相应位置上)1.(2分)下列函数中,y与x之间的关系是二次函数的是( )A.y=1﹣3x3B.y=x2﹣5xC.y=x4+2x2﹣1D.【分析】根据二次函数的定义判断即可.【解答】解:A、y=1﹣3x3,x的最高次数是3,不是二次函数,不符合题意;B、y=x2﹣5x,是二次函数,符合题意;C、y=x4+2x2﹣1,x的最高次数是4,不是二次函数,不符合题意;D、y=,不是二次函数,不符合题意.故选:B.2.(2分)若⊙O的半径为2,在同一平面内,点P与圆心O的距离为1,则点P与⊙O的位置关系是( )A.点P在⊙O外B.点P在⊙O上C.点P在⊙O内D.无法确定【分析】根据点P到圆心的距离与圆的半径比较大小即可得出结论.【解答】解:∵⊙O的半径为2,在同一平面内,点P与圆心O的距离为1,1<2,∴点P与⊙O的位置关系是:点P在⊙O内,故选:C.3.(2分)某班5名学生的体重(单位:kg)分别为:51,53,47,51,60,则这组数据的众数与中位数分别是( )A.60kg,51kg B.51kg,47kg C.60kg,47kg D.51kg,51kg【分析】众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.【解答】解:众数是一组数据中出现次数最多的数,在这一组数据中51出现了1次,次数最多,故众数是51kg;将这组数据从小到大的顺序排列为:47,51,51,53,60,处于中间位置的那个数是51,那么由中位数的定义可知,这组数据的中位数是51kg.4.(2分)下列图形中,既是轴对称图形又是中心对称图形的是( )A.等边三角形B.平行四边形C.正五边形D.正八边形【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,不符合题意;B、不是轴对称图形,是中心对称图形,不符合题意;C、是轴对称图形,不是中心对称图形,不符合题意;D、既是轴对称图形,又是中心对称图形,符合题意.故选:D.5.(2分)一元二次方程﹣2(2x+1)2+a2=0(a是常数,a≠0)的根的情况是( )A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定有没有实数根【分析】根据一元二次方程根的判别式解答即可.【解答】解:一元二次方程﹣2(2x+1)2+a2=0可化为﹣8x2﹣8x+a2﹣2=0,∵a=﹣8,b=﹣8,c=a2﹣2,a≠0,∴Δ=(﹣8)2﹣4×(﹣8)×(a2﹣2)=64+32a2﹣64=32a2>0,∴方程有两个不相等的实数根.故选:A.6.(2分)如图,在平面直角坐标系中,A,B两点的坐标分别为(2,0),(0,2),二次函数y=x2﹣2ax+b(a,b是常数)的图象的顶点在线段AB上,则b的最小值为( )A.0B.C.D.2【分析】先用a,b表示出二次函数图象的顶点坐标,再结合该顶点在线段AB上即可解【解答】解:∵二次函数解析式为y=x2﹣2ax+b(a,b是常数),∴顶点坐标为(a,﹣a2+b).又∵A(2,0),B(0,2),∴直线AB的函数解析式为y=﹣x+2.∵二次函数图象的顶点在线段AB上,∴﹣a2+b=﹣a+2,且0≤a≤2,则b=a2﹣a+2=()2+,∴当a=时,b有最小值为.故选:C.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请7.(2分)一元二次方程x2﹣x=0的根是 x1=0,x2=1 .【分析】方程左边分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【解答】解:方程变形得:x(x﹣1)=0,可得x=0或x﹣1=0,解得:x1=0,x2=1.故答案为:x1=0,x2=1.8.(2分)若x1,x2是一元二次方程2x2﹣7x+5=0的两根,则x1+x2的值是 .【分析】直接利用根与系数的关系求解.【解答】解:根据根与系数的关系得x1+x2=﹣=.故答案为:.9.(2分)若△ABC内接于⊙O,∠AOB=120°,则圆周角∠ACB的度数 60°或120° .【分析】分点C在优弧和劣弧上两种情况,当点C在优弧上时,可直接利用圆周角定理得到∠ACB是∠AOB的一半,当点C在劣弧上时,可以优弧上找点D,则可求得∠ADB 是∠AOB的一半,再利用圆内接四边形的性质可求得∠ACB【解答】解:如图1,当点C在优弧上时,则∠ACB=∠AOB=60°;如图2,当点C在劣弧上时,在优弧上找点D,连接DA、DB,则可得∠ADB=∠AOB=60°,又∵四边形ACBD为圆的内接四边形,∴∠ADB+∠ACB=180°,∴∠ACB=180°﹣60°=120°,∴∠ACB的度数是60°或120°;故答案为:60°或120°.10.(2分)如图,四边形ABCD内接于⊙O,E为BC延长线上一点,若∠A=80°,则∠DCE = 80 °.【分析】利用圆内接四边形的对角互补和邻补角的性质求解.【解答】解:∵四边形ABCD是⊙O的内接四边形,∴∠A+∠DCB=180°,又∵∠DCE+∠DCB=180°∴∠DCE=∠A=80°故答案为:80.11.(2分)某产品原来每件成本是36元,连续两次降低成本后,现在成本是25元.设平均每次降低成本的百分率为x,可得方程 36(1﹣x)2=25 .【分析】根据某产品原来每件成本是36元,连续两次降低成本后,现在成本是25元,可以列出相应的方程.【解答】解:由题意可得,36(1﹣x)2=25,故答案为:36(1﹣x)2=25.12.(2分)圆锥的底面半径为3cm,母线长为5cm,则圆锥的表面积为 15π cm2.【分析】圆锥的侧面积=底面周长×母线长÷2.【解答】解:底面圆的半径为3cm,则底面周长=6πcm,侧面面积=×6π×5=15π(cm2).故答案为:15π.13.(2分)杭州亚运会射箭比赛中,某运动员6箭的成绩(单位:环)依次是x1,x2,x3,x1+1,x2+2,x3+3.若前3箭的平均成绩为7环,则这6箭的平均成绩为 8 环.【分析】根据前3箭的平均成绩为7环,可以得到前三箭的总环数,从而可以得到这六箭的总环数,从而可以得到平均成绩.【解答】解:由题意可得,x1+x2+x3=3×7=21,∴(x1+x2+x3+x1+1+x2+2+x3+3)÷6=48÷6=8(环),即这6箭的平均成绩为8环,故答案为:8.14.(2分)如图,点B,C在⊙O上,D为的中点,直径AD交BC于点E,AD=6,,则DE的长为 3﹣ .【分析】连接OB,根据圆心角、弦、弧的关系推出AD⊥BC,根据垂径定理求出BE=BC=,再根据勾股定理求解即可.【解答】解:如图,连接OB,∵D为的中点,直径AD交BC于点E,∴AD⊥BC,∴BE=BC=,∵AD=6,∴OB=OD=3,在Rt△BOE中,OB2=OE2+BE2,∴32=OE2+,∴OE=或OE=﹣(舍去),∴DE=OD﹣OE=3﹣,故答案为:3﹣.15.(2分)在平面直角坐标系中,函数y=x2﹣2x﹣3的图象与x轴交于点A,B,将函数y =x2﹣2x﹣3的图象向上平移,平移后的图象与x轴交于点C,D.若AB=2CD,则平移后的图象对应的函数表达式为 y=x2﹣2x .【分析】先解方程x2﹣2x﹣3=0得到A(﹣1,0),B(3,0),则AB=4,所以CD=2,由于函数y=x2﹣2x﹣3的图象向上平移时对称轴不变,对称轴为直线x=1,而C、D关于直线x=1对称,所以C(0,0),D(2,0),然后利用交点式写出平移后抛物线的解析式.【解答】解:当y=0时,x2﹣2x﹣3=0,解得x1=3,x2=﹣1,∴A(﹣1,0),B(3,0),∴AB=3﹣(﹣1)=4,∵AB=2CD,∴CD=2,∵函数y=x2﹣2x﹣3的图象向上平移时对称轴不变,仍然为直线x=1,∴C(0,0),D(2,0),∴平移后抛物线的解析式为y=x(x﹣2),即y=x2﹣2x.故答案为:y=x2﹣2x.16.(2分)如图,在△ABC中,∠ACB=90°,点D,E分别在BC,AC上,DE与△ABC 的内切圆O相切.若△ABC的面积是30,△CDE的周长是4,则AB的长为 13 .【分析】过点分别作OF⊥AB于点F,OG⊥BC于点G,OH⊥AC于点H,根据切线长定理得到AF=AH,BF=BG,CG=CH,ME=HE,MD=GD,由△CDE的周长是4求出CG=CH=2,设BG=BF=x,AF=AH=y,则AB=x+y,BC=x+2,AC=y+2,根据勾股定理得到xy=2(x+y)+4①,根据三角形的面积公式得到xy=60﹣2(x+y)②,①②求得x+y即可.【解答】解:过点分别作OF⊥AB于点F,OG⊥BC于点G,OH⊥AC于点H,∵⊙O是△ABC的内切圆,∴AF=AH,BF=BG,CG=CH,∵DE与⊙O相切,设切点为M,∴ME=HE,MD=GD,∵△CDE的周长是4,CG+CH=4,∴CG=CH=2,设BG=BF=x,AF=AH=y,则AB=x+y,BC=x+2,AC=y+2,∵∠ACB=90°,∴AB2=BC2+AC2,∴(x+y)2=(x+2)2+(y+2)2,化简得xy=2(x+y)+4①,∵△ABC的面积是30,∴BC•AC=30,∴(x+2)(y+2)=60,∴xy=60﹣2(x+y)②,由①②得x+y=13,∴AB=13.故答案为:13.三、解答题(本大题共11小题,共88分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(8分)解下列方程:(1)x2+2x﹣4=0;(2)x(x﹣3)=3﹣x.【分析】(1)利用配方法得到(x+1)2=5,然后利用直接开平方法解方程;(2)先移项,再利用因式分解法把方程转化为x﹣3=0或x+1=0,然后解两个一次方程即可.【解答】解:(1)x2+2x﹣4=0,x2+2x=4,x2+2x+1=5,(x+1)2=5,x+1=±,所以x1=﹣1+,x2=﹣1﹣;(2)x(x﹣3)=3﹣x,x(x﹣3)+x﹣3=0,(x﹣3)(x+1)=0,x﹣3=0或x+1=0,所以x1=3,x2=﹣1.18.(6分)已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表:x…0123…y…5212…(1)求该二次函数的表达式;(2)若点A(﹣1,y1),B(4,y2)在这个函数的图象上,则y1 > y2.(填“>”“<”或“=”)【分析】(1)用待定系数法即可解决问题.(2)分别求出y1和y2即可解决问题.【解答】解:(1)由题知,将点(0,5),(1,2),(2,1)分别代入函数表达式得,,解得,所以该二次函数表达式为y=x2﹣4x+5.(2)当x=﹣1时,;当x=4时,;∴y1>y2.故答案为:>.19.(8分)如图,用篱笆围成一块矩形花圃,该花圃一侧靠墙,而且有一道隔栏(隔栏也用篱笆制作),已知所用篱笆的总长为24m,花圃的面积为45m2,墙的最大可用长度为10m,求边AB的长.【分析】设边AB边的长为x m,根据花圃的面积为45m2,列出一元二次方程,解之取符合题意的值即可.【解答】解:设边AB边的长为x m,由题意得:x(24﹣3x)=45,整理得:x2﹣8x+15=0,解得:x1=3(不符合题意,舍去),x2=5,答:边AB的长为5m.20.(8分)如图,已知△ABC内接于⊙O,AD是⊙O的直径,连接BD,CD,BC平分∠ABD.(1)求证∠CAD=∠ABC;(2)若AD=6,则AC的长为 3 .【分析】(1)由角平分线的性质和圆周角定理可得∠DBC=∠ABC=∠CAD;(2)由圆周角定理可得,由弧长公式可求解.【解答】(1)证明:∵BC平分∠ABD,∴∠DBC=∠ABC,∵∠CAD=∠DBC,∴∠CAD=∠ABC;(2)解:∵∠CAD=∠ABC,∴=,∴AC=CD,∵AD是⊙O的直径,AD=6,∴∠ACD=90°,在Rt△ACD中,2AC2=AD2=62,解得:AC=3.故答案为:3.21.(8分)一只不透明的袋子中装有1个白球和a个红球,这些球除颜色外都相同.已知从袋中任意摸出1个球是白球的概率是.(1)a的值是 2 ;(2)先从袋中任意摸出1个球,记录颜色后放回、搅匀,再从中任意摸出1个球,求2次摸到的球颜色不同的概率.【分析】(1)直接利用概率公式可得答案.(2)列表可得出所有等可能的结果数以及2次摸到的球颜色不同的结果数,再利用概率公式可得出答案.【解答】解:∵从袋中任意摸出1个球是白球的概率是,∴,解得a=2,经检验,a=2是原方程的解且符合题意.故答案为:2.(2)列表如下:白红红白(白,白)(白,红)(白,红)红(红,白)(红,红)(红,红)红(红,(红,(红,白)红)红)共有9种等可能的结果,其中2次摸到的球颜色不同的结果有4种,∴2次摸到的球颜色不同的概率为.22.(8分)已知P是⊙O上一点,在⊙O上作两点A,B,使得∠APB分别满足以下条件:(1)在图①中,∠APB=90°;(2)在图②中,∠APB=30°.(说明:第(1)题只用无刻度的直尺作图,第(2)题只用圆规作图;保留作图痕迹,不写作法.)【分析】(1)过O点画直线交⊙O于点A、B,则根据圆周角定理得到∠APB满足条件;(2)任取点A,以A为圆心,AO为半径画弧交⊙O于点B,则△AOB为等边三角形,所以∠AOB=60°,然后根据圆周角定理得到∠APB满足条件.【解答】解:(1)如图①,∠APB为所作;(2)如图②,∠APB为所作;23.(8分)已知关于x的方程x2﹣(2m+2)x+m2+2m=0.(1)求证:无论m取何值,方程总有两个不相等的实数根;(2)若方程有一个根为1,求m的值.【分析】(1)先求出Δ的值,再判断出其符号即可;(2)把x=1代入方程,求出m的值即可.【解答】(1)证明:方程x2﹣(2m+2)x+m2+2m=0中,∵a=1,b=﹣(2m+2),c=m2+2m,∴Δ=[﹣(2m+2)]2﹣4×1×(m2+2m)=4>0,∴无论m取何值,方程总有两个不相等的实数根;(2)∵方程有一个根为1,∴12﹣(2m+2)×1+m2+2m=0,即m2﹣1=0,∴m=±1.24.(7分)2023年12月14日,一股冷空气开始影响我市,我市连续7天的天气情况如下:上述天气情况包括了每天的天气状况(如阴转小雨,小雨转多云等)、气温(如“5/17℃”指当天最低和最高气温分别是5℃和17℃)、风向和风级.(1)计算这7天最低气温的平均数和方差.(2)阅读冷空气等级标准表:序号等级冷空气来临的48小时内日最低气温变化情况①弱冷空气降温幅度小于6℃②中等强度冷空气降温幅度大于或等于6℃,但小于8℃③较强冷空气降温幅度大于或等于8℃且日最低气温超过8℃④强冷空气降温幅度大于或等于8℃,且日最低气温不超过8℃⑤寒潮降温幅度大于或等于10℃且日最低气温不超过4℃本次来临的冷空气的等级是 ⑤ .(填序号)(3)本次冷空气来临后,除导致气温下降外,还带来哪些天气情况的变化?请写出一个结论.【分析】(1)根据平均数和方差的定义列式计算即可;(2)对照表格可得答案;(3)参照天气情况图可得答案.【解答】解:(1)这7天最低气温的平均数=4(℃),方差为×[(17﹣4)2+(5﹣4)2+(0﹣4)2+(0﹣4)2+(2﹣4)2+(6﹣4)2+(﹣2﹣4)2]=;(2)由题意知,本次来临的冷空气的等级是⑤,故答案为:⑤;(3)本次冷空气来临后,除导致气温下降外,还带来雨雪.25.(8分)2023年12月18日晚,甘肃省积石山县发生6.2级地震.“一方有难,八方支援”,某商家决定将后续一个月销售某商品获得的利润全部捐赠给灾区.已知购进该商品的成本为10元/件,当售价为12元时,平均每天可以卖出1200件.调查发现,该商品每涨价1元,平均每天少售出100件.当每件商品的售价是多少元时,该商家捐赠的金额最大?最大捐赠金额是多少?(一个月按30天计算)【分析】依据题意,设每件商品的售价是x元,先求出每天的利润为w=(x﹣10)[1200﹣100(x﹣12)]=(x﹣10)(2400﹣100x)=﹣100(x﹣17)2+4900,再由二次函数的性质进行判断可以得解.【解答】解:由题意,设每件商品的售价是x元,∴每天的利润为w=(x﹣10)[1200﹣100(x﹣12)]=(x﹣10)(2400﹣100x)=﹣100x2+3400x﹣24000=﹣100(x﹣17)2+4900.∴当每件商品的售价是17元时,利润最大为4900元.∴每月最大利润为147000元.答:当每件商品的售价是17元时,该商家捐赠的金额最大,最大捐赠金额是147000元.26.(9分)阅读下列内容:如果点P(a,b)在一次函数y=x+1的图象上,那么点(2a,2b)一定在哪个函数的图象上呢?下面是解决问题的一种途径.所以点(2a,2b)一定在函数y=x+2的图象上.根据阅读内容解决下列问题:(1)如果点P(a,b)在反比例函数的图象上,那么点(2a,2b)一定在哪个函数的图象上呢?填写下面的空格.(2)如果点P(a,b)在一次函数y=2x的图象上,判断点(a+b,ab)一定在哪个函数的图象上?说明理由.【分析】(1)根据点P(a,b)在反比例函数的图象上,得ab=2,对于点(2a,2b),则x=2a,y=2b,则xy=4ab=8,由此可得出答案;(2)根据点P(a,b)在一次函数y=2x的图象上,得b=2a,对于(a+b,ab),则x=a+b=3a,y=ab=2a2,进而得得,由此可得出结论.【解答】解:(1)∵点P(a,b)在反比例函数的图象上,∴ab=2,对于点(2a,2b),则x=2a,y=2b,∴xy=4ab,将ab=2代入xy=4ab,得xy=8,即,∴点(2a,2b)一定在这个函数的图象上;如下图所示:(2)点(a+b,ab)一定在这个函数的图象上,理由如下:∵点P(a,b)在一次函数y=2x的图象上,∴b=2a,对于(a+b,ab),则x=a+b=3a,y=ab=2a2,∵x=3a,∴,∴.∴点(a+b,ab)一定在这个函数的图象上.27.(10分)如图,已知A,B是⊙O的2个三等分点,C是优弧AB上的一个动点(点C不与A,B两点重合),连接AB,BC,AC.D,E分别是,的中点,连接DE,分别交AC,BC于点F,G.(1)当点C运动到优弧AB的中点时,直接写出DE与AB的关系.(2)求证FG+AB=AF+BG.(说明:第(2)题共5分,如果你觉得困难,可以在(1)的条件下证明,证明正确得2分.)(3)若I是AE,BD的交点,点O与点I的距离记为d.当AB=6时,d取值范围是 0≤d<2 .【分析】(1)当点C运动到优弧AB的中点时,连接AD,AE,BE,利用同圆中等弧所对的圆周角相等可以推导出DE∥AB,再证明四边形ABED是矩形可以得出DE=AB;(2)在条件(1)下,连接CE,根据圆周角相等和等腰三角形可以推导出BG=2FG,最后推导出FG+AB=AF+BG;(3)根据点C的运动轨迹就可以推导出d的取值范围.【解答】解:(1)当点C运动到优弧AB的中点时,DE∥AB且DE=AB,连接AD,BE,AE,CE,∵A,B是⊙O的2个三等分点,∴==,∴AB=AC=BC,∴△ABC是等边三角形,又∵D,E分别是,的中点,∴===,∴∠DEA=∠EAB=∠DEC=∠CBE=∠DAC=∠CED=∠ECB=30°,∴DE∥AB,∴∠DAB=∠EBA=90°,∴DA⊥AB,EB⊥AB,∴四边形ABED是矩形,∴AB=DE;证明:(2)在(1)的条件下,∵∠ACB=60°,FG∥AB,∴∠CFG=∠CGF=60°,∴△CFG为等边三角形,∴CF=FG=CG,又∵∠CED=∠ECB=30°,∴CG=GE,∵在△GEB中,∠GBE=30°,∠GEB=90°,∴BG=2GE=2FG,∵AB=AF+CF,∴AB+FG=AF+CF+FG=AF+BG;解:(3)连接OB,作OM⊥AB,∵当点C运动到优弧AB的中点时,此时AE,BD的交点I与圆心O重回,∴点O与点I的距离d为0,∵A,B是⊙O的2个三等分点,∴劣弧对的圆心角为120°,∴∠OBM=30°,又∵AB=6,∴OB=2,∵OI≤OB+IB,∴当点C运动到点A或点B时,OI=OB=2,∵点C不与A,B两点重合,∴OI<2,∴0≤d<2,故答案为:0≤d<2.。
南京市九年级(上)期末数学试卷(含答案)

南京市九年级(上)期末数学试卷(含答案)一、选择题1.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点M ,若CD =8 cm ,MB =2 cm ,则直径AB 的长为( )A .9 cmB .10 cmC .11 cmD .12 cm2.已知二次函数y =ax 2+bx +c (a <0<b )的图像与x 轴只有一个交点,下列结论:①x <0时,y 随x 增大而增大;②a +b +c <0;③关于x 的方程ax 2+bx +c +2=0有两个不相等的实数根.其中所有正确结论的序号是( ) A .①②B .②③C .①③D .①②③3.对于二次函数2610y x x =-+,下列说法不正确的是( ) A .其图象的对称轴为过(3,1)且平行于y 轴的直线. B .其最小值为1. C .其图象与x 轴没有交点.D .当3x <时,y 随x 的增大而增大.4.若一元二次方程x 2﹣2x+m=0有两个不相同的实数根,则实数m 的取值范围是( ) A .m≥1B .m≤1C .m >1D .m <15.如图,AB 是⊙O 的直径,BC 与⊙O 相切于点B ,AC 交⊙O 于点D ,若∠ACB=50°,则∠BOD 等于( )A .40°B .50°C .60°D .80°6.如图,小正方形边长均为1,则下列图形中三角形(阴影部分)与△ABC 相似的是A .B .C .D .7.在一个不透明的口袋中装有3个红球和2个白球,它们除颜色不同外,其余均相同.把它们搅匀后从中任意摸出1个球,则摸到红球的概率是( ) A .14B .34C .15D .358.下列方程是一元二次方程的是( ) A .2321x x =+ B .3230x x --C .221x y -=D .20x y +=9.如图,抛物线2144y x =-与x 轴交于A 、B 两点,点P 在一次函数6y x =-+的图像上,Q 是线段PA 的中点,连结OQ ,则线段OQ 的最小值是( )A .22B .1C .2D .210.已知△ABC ≌△DEF ,∠A =60°,∠E =40°,则∠F 的度数为( ) A .40B .60C .80D .10011.二次函数y =()21x ++2的顶点是( ) A .(1,2)B .(1,−2)C .(−1,2)D .(−1,−2)12.cos60︒的值等于( ) A .12B .22C .32D .3313.如图,AB ,AM ,BN 分别是⊙O 的切线,切点分别为 P ,M ,N .若 MN ∥AB ,∠A =60°,AB =6,则⊙O 的半径是( )A .32B .3C .323D 314.如图,△ABC 中,∠C =90°,∠B =30°,AC 7,D 、E 分别在边AC 、BC 上,CD=1,DE ∥AB ,将△CDE 绕点C 旋转,旋转后点D 、E 对应的点分别为D ′、E ′,当点E ′落在线段AD ′上时,连接BE ′,此时BE ′的长为( )A .23B .33C .27D .3715.如图,□ABCD 中,点E 是边AD 的中点,EC 交对角线BD 于点F ,则EF:FC 等于( )A .3:2B .3:1C .1:1D .1:2二、填空题16.如图,△ABC 周长为20cm ,BC=6cm,圆O 是△ABC 的内切圆,圆O 的切线MN 与AB 、CA 相交于点M 、N ,则△AMN 的周长为________cm.17.某同学想要计算一组数据105,103,94,92,109,85的方差20S ,在计算平均数的过程中,将这组数据中的每一个数都减去100,得到一组新数据5,3,-6,-8,9,-15,记这组新数据的方差为21S ,则20S ______21S (填“>”、“=”或“<”).18.如图,四边形ABCD 内接于⊙O ,AD ∥BC ,直线EF 是⊙O 的切线,B 是切点.若∠C =80°,∠ADB =54°,则∠CBF =____°.19.当a≤x≤a+1时,函数y=x 2﹣2x+1的最小值为1,则a 的值为_____.20.从地面垂直向上抛出一小球,小球的高度h (米)与小球运动时间t (秒)之间的函数关系式是h=12t ﹣6t 2,则小球运动到的最大高度为________米;21.一个不透明的布袋中装有3个白球和5个红球,它们除了颜色不同外,其余均相同,从中随机摸出一个球,摸到红球的概率是______.22.某一时刻,测得身高1.6m 的同学在阳光下的影长为2.8m ,同时测得教学楼在阳光下的影长为25.2m ,则教学楼的高为__________m .23.已知关于x 的方程230x mx m ++=的一个根为-2,则方程另一个根为__________. 24.“上升数”是一个数中右边数字比左边数字大的自然数(如:34,568,2469等).任取一个两位数,是“上升数”的概率是_________ .25.如图,123////l l l ,直线a 、b 与1l 、2l 、3l 分别相交于点A 、B 、C 和点D 、E 、F .若AB=3,BC=5,DE=4,则EF 的长为______.26.将一枚标有数字1、2、3、4、5、6的均匀正方体骰子抛掷一次,则向上一面数字为奇数的概率等于_____.27.已知:二次函数y=ax 2+bx+c 图象上部分点的横坐标x 与纵坐标y 的对应值如表格所示,那么它的图象与x 轴的另一个交点坐标是_____. x … ﹣1 0 1 2 … y…343…28.某服装店搞促销活动,将一种原价为56元的衬衣第一次降价后,销售量仍然不好,又进行第二次降价,两次降价的百分率相同,现售价为31.5元,设降价的百分率为x ,则列出方程是______________.29.已知二次函数2(0)y ax bx c a =++≠,y 与x 的部分对应值如下表所示:x… -1 0 1 2 3 4 … y…61-2-3-2m…下面有四个论断:①抛物线2(0)y ax bx c a =++≠的顶点为(23)-,;②240b ac -=;③关于x 的方程2=2ax bx c ++-的解为12=13x x =,; ④=3m -.其中,正确的有___________________.30.若二次函数24y x x =-的图像在x 轴下方的部分沿x 轴翻折到x 轴上方,图像的其余部分保持不变,翻折后的图像与原图像x 轴上方的部分组成一个形如“W ”的新图像,若直线y =-2x +b 与该新图像有两个交点,则实数b 的取值范围是__________三、解答题31.定义:我们知道,四边形的一条对角线把这个四边形分成了两个三角形,如果这两个三角形相似(不全等...),我们就把这条对角线叫做这个四边形的“相似对角线”.理解:(1)如图1,已知Rt △ABC 在正方形网格中,请你只用无刻度的直尺......在网格中找到一点 D ,使四边形ABCD 是以AC 为“相似对角线”的四边形(画出1个即可);(2)如图2,在四边形ABCD 中,80,140ABC ADC ︒︒∠=∠=,对角线BD 平分∠ABC .求证: BD 是四边形ABCD 的“相似对角线”; 运用:(3)如图3,已知FH 是四边形EFGH 的“相似对角线”,∠EFH =∠HFG =30.连接EG ,若△EFG 的面积为43,求FH 的长.32.如图,C 是直径AB 延长线上的一点,CD 为⊙O 的切线,若∠C =20°,求∠A 的度数.33.如图,点C 在以AB 为直径的圆上,D 在线段AB 的延长线上,且CA=CD ,BC=BD . (1)求证:CD 与⊙O 相切;(2)若AB=8,求图中阴影部分的面积.34.为了提高学生对毒品危害性的认识,我市相关部门每个月都要对学生进行“禁毒知识应知应会”测评.为了激发学生的积极性,某校对达到一定成绩的学生授予“禁毒小卫士”的荣誉称号.为了确定一个适当的奖励目标,该校随机选取了七年级20名学生在5月份测评的成绩,数据如下:收集数据:90 91 89 96 90 98 90 97 91 98 99 97 91 88 90 97 95 90 95 88(1)根据上述数据,将下列表格补充完整.整理、描述数据:成绩/分888990919596979899学生人数2132121数据分析:样本数据的平均数、众数和中位数如下表:平均数众数中位数9391得出结论:(2)根据所给数据,如果该校想确定七年级前50%的学生为“良好”等次,你认为“良好”等次的测评成绩至少定为分.数据应用:(3)根据数据分析,该校决定在七年级授予测评成绩前30%的学生“禁毒小卫士”荣誉称号,请估计评选该荣誉称号的最低分数,并说明理由.35.(问题呈现)阿基米德折弦定理:如图1,AB和BC是⊙O的两条弦(即折线ABC是圆的一条折弦),BC>AB,点M是ABC的中点,则从M向BC所作垂线的垂足D是折弦ABC的中点,即CD=DB+BA.下面是运用“截长法”证明CD=DB+BA的部分证明过程.证明:如图2,在CD上截取CG=AB,连接MA、MB、MC和MG.∵M是ABC的中点,∴MA=MC①又∵∠A=∠C②∴△MAB≌△MCG③∴MB=MG又∵MD⊥BC∴BD=DG∴AB+BD=CG+DG即CD=DB+BA根据证明过程,分别写出下列步骤的理由:①,②,③;(理解运用)如图1,AB、BC是⊙O的两条弦,AB=4,BC=6,点M是ABC的中点,MD⊥BC于点D,则BD=;(变式探究)如图3,若点M是AC的中点,(问题呈现)中的其他条件不变,判断CD、DB、BA之间存在怎样的数量关系?并加以证明.(实践应用)根据你对阿基米德折弦定理的理解完成下列问题:如图4,BC是⊙O的直径,点A圆上一定点,点D圆上一动点,且满足∠DAC=45°,若AB=6,⊙O的半径为5,求AD长.四、压轴题36.阅读理解:如图,在纸面上画出了直线l与⊙O,直线l与⊙O相离,P为直线l上一动点,过点P作⊙O的切线PM,切点为M,连接OM、OP,当△OPM的面积最小时,称△OPM为直线l与⊙O的“最美三角形”.解决问题:(1)如图1,⊙A的半径为1,A(0,2) ,分别过x轴上B、O、C三点作⊙A的切线BM、OP、CQ,切点分别是M、P、Q,下列三角形中,是x轴与⊙A的“最美三角形”的是.(填序号)①ABM;②AOP;③ACQ(2)如图2,⊙A的半径为1,A(0,2),直线y=kx(k≠0)与⊙A的“最美三角形”的面积为12,求k的值.(3)点B在x轴上,以B为圆心,3为半径画⊙B,若直线y=3x+3与⊙B的“最美三角形”的面积小于32,请直接写出圆心B的横坐标B x的取值范围.37.如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,P为边BC上一个动点(可以包括点C 但不包括点B),以P为圆心PB为半径作⊙P交AB于点D过点D作⊙P的切线交边AC于点E,(1)求证:AE=DE;(2)若PB=2,求AE的长;(3)在P点的运动过程中,请直接写出线段AE长度的取值范围.38.平面直角坐标系xOy 中,矩形OABC 的顶点A ,C 的坐标分别为(2,0),(0,3),点D 是经过点B ,C 的抛物线2y x bx c =-++的顶点. (1)求抛物线的解析式;(2)点E 是(1)中抛物线对称轴上一动点,求当△EAB 的周长最小时点E 的坐标; (3)平移抛物线,使抛物线的顶点始终在直线CD 上移动,若平移后的抛物线与射线..BD 只有一个公共点,直接写出平移后抛物线顶点的横坐标m 的值或取值范围.39.如图,抛物线y =x 2+bx +c 交x 轴于A 、B 两点,其中点A 坐标为(1,0),与y 轴交于点C (0,﹣3).(1)求抛物线的函数表达式;(2)如图1,连接AC ,点Q 为x 轴下方抛物线上任意一点,点D 是抛物线对称轴与x 轴的交点,直线AQ 、BQ 分别交抛物线的对称轴于点M 、N .请问DM +DN 是否为定值?如果是,请求出这个定值;如果不是,请说明理由.(3)如图2,点P 为抛物线上一动点,且满足∠PAB =2∠ACO .求点P 的坐标. 40.如图,在边长为5的菱形OABC 中,sin∠AOC=45,O 为坐标原点,A 点在x 轴的正半轴上,B ,C 两点都在第一象限.点P 以每秒1个单位的速度沿O→A→B→C→O 运动一周,设运动时间为t (秒).请解答下列问题: (1)当CP⊥OA 时,求t 的值;(2)当t <10时,求点P 的坐标(结果用含t 的代数式表示);(3)以点P 为圆心,以OP 为半径画圆,当⊙P 与菱形OABC 的一边所在直线相切时,请直接写出t 的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】由CD⊥AB,可得DM=4.设半径OD=Rcm,则可求得OM的长,连接OD,在直角三角形DMO中,由勾股定理可求得OD的长,继而求得答案.【详解】解:连接OD,设⊙O半径OD为R,∵AB是⊙O的直径,弦CD⊥AB于点M,∴DM=12CD=4cm,OM=R-2,在RT△OMD中,OD²=DM²+OM²即R²=4²+(R-2)²,解得:R=5,∴直径AB的长为:2×5=10cm.故选B.【点睛】本题考查了垂径定理以及勾股定理.注意掌握辅助线的作法及数形结合思想的应用.2.C解析:C【解析】【分析】①根据对称轴及增减性进行判断;②根据函数在x=1处的函数值判断;③利用抛物线与直线y=-2有两个交点进行判断.【详解】解:∵a <0<b ,∴二次函数的对称轴为x=2b a ->0,在y 轴右边,且开口向下, ∴x <0时,y 随x 增大而增大;故①正确;根据二次函数的系数,可得图像大致如下,由于对称轴x=2b a-的值未知, ∴当x=1时,y=a+b+c 的值无法判断,故②不正确;由图像可知,y==ax 2+bx +c ≤0,∴二次函数与直线y=-2有两个不同的交点,∴方程ax 2+bx +c =-2有两个不相等的实数根.故③正确.故选C.【点睛】本题考查了二次函数的图像的性质,二次函数的图像与系数的关系,二次函数与方程的关系,借助图像解决问题是关键.3.D解析:D【解析】【分析】先将二次函数变形为顶点式,然后可根据二次函数的性质判断A 、B 、D 三项,再根据抛物线的顶点和开口即可判断C 项,进而可得答案.【详解】解:()2261031y x x x =-+=-+,所以抛物线的对称轴是直线:x =3,顶点坐标是(3,1);A 、其图象的对称轴为过(3,1)且平行于y 轴的直线,说法正确,本选项不符合题意;B 、其最小值为1,说法正确,本选项不符合题意;C 、因为抛物线的顶点是(3,1),开口向上,所以其图象与x 轴没有交点,说法正确,本选项不符合题意;D 、当3x <时,y 随x 的增大而增大,说法错误,所以本选项符合题意.故选:D.【点睛】本题考查了二次函数的图象和性质,属于基本题型,熟练掌握抛物线的性质是解题的关键.4.D解析:D【解析】分析:根据方程的系数结合根的判别式△>0,即可得出关于m 的一元一次不等式,解之即可得出实数m 的取值范围.详解:∵方程2x 2x m 0-+=有两个不相同的实数根,∴()2240m =-->,解得:m <1.故选D .点睛:本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键. 5.D解析:D【解析】【分析】根据切线的性质得到∠ABC=90°,根据直角三角形的性质求出∠A ,根据圆周角定理计算即可.【详解】∵BC 是⊙O 的切线,∴∠ABC=90°,∴∠A=90°-∠ACB=40°,由圆周角定理得,∠BOD=2∠A=80°,故选D .【点睛】本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.6.B解析:B【解析】【分析】根据网格的特点求出三角形的三边,再根据相似三角形的判定定理即可求解.【详解】已知给出的三角形的各边AB 、CB 、AC 、2只有选项B 的各边为1B .【点晴】此题主要考查相似三角形的判定,解题的关键是熟知相似三角形的判定定理.7.D解析:D【解析】【分析】根据题意即从5个球中摸出一个球,概率为35. 【详解】摸到红球的概率=33235=+, 故选:D.【点睛】此题考查事件的简单概率的求法,正确理解题意,明确可能发生的总次数及所求事件发生的次数是求概率的关键. 8.A解析:A【解析】【分析】根据一元二次方程的定义逐一判断即可.【详解】解:A . 2321x x =+是一元二次方程,故本选项符合题意;B . 3230x x --是一元三次方程,故本选项不符合题意;C . 221x y -=是二元二次方程,故本选项不符合题意;D . 20x y +=是二元一次方程,故本选项不符合题意;故选A .【点睛】此题考查的是一元二次方程的判断,掌握一元二次方程的定义是解决此题的关键.9.A解析:A【解析】【分析】先求得A 、B 两点的坐标,设()6P m m -,,根据之间的距离公式列出2PB 关于m 的函数关系式,求得其最小值,即可求得答案.【详解】令0y =,则21404x -=, 解得:4x =±,∴A 、B 两点的坐标分别为:()()4040A B -,、,, 设点P 的坐标为()6m m -,, ∴()()2222246220522(5)2PB m m m m m =-+-=-+=-+,∵20>,∴当5m =时,2PB 有最小值为:2,即PB ,∵A 、B 为抛物线的对称点,对称轴为y 轴,∴O 为线段AB 中点,且Q 为AP 中点,∴122OQ PB ==. 故选:A .【点睛】本题考查了二次函数与一次函数的综合问题,涉及到的知识有:两点之间的距离公式,三角形中位线的性质,二次函数的最值问题,利用两点之间的距离公式求得2PB 的最小值是解题的关键.10.C解析:C【解析】【分析】根据全等三角形对应角相等可得∠B=∠E=40°,∠F=∠C ,然后利用三角形内角和定理计算出∠C 的度数,进而可得答案.【详解】解:∵△ABC ≌△DEF ,∴∠B=∠E=40°,∠F=∠C ,∵∠A=60°,∴∠C=180°-60°-40°=80°,∴∠F=80°,故选:C .【点睛】此题主要考查了全等三角形的性质,关键是掌握全等三角形的对应角相等.11.C解析:C【解析】【分析】因为顶点式y=a (x-h )2+k ,其顶点坐标是(h ,k ),即可求出y=()21x ++2的顶点坐标.【详解】解:∵二次函数y=()21x ++2是顶点式,∴顶点坐标为:(−1,2);故选:C.【点睛】此题主要考查了利用二次函数顶点式求顶点坐标,此题型是中考中考查重点,同学们应熟练掌握. 12.A解析:A【解析】【分析】根据特殊角的三角函数值解题即可.【详解】解:cos60°=12. 故选A.【点睛】本题考查了特殊角的三角函数值. 13.D解析:D【解析】【分析】根据题意可判断四边形ABNM 为梯形,再由切线的性质可推出∠ABN=60°,从而判定△APO ≌△BPO ,可得AP=BP=3,在直角△APO 中,利用三角函数可解出半径的值.【详解】解:连接OP ,OM ,OA ,OB ,ON∵AB ,AM ,BN 分别和⊙O 相切,∴∠AMO=90°,∠APO=90°,∵MN ∥AB ,∠A =60°,∴∠AMN=120°,∠OAB=30°,∴∠OMN=∠ONM=30°,∵∠BNO=90°,∴∠ABN=60°,∴∠ABO=30°,在△APO 和△BPO 中,OAP OBP APO BPO OP OP ∠=∠⎧⎪∠=∠⎨⎪=⎩,△APO≌△BPO(AAS),∴AP=12AB=3,∴tan∠OAP=tan30°=OPAP=33,∴OP=3,即半径为3.故选D.【点睛】本题考查了切线的性质,切线长定理,解直角三角形,全等三角形的判定和性质,关键是说明点P是AB中点,难度不大.14.B解析:B【解析】【分析】如图,作CH⊥BE′于H,设AC交BE′于O.首先证明∠CE′B=∠D′=60°,解直角三角形求出HE′,BH即可解决问题.【详解】解:如图,作CH⊥BE′于H,设AC交BE′于O.∵∠ACB=90°,∠ABC=30°,∴∠CAB=60°,∵DE∥AB,∴CDCA=CECB,∠CDE=∠CAB=∠D′=60°∴'CDCA='CECB,∵∠ACB=∠D′CE′,∴∠ACD′=∠BCE′,∴△ACD′∽△BCE′,∴∠D′=∠CE′B=∠CAB,在Rt△ACB中,∵∠ACB=90°,AC7,∠ABC=30°,∴AB=2AC=7,BC3AC21,∵DE ∥AB , ∴CD CA =CE CB , ∴17=21CE , ∴CE =3,∵∠CHE ′=90°,∠CE ′H =∠CAB =60°,CE ′=CE =3∴E ′H =12CE ′=32,CH =3HE ′=32, ∴BH =22BC CH -=9214-=532 ∴BE ′=HE ′+BH =33,故选:B .【点睛】本题考查了相似三角形的综合应用题,涉及了旋转的性质、平行线分线段成比例、相似三角形的性质与判定等知识点,解题的关键是灵活运用上述知识点进行推理求导.15.D解析:D【解析】【分析】根据题意得出△DEF ∽△BCF ,进而得出=DE EF BC FC ,利用点E 是边AD 的中点得出答案即可.【详解】解:∵▱ABCD ,故AD ∥BC ,∴△DEF ∽△BCF ,∴=DE EF BC FC, ∵点E 是边AD 的中点, ∴AE=DE=12AD ,∴12EF FC . 故选D . 二、填空题16.8【解析】【分析】先作出辅助线,连接切点,利用内切圆的性质得到BE=BF,CE=CG,ME=MH,NG=NH,再利用等量代换即可解题.【详解】解:∵圆O 是△ABC 的内切圆,MN 是圆O 的切线解析:8【解析】【分析】先作出辅助线,连接切点,利用内切圆的性质得到BE=BF,CE=CG,ME=MH,NG=NH,再利用等量代换即可解题.【详解】解:∵圆O 是△ABC 的内切圆,MN 是圆O 的切线,如下图,连接各切点,有切线长定理易得,BE=BF,CE=CG,ME=MH,NG=NH,∵△ABC 周长为20cm, BC=6cm,∴BC=CE+BE=CG+BF=6cm,∴△AMN 的周长=AM+AN+MN=AM+AN+FM+GN=AF+AG,又∵AF+AG=AB+AC-(BF+CG)=20-6-6=8cm故答案是8【点睛】本题考查了三角形内接圆的性质,切线长定理的应用,中等难度,熟练掌握等量代换的方法是解题关键.17.=【解析】【分析】根据一组数据中的每一个数据都加上或减去同一个非零常数,那么这组数据的波动情况不变,即方差不变,即可得出答案.【详解】解:∵一组数据中的每一个数据都加上或减去同一个非零常数解析:=【解析】【分析】根据一组数据中的每一个数据都加上或减去同一个非零常数,那么这组数据的波动情况不变,即方差不变,即可得出答案.【详解】解:∵一组数据中的每一个数据都加上或减去同一个非零常数,它的平均数都加上或减去这一个常数,两数进行相减,方差不变,∴2201S S故答案为:=.【点睛】本题考查的知识点是数据的平均数与方差,需要记忆的是如果将一组数据中的每一个数据都加上同一个非零常数,那么这组数据的方差不变,但平均数要变,且平均数增加这个常数.18.46°【解析】【分析】连接OB ,OC ,根据切线的性质可知∠OBF=90°,根据AD∥BC,可得∠DBC=∠ADB=54°,然后利用三角形内角和求得∠BDC=46°,然后利用同弧所对的圆心角是圆解析:46°【解析】【分析】连接OB ,OC ,根据切线的性质可知∠OBF=90°,根据AD ∥BC ,可得∠DBC=∠ADB =54°,然后利用三角形内角和求得∠BDC=46°,然后利用同弧所对的圆心角是圆周角的2倍,求得∠BOC=92°,然后利用等腰三角形的性质求得∠OBC 的度数,从而使问题得解.【详解】解:连接OB ,OC ,∵直线EF 是⊙O 的切线,B 是切点∴∠OBF=90°∵AD ∥BC∴∠DBC=∠ADB =54°又∵∠D CB=80°∴∠BDC=180°-∠DBC -∠D C B=46°∴∠BOC=2∠BDC =92°又∵OB=OC∴∠OBC=1(18092)44 2-=∴∠CBF=∠OBF-∠OBC=90-44=46°故答案为:46°【点睛】本题考查切线的性质,三角形内角和定理,等腰三角形的性质,根据题意添加辅助线正确推理论证是本题的解题关键.19.2或﹣1【解析】【分析】利用二次函数图象上点的坐标特征找出当y=1时x的值,结合当a≤x≤a+1时函数有最小值1,即可得出关于a的一元一次方程,解之即可得出结论.【详解】当y=1时,有x解析:2或﹣1【解析】【分析】利用二次函数图象上点的坐标特征找出当y=1时x的值,结合当a≤x≤a+1时函数有最小值1,即可得出关于a的一元一次方程,解之即可得出结论.【详解】当y=1时,有x2﹣2x+1=1,解得:x1=0,x2=2.∵当a≤x≤a+1时,函数有最小值1,∴a=2或a+1=0,∴a=2或a=﹣1,故答案为:2或﹣1.【点睛】本题考查了二次函数图象上点的坐标特征以及二次函数的最值,利用二次函数图象上点的坐标特征找出当y=1时x 的值是解题的关键.20.6【解析】【分析】现将函数解析式配方得,即可得到答案.【详解】,∴当t=1时,h 有最大值6.故答案为:6.【点睛】此题考查最值问题,确定最值时需现将函数解析式配方为顶点式,再根据开 解析:6【解析】【分析】现将函数解析式配方得221266(1)6h tt t =--=+﹣,即可得到答案. 【详解】 221266(1)6h t t t =--=+﹣,∴当t=1时,h 有最大值6.故答案为:6.【点睛】此题考查最值问题,确定最值时需现将函数解析式配方为顶点式,再根据开口方向确定最值.21.【解析】【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】根据题意可得:一个不透明的袋中装有除颜色外其余均相同的3个白球和5个红 解析:58【解析】【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.根据题意可得:一个不透明的袋中装有除颜色外其余均相同的3个白球和5个红球,共5个,从中随机摸出一个,则摸到红球的概率是55 538= +故答案为: 58.【点睛】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.22.4【解析】【分析】根据题意可知,,代入数据可得出答案.【详解】解:由题意得出:,即,解得,教学楼高=14.4.故答案为:14.4.【点睛】本题考查的知识点是相似三角形的应用以及平解析:4【解析】【分析】根据题意可知,1.62.8=身高教学楼高影长教学楼影长,代入数据可得出答案.【详解】解:由题意得出:1.62.8=身高教学楼高影长教学楼影长,即,1.62.825.2=教学楼高解得,教学楼高=14.4.故答案为:14.4.【点睛】本题考查的知识点是相似三角形的应用以及平行投影,熟记同一时刻物高与影长成正比是解此题的关键.23.6【分析】将方程的根-2代入原方程求出m 的值,再解方程即可求解.【详解】解:把x=-2代入原方程得出,4-2m+3m=0,解得m=-4;故原方程为:,解方程得:.故答案为:6解析:6【解析】【分析】将方程的根-2代入原方程求出m 的值,再解方程即可求解.【详解】解:把x=-2代入原方程得出,4-2m+3m=0,解得m=-4;故原方程为:24120x x --=,解方程得:122,6x x =-=.故答案为:6.【点睛】本题考查的知识点是解一元二次方程,根据方程的一个解求出方程中参数的值是解此题的关键.24.4【解析】【分析】先列举出所有上升数,再根据概率公式解答即可.【详解】解:两位数一共有99-10+1=90个,上升数为:共8+7+6+5+4+3+2+1=36个.概率为36÷90=解析:4【解析】【分析】先列举出所有上升数,再根据概率公式解答即可.【详解】解:两位数一共有99-10+1=90个,共8+7+6+5+4+3+2+1=36个.概率为36÷90=0.4.故答案为:0.4.25.【解析】【分析】直接根据平行线分线段成比例定理即可得.【详解】,,,,解得,故答案为:.【点睛】本题考查了平行线分线段成比例定理,熟记平行线分线段成比例定理是解题关键. 解析:203【解析】【分析】直接根据平行线分线段成比例定理即可得.【详解】123////l l l ,AB DE BC EF∴=, 3,5,4AB BC DE ===,345EF∴=,解得203 EF ,故答案为:203.【点睛】本题考查了平行线分线段成比例定理,熟记平行线分线段成比例定理是解题关键.26..【解析】【分析】根据概率公式计算概率即可.【详解】∵在正方体骰子中,朝上的数字共有6种,为奇数的情况有3种,分别是:1,3,5,∴朝上的数字为奇数的概率是=;故答案为:.【点睛】解析:12.【解析】【分析】根据概率公式计算概率即可.【详解】∵在正方体骰子中,朝上的数字共有6种,为奇数的情况有3种,分别是:1,3,5,∴朝上的数字为奇数的概率是36=12;故答案为:12.【点睛】此题考查的是求概率问题,掌握概率公式是解决此题的关键.27.(3,0).【解析】分析:根据(0,3)、(2,3)两点求得对称轴,再利用对称性解答即可.详解:∵抛物线y=ax2+bx+c经过(0,3)、(2,3)两点,∴对称轴x==1;点(﹣1,0)解析:(3,0).【解析】分析:根据(0,3)、(2,3)两点求得对称轴,再利用对称性解答即可.详解:∵抛物线y=ax 2+bx+c 经过(0,3)、(2,3)两点,∴对称轴x=0+22=1; 点(﹣1,0)关于对称轴对称点为(3,0),因此它的图象与x 轴的另一个交点坐标是(3,0).故答案为(3,0).点睛:本题考查了抛物线与x 轴的交点,关键是熟练掌握二次函数的对称性.28.=31.5【解析】【分析】根据题意,第一次降价后的售价为,第二次降价后的售价为,据此列方程得解.【详解】根据题意,得:=31.5故答案为:=31.5.【点睛】本题考查一元二次方程的解析:()2561x -=31.5【解析】【分析】根据题意,第一次降价后的售价为()561x -,第二次降价后的售价为()2561x -,据此列方程得解.【详解】根据题意,得:()2561x -=31.5故答案为:()2561x -=31.5.【点睛】本题考查一元二次方程的应用,关键是理解第二次降价是以第一次降价后的售价为单位“1”的. 29.①③.【解析】【分析】根据图表求出函数对称轴,再根据图表信息和二次函数性质逐一判断即可.【详解】由二次函数y =ax2+bx+c (a≠0),y 与x 的部分对应值可知:该函数图象是开口向上的抛解析:①③.【解析】【分析】根据图表求出函数对称轴,再根据图表信息和二次函数性质逐一判断即可.【详解】由二次函数y =ax 2+bx+c (a≠0),y 与x 的部分对应值可知:该函数图象是开口向上的抛物线,对称轴是直线x=2,顶点坐标为(2,-3);与x 轴有两个交点,一个在0与1之间,另一个在3与4之间;当y=-2时,x=1或x=3;由抛物线的对称性可知,m=1;∴①抛物线y =ax 2+bx+c (a≠0)的顶点为(2,-3),结论正确;②b 2﹣4ac =0,结论错误,应该是b 2﹣4ac>0;③关于x 的方程ax 2+bx+c =﹣2的解为x 1=1,x 2=3,结论正确;④m =﹣3,结论错误,∴其中,正确的有. ①③故答案为:①③【点睛】本题考查了二次函数的图像,结合图表信息是解题的关键.30.【解析】【分析】当直线y=-2x+b 处于直线m 的位置时,此时直线和新图象只有一个交点A ,当直线处于直线n 的位置时,此时直线与新图象有三个交点,当直线y=-2x+b 处于直线m 、n 之间时,与该新图解析:18b -<<【解析】【分析】当直线y=-2x+b 处于直线m 的位置时,此时直线和新图象只有一个交点A ,当直线处于直线n 的位置时,此时直线与新图象有三个交点,当直线y=-2x+b 处于直线m 、n 之间时,与该新图象有两个公共点,即可求解.【详解】解:设y=x 2-4x 与x 轴的另外一个交点为B ,令y=0,则x=0或4,过点B (4,0), 由函数的对称轴,二次函数y=x 2-4x 翻折后的表达式为:y=-x 2+4x ,。
江苏省南京市九年级上学期期末数学试卷 (解析版)

江苏省南京市九年级上学期期末数学试卷 (解析版)一、选择题1.如图,四边形ABCD 内接于O ,若40A ∠=︒,则C ∠=( )A .110︒B .120︒C .135︒D .140︒ 2.下列关于x 的一元二次方程,有两个不相等的实数根的方程的是( )A .x 2+1=0B .x 2+2x +1=0C .x 2+2x +3=0D .x 2+2x -3=03.某大学生创业团队有研发、管理和操作三个小组,各组的日工资和人数如下表所示.现从管理组分别抽调1人到研发组和操作组,调整后与调整前相比,下列说法中不正确的是( )A .团队平均日工资不变B .团队日工资的方差不变C .团队日工资的中位数不变D .团队日工资的极差不变4.要得到函数y =2(x -1)2+3的图像,可以将函数y =2x 2的图像( ) A .向左平移1个单位长度,再向上平移3个单位长度 B .向左平移1个单位长度,再向下平移3个单位长度 C .向右平移1个单位长度,再向上平移3个单位长度 D .向右平移1个单位长度,再向下平移3个单位长度5.两个相似三角形的面积比是9:16,则这两个三角形的相似比是( ) A .9︰16 B .3︰4 C .9︰4 D .3︰16 6.已知二次函数y=-x 2+2mx+2,当x<-2时,y 的值随x 的增大而增大,则实数m ( ) A .m=-2 B .m>-2 C .m≥-2 D .m≤-2 7.下列方程有两个相等的实数根是( )A .x 2﹣x +3=0B .x 2﹣3x +2=0C .x 2﹣2x +1=0D .x 2﹣4=08.如图,△ABC 内接于⊙O ,连接OA 、OB ,若∠ABO =35°,则∠C 的度数为( )A.70°B.65°C.55°D.45°9.已知⊙O的半径为5cm,圆心O到直线l的距离为5cm,则直线l与⊙O的位置关系为()A.相交B.相切C.相离D.无法确定10.已知⊙O的直径为4,点O到直线l的距离为2,则直线l与⊙O的位置关系是A.相交B.相切C.相离D.无法判断11.一元二次方程x2﹣3x=0的两个根是()A.x1=0,x2=﹣3 B.x1=0,x2=3 C.x1=1,x2=3 D.x1=1,x2=﹣3 12.方程x2=4的解是()A.x=2 B.x=﹣2 C.x1=1,x2=4 D.x1=2,x2=﹣213.如图所示的网格是正方形网格,则sin A的值为()A.12B.22C.35D.4514.如图,A,B,C,D四个点均在⊙O上,∠AOB=40°,弦BC的长等于半径,则∠ADC 的度数等于()A.50°B.49°C.48°D.47°15.如图1,一个扇形纸片的圆心角为90°,半径为4.如图2,将这张扇形纸片折叠,使点A与点O恰好重合,折痕为CD,图中阴影为重合部分,则阴影部分的面积为()A.4233π-B.8433π-C.8233π-D.843π-二、填空题16.如图是测量河宽的示意图,AE与BC相交于点D,∠B=∠C=90°,测得BD=120m,DC=60m,EC=50m,求得河宽AB=______m.17.已知∠A=60°,则tan A=_____.18.如图是一个可以自由转动的转盘,转盘分成6个大小相同的扇形,颜色分为红、绿、黄三种颜色.指针的位置固定,转动的转盘停止后,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形).转动一次转盘后,指针指向_____颜色的可能性大.19.如图,某数学兴趣小组将边长为4的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形 (忽略铁丝的粗细),则所得的扇形DAB的面积为__________.20.设x1、x2是关于x的方程x2+3x-5=0的两个根,则x1+x2-x1•x2=________.21.如图,二次函数y=ax2+bx+c的图像过点A(3,0),对称轴为直线x=1,则方程ax2+bx+c=0的根为____.22.如图,已知O 的半径为2,ABC ∆内接于O ,135ACB ∠=,则AB =__________.23.在泰州市举行的大阅读活动中,小明同学发现自己的一本书的宽与长之比为黄金比.已知这本书的长为20 cm ,则它的宽为________cm .(结果保留根号) 24.已知实数,,a b c 满足0a ≠,且0a b c -+=,930a b c ++=,则抛物线2y ax bx c =++图象上的一点(2,4)-关于抛物线对称轴对称的点为__________.25.二次函数2y x bx c =-++的部分图像如图所示,要使函数值3y >,则自变量x 的取值范围是_______.26.如图,在由边长为1的小正方形组成的网格中.点 A ,B ,C ,D 都在这些小正方形的格点上,AB 、CD 相交于点E ,则sin ∠AEC 的值为_____.27.如图,在ABC ∆中,3AB =,4AC =,6BC =,D 是BC 上一点,2CD =,过点D 的直线l 将ABC ∆分成两部分,使其所分成的三角形与ABC ∆相似,若直线l 与ABC ∆另一边的交点为点P ,则DP =__________.28.如图,正方形ABCD 的边长为5,E 、F 分别是BC 、CD 上的两个动点,AE ⊥EF .则AF 的最小值是_____.29.已知234x y z x z y+===,则_______ 30.已知学校航模组设计制作的火箭的升空高度h (m )与飞行时间t (s )满足函数表达式21220h t t =-++,则火箭升空的最大高度是___m三、解答题31.用铁片制作的圆锥形容器盖如图所示.(1)我们知道:把平面内线段OP 绕着端点O 旋转1周,端点P 运动所形成的图形叫做圆.类比圆的定义,给圆锥下定义 ;(2)已知OB =2 cm ,SB =3 cm , ①计算容器盖铁皮的面积;②在一张矩形铁片上剪下一个扇形,用它围成该圆锥形容器盖.以下是可供选用的矩形铁片的长和宽,其中可以选择且面积最小的矩形铁片是 . A .6 cm×4 cm B .6 cm×4.5 cm C .7 cm×4 cm D .7 cm×4.5 cm32.在平面直角坐标系中,已知抛物线经过A(﹣2,0),B(0,﹣2),C(1,0)三点. (1)求抛物线的解析式;(2)若点M 为第三象限内抛物线上一动点,点M 的横坐标为m ,△AMB 的面积为S ,求S 关于m 的函数关系式,并求出S 的最大值;(3)若点P 是抛物线上的动点,点Q 是直线y =﹣x 上的动点,判断有几个位置能够使得点P 、Q 、B 、O 为顶点的四边形为平行四边形,直接写出相应的点Q 的坐标.33.中国古代有着辉煌的数学成就,《周髀算经》,《九章算术》,《海岛算经》,《孙子算经》等是我国古代数学的重要文献.(1)小聪想从这4部数学名著中随机选择1部阅读,则他选中《九章算术》的概率为 ;(2)某中学拟从这4部数学名著中选择2部作为“数学文化”校本课程学习内容,求恰好选中《九章算术》和《孙子算经》的概率.34.如图,直线y =x ﹣1与抛物线y =﹣x 2+6x ﹣5相交于A 、D 两点.抛物线的顶点为C ,连结AC .(1)求A ,D 两点的坐标;(2)点P 为该抛物线上一动点(与点A 、D 不重合),连接PA 、PD . ①当点P 的横坐标为2时,求△PAD 的面积; ②当∠PDA =∠CAD 时,直接写出点P 的坐标.35.如图,AB 是⊙O 的弦,OP OA ⊥交AB 于点P ,过点B 的直线交OP 的延长线于点C ,且BC 是⊙O 的切线.(1)判断CBP ∆的形状,并说明理由; (2)若6,2OA OP ==,求CB 的长;(3)设AOP∆的面积是1,S BCP∆的面积是2S,且1225SS=.若⊙O的半径为6,45BP=,求tan APO∠.四、压轴题36.如图1:在Rt△ABC中,AB=AC,D为BC边上一点(不与点B,C重合),试探索AD,BD,CD之间满足的等量关系,并证明你的结论.小明同学的思路是这样的:将线段AD绕点A逆时针旋转90°,得到线段AE,连接EC,DE.继续推理就可以使问题得到解决.(1)请根据小明的思路,试探索线段AD,BD,CD之间满足的等量关系,并证明你的结论;(2)如图2,在Rt△ABC中,AB=AC,D为△ABC外的一点,且∠ADC=45°,线段AD,BD,CD之间满足的等量关系又是如何的,请证明你的结论;(3)如图3,已知AB是⊙O的直径,点C,D是⊙O上的点,且∠ADC=45°.①若AD=6,BD=8,求弦CD的长为;②若AD+BD=14,求2AD BD CD2⎛⎫⋅+⎪⎪⎝⎭的最大值,并求出此时⊙O的半径.37.在平面直角坐标系xOy中,对于任意三点A,B,C,给出如下定义:若矩形的任何一条边均与某条坐标轴平行,且A,B,C三点都在矩形的内部或边界上,则称该矩形为点A,B,C的外延矩形.点A,B,C的所有外延矩形中,面积最小的矩形称为点A,B,C的最佳外延矩形.例如,图中的矩形,,都是点A,B,C的外延矩形,矩形是点A,B,C的最佳外延矩形.(1)如图1,已知A(-2,0),B(4,3),C(0,).①若,则点A,B,C的最佳外延矩形的面积为;②若点A,B,C的最佳外延矩形的面积为24,则的值为;(2)如图2,已知点M(6,0),N(0,8).P(,)是抛物线上一点,求点M ,N ,P 的最佳外延矩形面积的最小值,以及此时点P 的横坐标的取值范围;(3)如图3,已知点D (1,1).E (,)是函数的图象上一点,矩形OFEG 是点O ,D ,E 的一个面积最小的最佳外延矩形,⊙H 是矩形OFEG 的外接圆,请直接写出⊙H 的半径r 的取值范围.38.如图,在矩形ABCD 中,E 、F 分别是AB 、AD 的中点,连接AC 、EC 、EF 、FC ,且EC EF ⊥.(1)求证:AEF BCE ∽; (2)若23AC =,求AB 的长;(3)在(2)的条件下,求出ABC 的外接圆圆心与CEF △的外接圆圆心之间的距离? 39.如图,在正方形ABCD 中,P 是边BC 上的一动点(不与点B ,C 重合),点B 关于直线AP 的对称点为E ,连接AE ,连接DE 并延长交射线AP 于点F ,连接BF(1)若BAP α∠=,直接写出ADF ∠的大小(用含α的式子表示). (2)求证:BF DF ⊥.(3)连接CF ,用等式表示线段AF ,BF ,CF 之间的数量关系,并证明.40.如图1(注:与图2完全相同)所示,抛物线212y x bx c =-++经过B 、D 两点,与x 轴的另一个交点为A ,与y 轴相交于点C . (1)求抛物线的解析式.(2)设抛物线的顶点为M ,求四边形ABMC 的面积(请在图1中探索)(3)设点Q 在y 轴上,点P 在抛物线上.要使以点A 、B 、P 、Q 为顶点的四边形是平行四边形,求所有满足条件的点P 的坐标(请在图2中探索)【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】直接利用圆内接四边形的对角互补计算∠C 的度数. 【详解】∵四边形ABCD 内接于⊙O ,∠A =400, ∴∠C =1800-400=1400, 故选D. 【点睛】此题考查圆内接四边形的性质,解题关键在于利用圆内接四边形的对角互补2.D解析:D 【解析】 【分析】要判断所给方程是有两个不相等的实数根,只要找出方程的判别式,根据判别式的正负情况即可作出判断.有两个不相等的实数根的方程,即判别式的值大于0的一元二次方程. 【详解】A 、△=0-4×1×1=-4<0,没有实数根;B 、△=22-4×1×1=0,有两个相等的实数根;C 、△=22-4×1×3=-8<0,没有实数根;D 、△=22-4×1×(-3)=16>0,有两个不相等的实数根, 故选D . 【点睛】本题考查了根的判别式,注意掌握一元二次方程ax 2+bx+c=0(a≠0)的根与△=b 2-4ac 有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.3.B解析:B 【解析】 【分析】根据平均数、方差、中位数和众数的定义分别对每一项进行分析,即可得出答案. 【详解】解:调整前的平均数是:26042804300443⨯+⨯+⨯⨯=280;调整后的平均数是:260528023005525⨯+⨯+⨯++=280; 故A 正确;调整前的方差是:()()()222142602804280280430028012⎡⎤-+-+-⎣⎦=8003;调整后的方差是:()()()222152602802280280530028012⎡⎤-+-+-⎣⎦=10003;故B 错误;调整前:把这些数从小到大排列为:260,260,260,260,280,280,280,280,300,300,300,300;最中间两个数的平均数是:280,则中位数是280,调整后:把这些数从小到大排列为:260,260,260,260,260,280,280,300,300,300,300,300;最中间两个数的平均数是:280,则中位数是280, 故C 正确;调整前的极差是40,调整后的极差也是40,则极差不变, 故D 正确. 故选B. 【点睛】此题考查了平均数、方差、中位数和极差的概念,掌握各个数据的计算方法是关键. 4.C解析:C【解析】【分析】找到两个抛物线的顶点,根据抛物线的顶点即可判断是如何平移得到.【详解】解:∵y=2(x-1)2+3的顶点坐标为(1,3),y=2x2的顶点坐标为(0,0),∴将抛物线y=2x2向右平移1个单位,再向上平移3个单位,可得到抛物线y=2(x-1)2+3故选:C.【点睛】本题考查了二次函数图象与几何变换,解答时注意抓住点的平移规律和求出关键点顶点坐标.5.B解析:B【解析】试题分析:根据相似三角形中,面积比等于相似比的平方,即可得到结果.因为面积比是9:16,则相似比是3︰4,故选B.考点:本题主要考查了相似三角形的性质点评:解答本题的关键是掌握相似三角形面积的比等于相似比的平方6.C解析:C【解析】【分析】根据二次函数的性质,确定抛物线的对称轴及开口方向得出函数的增减性,结合题意确定m值的范围.【详解】解:抛物线的对称轴为直线221mx m∵10a=-<,抛物线开口向下,∴当x m<时,y的值随x值的增大而增大,∵当2x<-时,y的值随x值的增大而增大,∴2m≥-,故选:C.【点睛】本题考查了二次函数的性质,主要利用了二次函数的增减性,由系数的符号特征得出函数性质是解答此题的关键.7.C【解析】【分析】先根据方程求出△的值,再根据根的判别式的意义判断即可.【详解】A、x2﹣x+3=0,△=(﹣1)2﹣4×1×3=﹣11<0,所以方程没有实数根,故本选项不符合题意;B、x2﹣3x+2=0,△=(﹣3)2﹣4×1×2=1>0,所以方程有两个不相等的实数根,故本选项不符合题意;C、x2﹣2x+1=0,△=(﹣2)2﹣4×1×1=0,所以方程有两个相等的实数根,故本选项符合题意;D、x2﹣4=0,△=02﹣4×1×(﹣4)=16>0,所以方程有两个不相等的实数根,故本选项不符合题意;故选:C.【点睛】本题考查了根的判别式,能熟记根的判别式的意义是解此题的关键.8.C解析:C【解析】【分析】根据三角形的内角和定理和等腰三角形等边对等角求得∠O的度数,再进一步根据圆周角定理求解.【详解】解:∵OA=OB,∠ABO=35°,∴∠BAO=∠ABO=35°,∴∠O=180°-35°×2=110°,∴∠C=12∠O=55°.故选:C.【点睛】本题考查三角形的内角和定理、等腰三角形的性质,圆周角定理.能理解同弧所对的圆周角等于圆心角的一半是解决此题的关键.9.B解析:B【解析】根据圆心到直线的距离5等于圆的半径5,即可判断直线和圆相切.【详解】∵圆心到直线的距离5cm=5cm,∴直线和圆相切,故选B.【点睛】本题考查了直线与圆的关系,解题的关键是能熟练根据数量之间的关系判断直线和圆的位置关系.若d<r,则直线与圆相交;若d=r,则直线于圆相切;若d>r,则直线与圆相离.10.B解析:B【解析】【分析】根据圆心距和两圆半径的之间关系可得出两圆之间的位置关系.【详解】∵⊙O的直径为4,∴⊙O的半径为2,∵圆心O到直线l的距离是2,∴根据圆心距与半径之间的数量关系可知直线l与⊙O的位置关系是相切.故选:B.【点睛】本题考查了直线和圆的位置关系的应用,理解直线和圆的位置关系的内容是解此题的关键,注意:已知圆的半径是r,圆心到直线的距离是d,当d=r时,直线和圆相切,当d>r时,直线和圆相离,当d<r时,直线和圆相交.11.B解析:B【解析】【分析】利用因式分解法解一元二次方程即可.【详解】x2﹣3x=0,x(x﹣3)=0,x=0或x﹣3=0,x1=0,x2=3.故选:B.【点睛】本题考查了解一元二次方程−因式分解法:就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).12.D解析:D【解析】x2=4,x=±2.故选D.点睛:本题利用方程左右两边直接开平方求解.13.C解析:C【解析】【分析】设正方形网格中的小正方形的边长为1,连接格点BC,AD,过C作CE⊥AB于E,解直角三角形即可得到结论.【详解】解:设正方形网格中的小正方形的边长为1,连接格点BC,AD,过C作CE⊥AB于E,∵224225AC BC=+==,BC=22,AD=2232AC CD+=,∵S△ABC=12AB•CE=12BC•AD,∴CE=223265525BC ADAB⨯==,∴6535525CEAsin CABC∠===,故选:C.【点睛】本题考查了解直角三角形的问题,掌握解直角三角形的方法以及锐角三角函数的定义是解题的关键.14.A解析:A【解析】【分析】连接OC,根据等边三角形的性质得到∠BOC=60°,得到∠AOC=100°,根据圆周角定理解答.【详解】连接OC,由题意得,OB=OC=BC,∴△OBC是等边三角形,∴∠BOC=60°,∵∠AOB=40°,∴∠AOC=100°,由圆周角定理得,∠ADC=∠AOC=50°,故选:A.【点睛】本题考查的是圆周角定理,等边三角形的判定和性质,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.15.C解析:C【解析】【分析】连接OD,根据勾股定理求出CD,根据直角三角形的性质求出∠AOD,根据扇形面积公式、三角形面积公式计算,得到答案.【详解】解:连接OD,在Rt△OCD中,OC=12OD=2,∴∠ODC=30°,CD2223OD OC+=∴∠COD=60°,∴阴影部分的面积=260418223=23 36023π⨯-⨯⨯π-,故选:C.【点睛】本题考查的是扇形面积计算、勾股定理,掌握扇形面积公式是解题的关键.二、填空题16.100【解析】【分析】由两角对应相等可得△BAD∽△CED,利用对应边成比例即可得两岸间的大致距离AB的长.【详解】解:∵∠ADB=∠EDC,∠ABC=∠ECD=90°,∴△ABD∽△E解析:100【解析】【分析】由两角对应相等可得△BAD∽△CED,利用对应边成比例即可得两岸间的大致距离AB的长.【详解】解:∵∠ADB=∠EDC,∠ABC=∠ECD=90°,∴△ABD∽△ECD,∴AB BD EC CD=,即BD EC ABCD⨯=,解得:AB=1205060⨯=100(米).故答案为100.【点睛】本题主要考查了相似三角形的应用,用到的知识点为:两角对应相等的两三角形相似;相似三角形的对应边成比例.17.【解析】【分析】直接利用特殊角的三角函数值得出答案.【详解】tanA=tan60°=.故答案为:.【点睛】本题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.【解析】【分析】直接利用特殊角的三角函数值得出答案.【详解】tan A=tan60°.【点睛】本题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.18.红【解析】【分析】哪一种颜色多,指针指向那种颜色的可能性就大.【详解】∵转盘分成6个大小相同的扇形,红色的有3块,∴转动一次转盘后,指针指向红颜色的可能性大.故答案为:红.【点睛】解析:红【解析】【分析】哪一种颜色多,指针指向那种颜色的可能性就大.【详解】∵转盘分成6个大小相同的扇形,红色的有3块,∴转动一次转盘后,指针指向红颜色的可能性大.故答案为:红.【点睛】本题考查了可能性大小的知识,解题的关键是看清那种颜色的最多,难度不大.19.【解析】【分析】【详解】设扇形的圆心角为n°,则根据扇形的弧长公式有:,解得所以解析:16【解析】【分析】【详解】设扇形的圆心角为n°,则根据扇形的弧长公式有:π·4=8180n,解得360πn=所以22360S==16360360扇形π4πrπ=n20.2【解析】【分析】先根据根与系数的关系得出两根之和与两根之积,代入即可得出结论.【详解】解:∵x1,x2是关于 x 的方程x2+3x-5=0的两个根,根据根与系数的关系,得,x1+x2=解析:2【解析】【分析】先根据根与系数的关系得出两根之和与两根之积,代入即可得出结论.【详解】解:∵x1,x2是关于 x 的方程x2+3x-5=0的两个根,根据根与系数的关系,得,x1+x2=-3,x1x2=-5,则 x1+x2-x1x2=-3-(-5)=2,故答案为2.【点睛】本题考查了一元二次方程的根与系数的关系,求出x1+x2=-3,x1x2=-5是解题的关键.21.【解析】【分析】根据点A的坐标及抛物线的对称轴可得抛物线与x轴的两个交点坐标,从而求得方程的解.【详解】解:由二次函数y=ax2+bx+c的图像过点A(3,0),对称轴为直线x=1可得:解析:123;1x x ==-【解析】【分析】根据点A 的坐标及抛物线的对称轴可得抛物线与x 轴的两个交点坐标,从而求得方程的解.【详解】解:由二次函数y =ax 2+bx +c 的图像过点A (3,0),对称轴为直线x =1可得: 抛物线与x 轴交于(3,0)和(-1,0)即当y=0时,x=3或-1∴ax 2+bx +c =0的根为123;1x x ==-故答案为:123;1x x ==-【点睛】本题考查抛物线的对称性及二次函数与一元二次方程,利用对称性求出抛物线与x 轴的交点坐标是本题的解题关键.22.【解析】分析:根据圆内接四边形对边互补和同弧所对的圆心角是圆周角的二倍,可以求得∠AOB 的度数,然后根据勾股定理即可求得AB 的长.详解:连接AD 、AE 、OA 、OB ,∵⊙O 的半径为2,△AB解析:22【解析】分析:根据圆内接四边形对边互补和同弧所对的圆心角是圆周角的二倍,可以求得∠AOB 的度数,然后根据勾股定理即可求得AB 的长.详解:连接AD 、AE 、OA 、OB ,∵⊙O 的半径为2,△ABC 内接于⊙O ,∠ACB=135°,∴∠ADB=45°,∴∠AOB=90°,∵OA=OB=2,∴2,故答案为:2点睛:本题考查三角形的外接圆和外心,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.23.()【解析】设它的宽为xcm .由题意得.∴ .点睛:本题主要考查黄金分割的应用.把一条线段分割为两部分,使其中较长部分与全长之比等于较短部分与较长部分之比,其比值是一个无理数,即,近似值约解析:(10)【解析】设它的宽为x cm .由题意得1:202x =. ∴10x =.点睛:本题主要考查黄金分割的应用.把一条线段分割为两部分,使其中较长部分与全长之,近似值约为0.618. 24.【解析】【分析】先根据题意确定抛物线的对称轴,再利用抛物线的对称性解答即可.【详解】解:∵,,∴点(-1,0)与(3,0)在抛物线上,∴抛物线的对称轴是直线:x=1,∴点关于直线x=解析:(4,4)【解析】【分析】先根据题意确定抛物线的对称轴,再利用抛物线的对称性解答即可.【详解】解:∵0a b c -+=,930a b c ++=,∴点(-1,0)与(3,0)在抛物线2y ax bx c =++上,∴抛物线的对称轴是直线:x =1,∴点(2,4)-关于直线x =1对称的点为:(4,4).故答案为:(4,4).【点睛】本题考查了二次函数的性质和二次函数图象上点的坐标特征,属于常考题型,根据题意判断出点(-1,0)与(3,0)在抛物线上、熟练掌握抛物线的对称性是解题的关键.25.【解析】【分析】根据,则函数图象在直线的上方,所以找出函数图象在直线的上方的取值范围即可.【详解】根据二次函数的图象可知:对称轴为,已知一个点为,根据抛物线的对称性,则点关于对称性对称解析:20x -<<【解析】【分析】根据3y >,则函数图象在直线3y =的上方,所以找出函数图象在直线3y =的上方x 的取值范围即可.【详解】根据二次函数的图象可知:对称轴为1x =-,已知一个点为()03,, 根据抛物线的对称性,则点()03,关于对称性对称的另一个点为()23-,, 所以3y >时,x 的取值范围是20x -<<.故答案为:20x -<<.【点睛】本题主要考查了二次函数的性质,主要利用了二次函数的对称性,读懂图象信息,利用对称轴求出点()03,的对称点是解题的关键. 26.【解析】【分析】通过作垂线构造直角三角形,由网格的特点可得Rt△ABD 是等腰直角三角形,进而可得Rt△ACF 是等腰直角三角形,求出CF ,再根据△ACE∽△BDE 的相似比为1:3,根据勾股定理求【解析】【分析】通过作垂线构造直角三角形,由网格的特点可得Rt △ABD 是等腰直角三角形,进而可得Rt △ACF 是等腰直角三角形,求出CF ,再根据△ACE ∽△BDE 的相似比为1:3,根据勾股定理求出CD 的长,从而求出CE ,最后根据锐角三角函数的意义求出结果即可.【详解】过点C作CF⊥AE,垂足为F,在Rt△ACD中,CD=221310+=,由网格可知,Rt△ABD是等腰直角三角形,因此Rt△ACF是等腰直角三角形,∴CF=AC•sin45°=22,由AC∥BD可得△ACE∽△BDE,∴13 CE ACDE BD==,∴CE=14CD=10,在Rt△ECF中,sin∠AEC=2252510CFCE=⨯=,故答案为:25.【点睛】考查锐角三角函数的意义、直角三角形的边角关系,作垂线构造直角三角形是解决问题常用的方法,借助网格,利用网格中隐含的边角关系是解决问题的关键.27.1,,【解析】【分析】根据P的不同位置,分三种情况讨论,即可解答.【详解】解:如图:当DP∥AB时∴△DCP∽△BCA∴即,解得DP=1如图:当P在AB上,即DP∥AC∴△DC解析:1,83,32 【解析】【分析】 根据P 的不同位置,分三种情况讨论,即可解答. 【详解】解:如图:当DP ∥AB 时∴△DCP ∽△BCA∴DC DP BC AB =即263DP =,解得DP=1 如图:当P 在AB 上,即DP ∥AC∴△DCP ∽△BCA∴BD DP BC AC =即6264DP -=,解得DP=83 如图,当∠CPD=∠B ,且∠C=∠C 时,∴△DCP ∽△ACB∴PD CD AB AC =即243DP =,解得DP=32故答案为1,83,32. 【点睛】本题考查了相似三角形的判定和性质,掌握分类讨论思想并全部找到不同位置的P 点是解答本题的关键.28.【解析】【分析】设BE=x,CF=y,则EC=5﹣x,构建二次函数了,利用二次函数的性质求出CF的最大值,求出DF的最小值即可解决问题.【详解】解:设BE=x,CF=y,则EC=5﹣x,解析:25 4【解析】【分析】设BE=x,CF=y,则EC=5﹣x,构建二次函数了,利用二次函数的性质求出CF的最大值,求出DF的最小值即可解决问题.【详解】解:设BE=x,CF=y,则EC=5﹣x,∵AE⊥EF,∴∠AEF=90°,∴∠AEB+∠FEC=90°,而∠AEB+∠BAE=90°,∴∠BAE=∠FEC,∴Rt△ABE∽Rt△ECF,∴ABEC=BECF,∴55x-=xy,∴y=﹣15x2+x=﹣15(x﹣52)2+54,∵﹣15<0,∴x=52时,y有最大值54,∴CF的最大值为54,∴DF的最小值为5﹣54=154,∴AF 254,故答案为254.【点睛】本题考查了几何动点问题与二次函数、相似三角形的综合问题,综合性较强,解题的关键是找出相似三角形,列出比例关系,转化为二次函数,从而求出AF 的最小值. 29.2【解析】【分析】设,分别用k 表示x 、y 、z ,然后代入计算,即可得到答案.【详解】解:根据题意,设,∴,,,∴;故答案为:2.【点睛】本题考查了比例的性质,解题的关键是掌握比例的解析:2【解析】【分析】 设234x y z k ===,分别用k 表示x 、y 、z ,然后代入计算,即可得到答案. 【详解】 解:根据题意,设234x y z k ===, ∴2x k =,3y k =,4z k =, ∴2423x z k k y k++==; 故答案为:2.【点睛】本题考查了比例的性质,解题的关键是掌握比例的性质,正确用k 来表示x 、y 、z. 30.56【解析】【分析】将函数解析式配方,写成顶点式,按照二次函数的性质可得答案.【详解】解:∵==,∵,∴抛物线开口向下,当x=6时,h 取得最大值,火箭能达到最大高度为56m .故解析:56【解析】【分析】将函数解析式配方,写成顶点式,按照二次函数的性质可得答案.【详解】解:∵21220h t t =-++=2(23636)120t t -+-+-=2(6)56t --+,∵10a =-<,∴抛物线开口向下,当x=6时,h 取得最大值,火箭能达到最大高度为56m .故答案为:56.【点睛】本题考查了二次函数的应用,熟练掌握配方法及二次函数的性质,是解题的关键.三、解答题31.(1)把平面内,以直角三角形的直角边所在直线为旋转轴,其余两边旋转而成的曲面所围成的几何体叫做圆锥;(2)①6π;②B.【解析】【分析】(1)根据平面内图形的旋转,给圆锥下定义;(2)①根据圆锥侧面积公式求容器盖铁皮的面积;②首先求得扇形的圆心角的度数,然后求得弓形的高就是矩形的宽,长就是圆的直径.【详解】解:(1)把平面内,以直角三角形的直角边所在直线为旋转轴,其余两边旋转而成的曲面所围成的几何体叫做圆锥;(2)①由题意,容器盖铁皮的面积即圆锥的侧面积∴==23=6S rl πππ⨯⨯母侧即容器盖铁皮的面积为6πcm²;②解:设圆锥展开扇形的圆心角为n度,则2π×2=3180nπ⨯解得:n=240°,如图:∠AOB=120°,则∠AOC=60°,∵OB=3,∴OC=1.5,∴矩形的长为6cm,宽为4.5cm,故选:B.【点睛】本题考查了圆锥的定义及其有关计算,根据题意作出图形是解答本题的关键.32.(1)y=x2+x﹣2;(2)S=﹣m2﹣2m(﹣2<m<0),S的最大值为1;(3)点Q 坐标为:(﹣2,2)或(﹣515或(﹣155)或(2,﹣2).【解析】【分析】(1)设此抛物线的函数解析式为:y=ax2+bx+c,将A,B,C三点代入y=ax2+bx+c,列方程组求出a、b、c的值即可得答案;(2)如图1,过点M作y轴的平行线交AB于点D,M点的横坐标为m,且点M在第三象限的抛物线上,设M点的坐标为(m,m2+m﹣2),﹣2<m<0,由A、B坐标可求出直线AB的解析式为y=﹣x﹣2,则点D的坐标为(m,﹣m﹣2),即可求出MD的长度,进一步求出△MAB的面积S关于m的函数关系式,根据二次函数的性质即可求出其最大值;(3)设P(x,x2+x﹣2),分情况讨论,①当OB为边时,根据平行四边形的性质知PQ∥OB,且PQ=OB,则Q(x,﹣x),可列出关于x的方程,即可求出点Q的坐标;②当BO为对角线时,OQ∥BP,A与P应该重合,OP=2,四边形PBQO为平行四边形,则BQ=OP=2,Q横坐标为2,即可写出点Q的坐标.【详解】(1)设此抛物线的函数解析式为:y=ax2+bx+c,将A(﹣2,0),B(0,﹣2),C(1,0)三点代入,得4202a b cca b c-+=⎧⎪=-⎨⎪++=⎩,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
()
A. 变大
B. 不变
C. 变小
D. 不确定
3. x1,x2 是一元二次方程 x2-x-1=0 的两个根,32<x1<2,对 x2 的估算正确的是( )
A. −1<x2<−12 B. −12<x2<0
C. 0<x2<12
D. 12<x2<1
4. 如图,在方格纸中,△ABC 和△EPD 的顶点均在格点上, 若△ABC∽△EPD,则点 P 所在的格点为下列各点中的
第 4 页,共 17 页
26. 已知二次函数 y=(x-1)(x-m-3)(m 为常数). (1)求证:不论 m 为何值,该函数的图象与 x 轴总有公共点; (2)当 m 取什么值时,该函数的图象与 y 轴的交点在 x 轴的下方?
24. 某食品商店将甲、乙、丙 3 种糖果的质量按 5:4:1 配置成一种什锦糖果,已知甲、 乙、丙三种糖果的单价分别为 16 元/kg、20 元/kg、27 元/kg.若将这种什锦糖果的 单价定为这三种糖果单价的算术平均数,你认为合理吗?如果合理,请说明理由; 如果不合理,请求出该什锦糖果合理的单价.
戏板投掷飞镖一次(假设飞镖落在游戏板上),则飞镖落在涂色
部分的概率是______.
11. 将二次函数 y=-2x2+1 的图象绕点(0,2)顺时针旋转 180°,得到 的图象所对应的函数表达式为______.
12. 关于 x 的方程 ax2+bx+2=0 的两根为 x1=1,x2=2,则方程 a(x-1)2+b(x-1)+2=0 的两根分别为______.
第 3 页,共 17 页
(2)求两人不从同一个出站口出站的概率.
23. 在物理课上,我们学习过“小孔成像”--用一个带有小 孔的薄板遮挡在物体与光屏之间,在光的照射下,光 屏上就会形成一个倒立的实像.如图,光线分别经过 物体 AB 的两端 A、B 和小孔 P,投射在与 AB 平行的 光屏 l 上形成了实像 A'B'.已知 AB=a,小孔 P 与 AB、l 的距离分别为 m、n.求 A'B'的长(用含 a、m、n 的代 数式表示).
16. 如图,在⊙O 中,C 是弦 AB 上一点,AC=2,CB=4.连接 OC,过点 C 作 DC⊥OC,与⊙O 交于点 D,DC 的长为 ______.
三、计算题(本大题共 1 小题,共 10.0 分) 17. 如图①,P 是⊙O 外一点,过点 P 作⊙O 的两条切线,切点分别为 A、B.若
∠APB=60°,则点 P 叫做⊙O 的切角点.
九年级(上)期末数学试卷
题号 得分
一
二
三
四
总分
一、选择题(本大题共 6 小题,共 12.0 分)
1. 从一副完整的扑克牌中任意抽取 1 张,下列事件与抽到“A”的概率相同的是( )
A. 抽到“大王”
B. 抽到“2”
C. 抽到“小王”
D. 抽到“红桃”
2. 某选手在比赛中的成绩(单位:分)分别是 90,87,92,88,93,方差是 5.2(单 位:分 2),如果去掉一个最高分和一个最低分,那么该选手成绩的方差会
A. (1,0)
BHale Waihona Puke (2,0)C. (1,1)
D. (2,1)
二、填空题(本大题共 10 小题,共 20.0 分)
7. 若 ab=23,则 a+b2b=______. 8. 一组数据:-1,3,2,x,5,它有唯一的众数是 3,则这组数据的中位数是
______.
9. 圆锥的底面半径是 4cm,母线长是 5cm,则圆锥的侧面积等于______cm2. 10. 如图,飞镖游戏板中每一块小正方形除颜色外都相同.若某人向游
(1)如图②,⊙O 的半径是 1,点 O 到直线 l 的距离为 2.若点 P 是⊙O 的切角点, 且点 P 在直线 l 上,请用尺规作出点 P;(保留作图痕迹,不写作法) (2)如图③,在 Rt△ABC 中,∠ACB=90°,∠A=30°,BC=1+3,⊙O 是△ABC 的内 切圆.若点 P 是⊙O 的切角点,且点 P 在△ABC 的边上,求 AP 的长.
25. 如图,AB 为⊙O 的直径,AB=4,C 为⊙O 上一点,且 AC=BC,P 为 BC 上的一动点,延长 AP 至 Q,使得 AP•AQ=AB2,连接 BQ. (1)求证:直线 BQ 是⊙O 的切线; (2)若点 P 由点 B 运动到点 C,则线段 PQ 扫过的面积 是______.(结果保留 π)
13. 如图,E、F 是线段 AB 的两个黄金分割点,AB=1,则 线段 EF 的长为______.(结果保留根号)
第 1 页,共 17 页
14. 将正三角形、正方形、正五边形按如图所示的位置摆放,则 ∠1+∠2+∠3=______°.
15. 如图,二次函数 y=-x2+2x+3 的图象与 x 轴交于两点 A、B,它的对称轴与 x 轴交于 点 N.过顶点 M 作 ME⊥y 轴,垂足为 E,连接 BE,交 MN 于点 F,则△EMF 与△BNF 的面积的比为______.
第 2 页,共 17 页
四、解答题(本大题共 10 小题,共 78.0 分) 18. 求二次函数 y=x2+4x+5 的最小值,并求出对应的 x 的值.
19. 用代入法解二元一次方程组 x+y=10,2x+y=16 的过程可以用下面的框图表示:
尝试按照以上思路求方程组 x−y=0,x2+2y=4 的解.
20. 将二次函数 y=ax2+bx+1 的图象向左平移 1 个单位长度后,经过点(0,3)、(2, -5),求 a、b 的值.
21. 我市种的水稻 2012 年平均每公顷产 7000kg,2014 年平均每公顷产 8470kg.求水稻 每公顷产量的年平均增长率.
22. 某地铁站有 4 个出站口,分别为 1 号、2 号、3 号、4 号,小华和小明先后在该地 铁站下车,任意选择一个出站口出站. (1)小华从 1 号出站口出站的概率是______;
( )
A. P1 B. P2 C. P3 D. P4
5. 如图,AB 是半圆 O 的直径,C 是 OB 的中点,过点 C 作 CD⊥AB,交半圆于点 D,则 BD 与 AD 的长度的比 为( )
A. 1:2
B. 1:3
C. 1:4
D. 1:5
6. 若点 A(0,1)在二次函数 y=ax2-2ax+b(a、b 是常数)的图象上,则下列各点一 定在该图象上的是( )