三角函数与平面向量过关检测
数学北师大版高中必修4解三角形与平面向量检测题

------解三角形与平面向量检测题一、选择题:本大题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题意要求的。
1、下列命题中,正确的是( B )A 、||||||a b a b ⋅=⋅B 、若()a b c ⊥-,则a b a c ⋅=⋅C 、2a ≥||aD 、()()a b c a b c ⋅⋅=⋅⋅2、在四边形ABCD 中,0=⋅,BC AD =,则四边形ABCD 是( C )A 、直角梯形B 、菱形C 、矩形D 、正方形3、已知m n ,是夹角为o 60的单位向量,则2a m n =+和32b m n=-+的夹角是( D )A 、o 30B 、o 60C 、o 90D 、o 1204、已知平面上有三点A (1,1),B (-2,4),C (-1,2),P 在直线AB 上,使||31||AB AP =,连结PC ,Q 是PC 的中点,则点Q 的坐标是 ( C )A 、(21-,2)B 、(21,1)C 、(21-,2)或 (21,1) D 、(21-,2)或(-1,2) 5、若||||1a b ==,a b ⊥且(23)a b +⊥(k4a b -),则实数k 的值为( B )A 、-6B 、6C 、3D 、-36、若a =(2,-3), b =(1,-2),向量c 满足c ⊥a ,b ∙c =1,则c的坐标是 ( C )A 、(3,-2)B 、(3,2)C 、(-3,-2)D 、(-3,2)7、设1l ,2l 是基底向量,已知向量AB =1l k -2l ,CB 2=1l +2l ,3CD =1l -2l ,若D B A ,,三点共线,则k 的值是 ( A )A 、2B 、3C 、-2D 、-38、已知BE AD ,分别是ABC ∆的边AC BC ,上的中线,且=a ,=b ,则AC 是(A )A 、4233a b + B 、2433a b + C 、4233a b - D 、2433a b - 二、填写题:本大题共4小题,每小题5分,共20分。
三角函数及平面向量测试题

姓名________ 成绩________三角函数和平面向量综合测试题160分公式:βαβαβαsin cos cos sin )sin(±=±βαβαβαsin sin cos cos )cos( =±令βα=得αααcos sin 22sin =ααααα2222sin 211cos 2sin cos 2cos -=-=-=一、填空题:本大题共14小题,每小题5分,共70分。
1.设(1,2),(3,4),(3,2)a b c =-=-=,则(2)a b c +⋅=________.2.已知两点(2,0),(2,0)M N -,点P 为坐标平面内的动点, 满足0MN MP MN NP ⋅+⋅=,则动点(,)P x y 的轨迹方程为_____.3.已知i 与j 为互相垂直的单位向量,2,a i j b i j λ=-=+,且a 与b 的夹角为锐角,则实数λ的取值范围是________.4.若三点(2,2),(,0),(0,)(0)A B a C b ab ≠共线,则11a b+= . 5.设向量(1,0),(cos ,sin ),a b θθ==其中0θπ≤≤,则a b +的最大值是 .6.设,i j 是平面直角坐标系内x 轴、y 轴正方向上的单位向量,且42,34AB i j AC i j =+=+,则ABC ∆面积的值等于 .7.已知向量a 与b 的夹角为0120,1,3a b ==,则5a b -= . 8.向量)sin ,(cos θθ=,向量)1,3(-=则|2|-的最大值,最小值分别是_______. 9.已知)1,2(=a 与)2,1(=b ,要使b t a +最小,则实数t 的值为___________. 10.向量(cos ,sin )a θθ=,向量(3,1)b =-,则2a b -的最大值是 . 11.设πθ20<≤,已知两个向量()θθsin ,cos 1=OP ,()θθcos 2,sin 22-+=OP ,则向量21P P 长度的最大值是________.12、定义*a b 是向量a 和b 的“向量积”,它的长度|*|||||sin ,a b a b θθ=⋅⋅其中为向量a 和b的夹角,若(2,0),(1,3),|*()|u u v u u v =-=-+则= .13 在______,02=∠=+⋅∆A AB ABC 则中,若.14.在三角形ABC 中,点O 是BC 的中点,过点O 的直线交直线AB,AC 于不同两点M,N ,若有,,n m ==则m+n=______二、解答题:本大题共6小题,共计90分,请在答题卡指定区域内作答,解答时应写出文字说明、证明或演算步骤.15. (本小题满分14分)(1)已知向量a 与b 的夹角为60,||4,(2).(3)72b a b a b =+-=-,求向量a 的模。
三角函数与平面向量综合测试题

约稿:三角函数与平面向量综合测试题广东省珠海市斗门区第一中学 于发智 519100 jianghua20011628@一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,恰有..一项..是符合题目要求的。
1.下列函数中,周期为2π的是( ) A .sin2x y = B .sin 2y x = C .cos 4xy = D .cos 4y x = 2.已知命题:p x ∀∈R ,sin 1x ≤,则( ) A.:p x ⌝∃∈R ,sin 1x ≥ B.:p x ⌝∀∈R ,sin 1x ≥ C.:p x ⌝∃∈R ,sin 1x >D.:p x ⌝∀∈R ,sin 1x >3. 条件甲a =+θsin 1,条件乙a =+2cos2sin θθ,那么 ( )A .甲是乙的充分不必要条件B .甲是乙的充要条件C .甲是乙的必要不充分条件D .甲是乙的既不充分也不必要条件4.已知O 是ABC △所在平面内一点,D 为BC 边中点,且2OA OB OC ++=0,那么( )A.AO OD =B.2AO OD =C.3AO OD =D.2AO OD =5. 若函数f (x )=3sin21x , x ∈[0, 3π], 则函数f (x )的最大值是 ( ) A.21 B.32 C.22 D.23 6. (1+tan25°)(1+tan20°)的值是 ( ) A.-2 B.2 C.1 D.-1 7.α、β为锐角a =sin(βα+),b =ααcos sin +,则a 、b 之间关系为 ( )A .a >bB .b >aC .a =bD .不确定8. 下面有五个命题:①函数y =sin 4x -cos 4x 的最小正周期是π. ②终边在y 轴上的角的集合是{a |a =Z k k ∈π,2|.B ACD③在同一坐标系中,函数y =sin x 的图象和函数y =x 的图象有三个公共点. ④把函数.2sin 3632sin(3的图象得到的图象向右平移x y x y =ππ+= ⑤函数.0)2sin(〕上是减函数,在〔ππ-=x y 其中真命题的序号是 ① ④ ((写出所有真命题的编号))9. )sin()(ϕω+=x A x f (A >0,ω>0)在x =1处取最大值,则 ( ) A .)1(-x f 一定是奇函数 B .)1(-x f 一定是偶函数 C .)1(+x f 一定是奇函数D .)1(+x f 一定是偶函数10. 使x y ωsin =(ω>0)在区间[0,1]至少出现2次最大值,则ω的最小值为( ) A .π25B .π45 C .πD .π2311、在直角坐标系xOy 中,,i j分别是与x 轴,y 轴平行的单位向量,若直角三角形ABC中,2AB i j =+ ,3AC i k j =+,则k 的可能值有 ( ) A 、1个 B 、2个 C 、3个 D 、4个12. 如图,l 1、l 2、l 3是同一平面内的三条平行直线,l 1与l 2间的距离是1, l 2与l 3间的距离是2,正三角形ABC 的三顶点分别在l 1、l 2、l 3上,则△ABC 的边长是 ( )(A )32 (B )364(C )4173 (D )3212二、填空题:本大题共4小题,每小题4分,共16分。
三角函数与平面向量测试卷

分 。 在 每 小题 给 出 的 四 个 选 项 中 , 有 一 项 是 符 合 题 只 目要 求 的 )
( s (t 口 C)i O+ )>s ( -3 n i / n ) ( ) 。 ( CS + >CS 一 ) D)O ( 卢) O( 卢
1记 CS 一8 。 , 么 t l0 : . O ( 0 )= 那 a 0。 n
( )盯 A8 ( 4; B) 1 ( )" C 2r r ( 1 D)『 ( n A) ( ) Bb ( c C) ( 0 D)
( ) 。
l. 函数 , )= 。 x 3 0将 ( +3 + x的图像按 向量 口平 移后得 到函数 g x 的图像 , 函数 g ) () 若 ( 满足 g )+ (
一
过 的A 弧 的 长 为 l弦 A P , P的 长 为 d ,
则 函数 d= () , 1 的图像大致 为
(
d
2
() s B的值 ; I求 i n (I 若 c a= 而 , A B I) — 5一 求 A C的面积。
1. 本 小 题 满 分 1 ) 8( 2分
1. 图 , 点 是 单 位 圆 上 1如 设
的一 定 点 , 点 P从 A 出 发 在 圆 上 动
Y、
1 . 本小题满分 1 ) 7( 2分 在 AB A C中 , A、 C所对 的边分别 为 a b c且 角 B、 、、 ,
c = , iA = 鱼 sn 5。
按逆 时针方 向转一 周 , P所旋 转 点
得一游船位于 岛北偏东 1 。 向 5方 上, 且俯角 为 3 。 C处 , 0的 一分 钟后测 得该游船 位于 岛 北偏西 7 。 向上 , 俯角 4 。 D处 。( 5方 且 5的 假设 游船匀
“三角函数与平面向量”检测题

8 . 。 解 析 由 题 意 不 妨 设 B ( 0 , 0) , :0得 ( 一1 ,
北
l
西
C
东
A( 1 , 0 ) , c ( o, 2 ) , D( , y ) , 由 .
) , )・(一x , 2一y )=0 , 即 一 +Y 一2 y= 0, 所 以(
2 . A。解 析 因 为 s i n A—s i n A c o s C=c o s A s i n C,
6 . 已知菱形 A B C D 的边 长为 a , / _A B C= 6 0 。 , 则
B D・ C D ‘ =( )
所以s i n A=s i n A c o s C+c o s A s i n C, 所以s i n A=s i n B, 因
A. 0 B. 1
s l n o l 了 ÷ , t a n a = 一 , 手 , 所 以 t a n- ( , 2 f - 一 ) =
=
)
C. 2 D. 3
1 + t a n q 耵 - × t a n 1 一 }
竺 至 : ! 竺: 二 皇: 7 。 故 答 案 选 。 。
A . 一 ÷ n B . 一 ÷ a c . ÷ D . ÷
二、 填 空题
为 0< A, B<订, 所 以 A=B, 即三 角形 为等 腰三 角形 。
3 . D 。解 析 由 图可 知 , A _ A C B=1 2 0 。 , 由余 弦
定 理得 , C O S A _ A C B= A C +B C 一A B a 2 +a 2 一 A B
当 = 时 ) 取得 最 大值 , 则( ) 参 考答 案
江苏高三数学三角函数与平面向量专题检测

江苏高三数学三角函数与平面向量专题检测三角函数是数学中罕见的一类关于角度的函数,以下是三角函数与平面向量专题检测,请考生仔细练习。
1.- [由|OP|=5,得sin =-,cos =,sin +cos =-.]2.,kZ [y=sin=-sin.由2k2x-+,得kx+,kZ.y=sin的单调减区间为,kZ.]3. [∵0且cos =,又0,+,又sin(+,cos(+)=-=-,sin ==.cos =cos[(+)-]=cos(+)cos +sin(+)sin =.]4.(kZ) [由T==,得=2,所以f(x)=Asin(2x+).∵y=f(x)的图象关于x=对称,且-,那么=,f(x)=Asin令2x+=k,x=-,kZ,因此y=f(x)的对称中心为(kZ).]5.2 [由正弦定理,=,sin A==.又a6.④7. [由ab=(,2)(3,2)=32+40,得0或-.又a=kb,得=,那么=,因此〈a,b〉为锐角,应有-或0且.] 8.直角三角形回扣三三角函数与平面向量圈套清点1 三角函数的定义了解不清致误三角函数值是比值,是一个实数,这个实数的大小和点P(x,y)在终边上的位置有关,只由角的终边位置决议.[回扣效果1]角的终边经过点P(3,-4),那么sin +cos 的值为________.圈套清点2 求y=Asin(x+)与y=Acos (x+)的单调区间,无视符号致错0时,应先应用诱导公式将x的系数转化为正数后再求解;在书写单调区间时,不能弧度和角度混用,需加2k时,不要忘掉kZ,所求区间普通为闭区间.[回扣效果2]函数y=sin的递减区间是________.圈套清点3 求三角函数值效果,无视隐含条件对角的范围的制约招致增解[回扣效果3]cos =,sin(+)=,0,那么cos =________.圈套清点4 关于三角函数性质看法缺乏致误(1)三角函数图象的对称轴、对称中心不独一.①函数y=sin x的对称中心为(k,0)(kZ),对称轴为x=k+(kZ).②函数y=cos x的对称中心为(kZ),对称轴为x=kZ).③函数y=tan x的对称中心为(kZ),没有对称轴.(2)求y=Asin(x+),y=Acos (x+)的最小正周期易无视的符号. [回扣效果4]设函数f(x)=Asin(x+)的图象关于x=对称,且最小正周期为,那么y=f(x)的对称中心为________.圈套清点5 无视解三角形中的细节效果致误应用正弦定了解三角形时,留意解的个数讨论,能够有一解、两解或无解.在△ABC中,Asin Asin B.[回扣效果5]△ABC的内角A,B,C所对的边区分为a,b,c 假定B=,a=1,b=,那么c=________.圈套清点6 无视零向量与向量的运算律致误当ab=0时,不一定失掉ab,当ab 时,aab=cb,不能失掉a=c,消去律不成立;(ab)c与a(bc)不一定相等,(ab)c与c 平行,而a(bc)与a平行.[回扣效果6]以下各命题:①假定ab=0,那么a、b中至少有一个为0;②假定a0,ab=ac,那么b=c;③对恣意向量a、b、c,有(ab)ca(b④对任一向量a,有a2=|a|2.其中正确命题是________(填序号).圈套清点7 向量夹角范围不清解题失误设两个非零向量a,b,其夹角为,那么:ab0是为锐角的必要非充沛条件;当为钝角时,ab0,且a,b 不反向;ab0是为钝角的必要非充沛条件.[回扣效果7]a=(,2),b=(3,2),假设a与b的夹角为锐角,那么的取值范围是________.圈套清点8 混杂三角形的四心的向量表示方式致误①++=0P为△ABC的重心;②==P为△ABC的垂心;③向量(0)所在直线过△ABC的内心;④||=||=||P为△ABC的外心.[回扣效果8]假定O是△ABC所在平面内一点,且满足|-|=|+-2|,那么△ABC的外形为________.三角函数与平面向量专题检测的内容就是这些,更多精彩内容请继续关注查字典数学网。
平面向量及三角函数测试题
平面向量及三角函数测试题一、单选题1.如图,点 是平行四边形 两条对角线的交点,则下列等式一定成立的是( )A .B .C .D .2.已知 的边 上有一点 满足 ,则 可表示为( ) A .B .C .D .3. 化简后等于 A .B .C .D .4.有下列四个命题:①互为相反向量的两个向量模相等;②若向量AB 与CD 是共线的向量,则点A B C D ,,,必在同一条直线上; ③若=a b ,则=a b 或=-a b ④若=0a b ,则=0a 或=0b ; 其中正确结论的个数是( ) A .4B .3C .2D .15.如图,在矩形 中, 是两条对角线 的交点,则( )A .B .C .D .6.已知 中, , , 为 边上的中点,则 ( ) A .0B .25C .50D .1007.在 中, ,若 , ,则 ( )A .B .C.D.8.已知向量,,.若,则实数的值为()A.B.C.D.9.已知向量,且,则实数()A.B.C.D.10.已知向量,,,则A.A、B、C三点共线B.A、B、D三点共线C.A、C、D三点共线D.B、C、D三点共线11.设,向量,,且,则( )A.0 B.1 C.2 D.-212.已知向量,满足,,且向量,的夹角为,若与垂直,则实数的值为()A.B.C.D.13.若两个非零向量满足,则向量与的夹角的余弦值是()A.B.C.D.14.设向量满足,则( )A.6B.C.10D.15.已知向量,,且,则m=( )A.−8B.−6C.6 D.816.向量,若,则()A.B.C.D.17.若,则的值为A.B.C.D.18.已知三角形内角A满足,则的值为()A.B.C.D.19.已知,且,则()A.B.C.D.20.已知,则=A.B.C.D.21.等于()A.B.C.D.22.函数的最大值为A.2B.C.D.1 23.已知,,则()A.B.C.D.24.已知,那么的值为()A.B.C.D.25.已知,,则A.B.C.D.26.(2015新课标全国Ⅰ理科)=A.B.C.D.27.(2018年全国卷Ⅲ文)若,则A.B.C.D.28.若,则()A.B.C.D.029.的值为()A.B.C.D.1二、填空题30.已知,,,则向量与向量的夹角为_______________.31.已知平面向量 与 的夹角为 ,且 ,若 ,则 __________.32.已知 ,则 __________. 33.(2018年全国卷II 文)已知,则 __________. 34.已知 为第二象限角,,则 ________三、解答题35.已知两个非零向量 和 不共线, = , = , = . (1)若2= ,求k 的值; (2)若A 、B 、C 三点共线,求k 的值. 36.已知 ,求: (1).(2)4sin 2a ﹣3sinacosa ﹣5cos 2a .37.已知函数 . (1)求的值;(2)将函数 的图象沿 轴向右平移个单位长度,得到函数 的图象,求 在上的最大值和最小值.38.已知 , 为锐角,,. Ⅰ 求 的值; Ⅱ 的值.39.已知,且 为第二象限角.(1)求 的值; (2)求的值.40.已知函数()2cos cos f x x x x +.(Ⅰ)求()f x 的最小正周期. (Ⅱ)求()f x 在区间ππ,63⎡⎤-⎢⎥⎣⎦上的最大值和最小值.参考答案1.C【解析】中,中,中,故选2.A【解析】【分析】利用相加加法和减法的运算,将向量转化到两个方向上,化简后得出正确的结论. 【详解】画出图像如下图所示,故,故选A.【点睛】本小题主要考查平面向量加法运算,考查平面向量减法运算,属于基础题.3.B【解析】【分析】利用向量的三角形法则即可得出.【详解】,本卷由系统自动生成,请仔细校对后使用,答案仅供参考。
《三角函数、平面向量》自测题
A
A一; 詈
C — ; . 3
B± ; —
D __ 4 =
) .
B 要;
D
b
4 .若 a ( ), sn a C S , d 的 取 值 范 围 是 ∈ 0, 且 i > O 则
A 4+ 4
c 4;
2 .若 P ( 6 与 Q( 6 口 分 别 是 角 、 终 边 上 的 一 n, ) 一 ,) J 9 点 , a = O, 角 a与 p 的 关 系 是 ( 且 b/ 则 =
A — a= 2 7 ( = 忌 c 忌∈ Z); =
) .
;
不 能 作 为 表 示 平 面 内 任 何 向 量 基 底 的 向 量 组 是
( ).
A C
① ; ② ;形 ABC 的 对 角 线 AC 上 的 动 点 ( 含 . D 不 江 苏 黄安 成 ( 级 教 师) 特 A、 , c) 则 A ( 等 于 ( + ) . ), 中 ∈ ( , ) 其 o1 ;
( ) .
A C
第 一象 限 ; 第 三象 限 ;
B D
D | 一 , ( ) ; 霞) L ( 其中 ∈ o ,
9 .若 a一 ( O , i ) 舀 ( , 1 , n+ b1 最 C S0 sn ,一 一 ) 1 2 的 大 、 小 值 分 别 为 M 、 , M - m一 ( 最 m 则 F
一
、
选 择 题 ( 题 5 分 , 60 分 ) 每 共
B ( + , ∈ o2 ; 赢) 其中A ( √) , - 2
(人教版)必修四三角函数和平面向量测试题含答案
三角函数及平面向量综合测试题命题人:伍文一.选择题:(满分50分,每题5分)1.下列向量给中,能作为表示它们所在平面内所有向量的基底的是( ) A .→1e = (0,0), →2e =(1,-2) ; B .→1e = (-1,2), →2e = (5,7); C .→1e = (3,5), →2e =(6,10); D .→1e = (2,-3) , →2e = )43,21(- 2.在平行四边形ABCD 中,若||||BC BA BC AB +=+,则必有( )A .四边形ABCD 为菱形B .四边形ABCD 为矩形C .四边形ABCD 为正方形 D .以上皆错3.已知向量→1e ,→2e 不共线,实数(3x -4y) →1e +(2x -3y) →2e =6→1e +3→2e ,则x -y 的值等于 ( )A .3B .-3C .0D .24.已知正方形ABCD 边长为1, AB =→a ,BC =→b ,AC =→c ,则|→a +→b +→c |等于( ) A .0 B .3 C .22 D .2 5.设()()AB CD BC DA +++=→a ,而→b 是一非零向量,则下列个结论:(1) →a 与→b 共线;(2)→a +→b = →a ;(3) →a +→b = →b ;(4) |→a +→b |<|→a |+|→b |中正确的是( ) A .(1) (2) B .(3) (4) C .(2) (4) D .(1) (3)6. 已知sin α=55则sin 4α- cos 4α的值是( ) A .-53 B . -51 C . 51 D .53 7. 在同一平面直角坐标系中,函数])20[)(232cos(ππ,∈+=x x y 的图象和直线21=y 的交点个数是( )A .0B .1C .2D .48.函数y =-xcosx 的部分图象是( )9.已知△ABC 的两个顶点A(3,7)和B(-2,5),若AC 的中点在x 轴上,BC 的中点在y 轴上,则顶点C 的坐标是 ( )A .(-7,2)B .(2,-7)C .(-3,-5)D .(5,3) 10.AD 、BE 分别为△ABC 的边BC 、AC 上的中线,且AD =→a ,BE =→b ,那么BC 为( ) A .32→a -34→b B .32→a -32→b C .32→a +34→b D .-32→a +34→b班级 座号 姓名二.填空题:(满分20分,每题5分)11.函数2cos()35y x π=-的最小正周期12.不等式(lg20)2cosx>1(x ∈(0,π))的解集为__________13.已知A(2,3),B(1,4)且12AB =(sin α,cos β),α、β∈(-2π,2π),则α+β= 14.已知→a =(1,2) ,→b =(-3,2),若k →a +→b 与→a -3→b 平行,则实数k 的值为三.解答题:(满分80分,第15、19、20题各14分,第16、17、18题各12分)15.(本题14分)函数)2||,0,0(),sin(π<ϕ>ω>ϕ+ω=A x A y 的最小值是-2,其图象最高点与最低点横坐标差是3π,又:图象过点(0,1),求(1)函数解析式,并利用“五点法” 画出函数的图象(2)函数的最大值、以及达到最大值时x 的集合;(3)该函数图象可由y=sinx(x ∈R)的图象经过怎样的平移和伸缩得到?(4)当x ∈(0,23π)时,函数的值域.16.(本题12分)已知:点B(1,0)是向量→a 的终点,向量→b , →c 均以原点O为起点,且→b =(-3,-4), →c =(1,1)与向量→a 的关系为→a =3→b -2→c ,求向量→a 的起点坐标.17.(本题12分)已知A 、B 、C 三点坐标分别为(-1,0)、(3,-1)、(1,2),11,,33AE AC BF BC ==求证://EF AB18.(本题14分)设两个非零向量→a 与→b 不共线⑴若AB =→a +→b ,BC =2→a +8→b ,CD =3(→a -→b ) ,求证:A 、B 、D 三点共线; ⑵试确定实数k ,使k →a +→b 和→a +k →b 共线.19.(本题14分)已知函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的图象在y 轴上的截距为1,在相邻两最值点()0,2x ,()003,202x x ⎛⎫+-> ⎪⎝⎭上()f x 分别取得最大值和最小值.(1)求()f x 的解析式;(2)若函数()()g x af x b =+的最大和最小值分别为6和2,求,a b 的值.20.(本题14分)设0,2πα⎛⎫∈ ⎪⎝⎭,函数()f x 的定义域为[]0,1且()00f =,()11f =当x y≥时有()()()sin 1sin 2x y f f x f y αα+⎛⎫=+- ⎪⎝⎭.(1)求11,24f f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭;(2)求α的值;(3)求函数()()sin 2g x x α=-的单调区间.三角函数及平面向量综合测试题答案二.填空题:(满分20分,每题5分)11.5π 12.(0,2π) 13.6π或 -2π; 14.-31三.解答题:(满分80分,第15、19、20题各14分,第16、17、18题各12分) 15. 解:(1)易知:A = 2 半周期π=32T∴T = 6π 即πωπ62= (0>ω) 从而:31=ω 设:)31sin(2ϕ+=x y 令x = 0 有1sin 2=ϕ又:2||π<ϕ ∴6π=ϕ ∴所求函数解析式为)631sin(2π+=x y 图略(2)当{x|x =6k π+π,k∈Z }时,)631sin(2π+=x y 取最大值2 (3)略 (4) y∈(]2,116.解:设→a 的起点坐标为A(x,y) ,则AB =(1-x,-y)=(-11,-14),解得x=12, y=14.17.解:设E(x 1, y 1),F(x 2, y 2) ,∵AC 31AE =, ∴(x 1+1, y 1)=(22,33), ∴x 1=13-, y 1=23,又BC 31BF =,∴(x 2-3, y 2+1)=(-23,1), ∴x 2=73, y 2=0, 则82(,)33EF =-由于3823(4,1)(,)2332AB EF =-=-=,所以//EF AB18.解:⑴∵BD BC CD =+=5(a +b )=52AB DC = ∴ AB 、BD 共线,又它们有公共点B ,所以A 、B 、C 三点共线⑵依题:存在实数λ,使k →a +→b =λ(→a +k →b ) 即(k-λ) →a =(λk -1) →b ∴k -λ=λk -1=0 ∴k=±119.解:(1)依题意,得 0033222T x x =+-=,223,3T ππωω∴==∴=最大值为2,最小值为-2,2A ∴= 22sin 3y x πϕ⎛⎫∴=+ ⎪⎝⎭图象经过()0,1,2sin 1ϕ∴=,即1sin 2ϕ=又 2πϕ<6πϕ∴=,()22sin 36f x x ππ⎛⎫∴=+⎪⎝⎭ (2)()22sin 36f x x ππ⎛⎫=+ ⎪⎝⎭,()22f x ∴-≤≤ 2622a b a b -+=⎧∴⎨+=⎩或2226a b a b -+=⎧⎨+=⎩解得,14a b =-⎧⎨=⎩或14a b =⎧⎨=⎩.20.解:(1)()()()1101sin 1sin 0sin 22f f f f ααα+⎛⎫⎛⎫==+-= ⎪ ⎪⎝⎭⎝⎭;()()210112sin 1sin 0sin 422f f f f ααα⎛⎫+ ⎪⎛⎫⎛⎫==+-= ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪⎝⎭(2)()()113121sin 1sin 422f f f f αα⎛⎫+ ⎪⎛⎫⎛⎫==+- ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪⎝⎭()2sin 1sin sin 2sin sin ααααα=+-=-()3113144sin 1sin 2244f f f f αα⎛⎫+ ⎪⎛⎫⎛⎫⎛⎫∴==+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎪⎝⎭()()22232sin sin sin 1sin sin 3sin 2sin ααααααα=-+-=-2sin sin (3sin 2sin )αααα∴=⋅- sin 0α∴=或12或1 又 0,2πα⎛⎫∈ ⎪⎝⎭,6πα∴=.(3)()sin 2sin 266g x x x ππ⎛⎫⎛⎫∴=-=-- ⎪ ⎪⎝⎭⎝⎭22,2622x k k πππππ⎛⎫⎡⎤∴-∈-++ ⎪⎢⎥⎝⎭⎣⎦时,()g x 单调递减,322,2622x k k πππππ⎛⎫⎡⎤-∈++ ⎪⎢⎥⎝⎭⎣⎦时,()g x 单调递增; 解得:,63x k k ππππ⎡⎤∈-++⎢⎥⎣⎦()k Z ∈时,()g x 单调递减,5,33x k k ππππ⎡⎤∈++⎢⎥⎣⎦()k Z ∈时,()g x 单调递增.。
三角函数和向量测试试卷(含答案)
三角函数和向量测试试卷(含答案)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.02120sin 等于( ) A .23±B .23C .23- D .212.若角0600的终边上有一点()a ,4-,则a 的值是( )A .34B .34-C .34±D .3 3.sin163sin 223sin 253sin313+=( )A .12-B .12 C.2- D.24.若,24παπ<<则( )A .αααtan cos sin >>B .αααsin tan cos >>C .αααcos tan sin >>D .αααcos sin tan >>5.函数)652cos(3π-=x y 的最小正周期是( )A .52π B .25π C .π2 D .π5 6.已知下列命题中:(1)若k R ∈,且0kb = ,则0k =或0b =,(2)若0a b ⋅= ,则0a = 或0b =(3)若不平行的两个非零向量b a ,,满足||||b a =,则0)()(=-⋅+b a b a(4)若a 与b 平行,则||||a b a b =⋅其中真命题的个数是( )A .0B .1C .2D .37.把函数sin y x =(x R ∈)的图象上所有点向左平行移动3π个单位长度,再把所得图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),得到的图象所表示的函数是( ) (A )sin(2)3y x π=-,x R ∈ (B )sin()26x y π=+,x R ∈(C )sin(2)3y x π=+,x R ∈ (D )sin(2)32y x π=+,x R ∈ 8.已知,a b 均为单位向量,它们的夹角为060,那么3a b += ( )A .7B .10C .13D .49.已知3sin(),45x π-=则sin 2x 的值为( ) A .1925 B .1625 C .1425 D .72510.向量(2,3)a = ,(1,2)b =-,若ma b + 与2a b - 平行,则m 等于A .2-B .2C .21D .12-11.已知向量)sin ,(cos θθ=a ,向量)1,3(-=b 则|2|b a -的最大值,最小值分别是( )A .0,24B .24,4C .16,0D .4,0 12.函数tan sin tan sin y x x x x =+--在区间3(,)22ππ内的图象是( )二、填空题:本大题共4小题,每小题4分,共16分.把答案填在横线上13.若(2,2)a =-,则与a 垂直的单位向量的坐标为__________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
过关检测(二)三角函数与平面向量(时间:90分钟满分:120分)一、选择题(本大题共10小题,每小题5分,共50分)1.(2012·重庆)设tan α,tan β是方程x2-3x+2=0的两根,则tan(α+β)的值为().A.-3 B.-1 C.1 D.32.(2012·济南三模)已知非零向量a,b满足向量a+b与向量a-b的夹角为π2,那么下列结论一定成立的是().A.a=b B.|a|=|b|C.a⊥b D.a∥b3.函数y=3cos(x+φ)+2的图象关于直线x=π4对称,则φ的可能取值是().A.3π4B.-3π4 C.π4 D.π24.(2012·惠州模拟)已知向量a,b,则“a∥b”是“a+b=0”的________条件().A.充分不必要B.必要不充分C.充要D.既不充分也不必要5.(2012·哈尔滨四校联考三模)已知角2α的顶点在原点,始边与x轴非负半轴重合,终边过点-12,32,2α∈[0,2π),则tan α=().A.- 3 B. 3 C.33D.-336.(2012·皖南八校联考)设向量a,b满足|a|=2,a·b=32,|a+b|=22,则|b|等于( ).A.12 B .1 C.32 D .27.已知函数y =sin(ωx +φ)ω>0,|φ|<π2的部分图象如图所示,则( ).A .ω=1,φ=π6B .ω=1,φ=-π6C .ω=2,φ=π6D .ω=2,φ=-π68.若△ABC 外接圆的半径为1,圆心为O ,且2OA →+AB →+AC →=0,|OA →|=|AB →|,则CA →·CB→的值是 ( ).A .3B .2C .1D .09.(2012·陕西)在△ABC 中,角A ,B ,C 所对边的长分别为a ,b ,c ,若a 2+b 2=2c 2,则cos C 的最小值为( ).A.32B.22C.12 D .-12 10.给出下列四个命题:①f (x )=sin2x -π4的对称轴为x =k π2+3π8,k ∈Z ; ②函数f (x )=sin x +3cos x 的最大值为2; ③函数f (x )=sin x cos x -1的周期为2π;④函数f (x )=sin x +π4在-π2,π2上是增函数.其中正确命题的个数是( ). A .1 B .2 C .3 D .4二、填空题(本大题共4小题,每小题4分,共16分)11.(2012·北京顺义模拟)已知角α的顶点在原点,始边与x 轴的正半轴重合,终边经过点P (-3,3),则sin 2α-tan α=________.12.(2012·肇庆调研)已知向量a =(4,3),b =(-2,1),如果向量a +λb 与b 垂直,则|2a -λb |的值为________.13.函数y =tan π4x -π2(0<x <4)的图象如图所示,A 为图象与x 轴的交点,过点A 的直线l 与函数的图象交于B 、C 两点,则(OB →+OC →)·OA→等于________.14.(2012·太原调研)在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若a =2,sin B +sin C =3sin A ,且△ABC 的面积为43sin A ,则角A =________. 三、解答题(本大题共5小题,共54分)15.(10分)(2012·临沂一模)已知f (x )=cos x -3π4-sin x -5π4. (1)求f (x )的最小正周期和最小值; (2)若f (α)=85,求sin 2α-2sin 2 α1-tan α的值.16.(10分)(2012·安徽)设函数f (x )=22cos ⎝ ⎛⎭⎪⎫2x +π4+sin 2x .(1)求f (x )的最小正周期;(2)设函数g (x )对任意x ∈R ,有g ⎝ ⎛⎭⎪⎫x +π2=g (x ),且当x ∈⎣⎢⎡⎦⎥⎤0,π2时,g (x )=12-f (x ).求g (x )在区间[-π,0]上的解析式.17.(10分)(2013·郑州二模)郑州市某广场有一块不规则的绿地如图所示,城建部门欲在该地上建造一个底座为三角形的环境标志,小李、小王设计的底座形状分别为△ABC 、△ABD ,经测量AD =BD =7米,BC =5米,AC =8 米,∠C =∠D . (1)求AB 的长度;(2)若环境标志的底座每平方米造价为5 000元,不考虑其他因素,小李、小王谁的设计使建造费用最低(请说明理由),最低造价为多少?(3=1.732,2=1.414)18.(12分)(2012·湖南)已知函数f (x )=A sin(ωx +φ)x ∈R ,ω>0,0<φ<π2的部分图象如图所示.(1)求函数f (x )的解析式;(2)求函数g (x )=f ⎝ ⎛⎭⎪⎫x -π12-f (x +π12)的单调递增区间. 19.(12分)(2012·陕西五校联考)已知向量m =(sin x ,3sin x ),n =(sin x ,-cos x ),设函数f (x )=m ·n .若函数g (x )的图象与f (x )的图象关于坐标原点对称. (1)求函数g (x )在区间-π4,π6上的最大值,并求出此时x 的值;(2)在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,A 为锐角,若f (A )-g (A )=32,b +c =7,△ABC 的面积为23,求边a 的长.参考答案1.A [由题意可知tan α+tan β=3,tan α·tan β=2,tan(α+β)=tan α+tan β1-tan αtan β=-3.]2.B [由(a +b )·(a -b )=0,得:a 2=b 2,∴|a |=|b |.]3.A [∵y =cos x +2的对称轴为x =k π(k ∈Z ),∴x +φ=k π(k ∈Z ),即x =k π-φ(k ∈Z ),令π4=k π-φ(k ∈Z )得φ=k π-π4(k ∈Z ),显然在四个选项中,只有3π4满足题意.故正确答案为A.]4.B [a ∥b 只要求两向量共线,而“a +b =0”要求反向共线且模相等.] 5.B [由三角函数定义知:tan 2α=32-12=-3,又2 α∈[0,2π)且2α的终边在第二象限.∴2α=2π3,∴α=π3,∴tan α= 3.] 6.B [|a +b |2=a 2+2a ·b +b 2=4+3+b 2=8,∴|b |=1.]7.D [由题图知:T 4=7π12-π3=π4,∴T =π,∴ω=2,又2×π3+φ=π2,∴φ=-π6.] 8.A [仔细分析式子:2OA→+AB →+AC →=0,易得△ABC 是直角三角形,且A 为直角,又|OA →|=|AB →|,故C =30°,由此|AC →|=3,|BC →|=2,CA →·CB →=|CA →|·|CB →|·cos 30°=3.]9.C [由余弦定理得a 2+b 2-c 2=2ab cos C . 又c 2=12(a 2+b 2), 所以2ab cos C =12(a 2+b 2), 即cos C =a 2+b 24ab ≥2ab 4ab =12.]10.B [①由2x -π4=k π+π2(k ∈Z )得,x =k π2+3π8(k ∈Z ),即f (x )=sin2x -π4的对称轴为x =k π2+3π8,k ∈Z ,正确;②由f (x )=sin x +3cos x =2sin x +π3知,函数的最大值为2,正确;③f (x )=sin x cos x -1=12sin 2x -1,函数的周期为π,故错误;④函数f (x )=sin x +π4的图象是由f (x )=sin x 的图象向左平移π4个单位得到的,故错误.] 11.解析 因为角α终边经过点P (-3,3), 所以sin α=12,cos α=-32,tan α=-33,∴sin 2α-tan α=2sin αcos α-tan α=-32+33=-36. 答案 -3612.解析 a +λb =(4,3)+λ(-2,1)=(4-2λ,3+λ), ∵(a +λb )⊥b ,∴(4-2λ,3+λ)·(-2,1)=0, 解得λ=1,2a -λb =(8,6)-(-2,1)=(10,5), |2a -λb |=102+52=5 5.答案 5 513.解析 (OB →+OC →)·OA →=2OA →2,由题图知|OA →|=2, ∴(OB →+OC →)·OA →=8. 答案 814.解析 由正弦定理得: b +c =3a =23,① 又S △ABC =12bc sin A =43sin A ,∴bc =83,②由①平方得:b 2+c 2=203,∴cos A =b 2+c 2-a 22bc =203-4163=12,∴A =60°.答案 60°15.解 (1)f (x )=cos x -34π-sin x -54π =sin x -π4+sin x -π4=2sin x -π4.∴f (x )的最小正周期为2π,最小值为-2. (2)由f (α)=85,得sin α-π4=45, ∴22(sin α-cos α)=45, ∴2sin αcos α=-725.∴sin 2α-2sin 2α1-tan α=2sin α(cos α-sin α)1-sin αcos α=2sin α(cos α-sin α)cos α-sin αcos α=2sin αcos α=-725.16.解 (1)f (x )=22cos ⎝ ⎛⎭⎪⎫2x +π4+sin 2x=22⎝ ⎛⎭⎪⎫cos 2x cos π4-sin 2x sin π4+1-cos 2x 2=12-12sin 2x ,故f (x )的最小正周期为π.(2)当x ∈⎣⎢⎡⎦⎥⎤0,π2时,g (x )=12-f (x )=12sin 2x ,故①当x ∈⎣⎢⎡⎦⎥⎤-π2,0时,x +π2∈⎣⎢⎡⎦⎥⎤0,π2.由于对任意x ∈R ,g ⎝ ⎛⎭⎪⎫x +π2=g (x ),从而g (x )=g ⎝ ⎛⎭⎪⎫x +π2=12sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π2=12sin(π+2x )=-12sin 2x .②当x ∈⎣⎢⎡⎭⎪⎫-π,-π2时,x +π∈⎣⎢⎡⎭⎪⎫0,π2.从而g (x )=g (x +π)=12sin[2(x +π)]=12sin 2x . 综合①、②得g (x )在[-π,0]上的解析式为 g (x )=⎩⎪⎨⎪⎧12sin 2x ,x ∈⎣⎢⎡⎭⎪⎫-π,-π2,-12sin 2x ,x ∈⎣⎢⎡⎦⎥⎤-π2,0.17.解 (1)在△ABC 中,由余弦定理得, cos C =AC 2+BC 2-AB 22AC ·BC =82+52-AB 22×8×5,在△ABD 中,由余弦定理得, cos D =AD 2+BD 2-AB 22AD ·BD =72+72-AB 22×7×7.由∠C =∠D 得,cos C =cos D ,AB =7,所以AB 长度为7米. (2)小李的设计符合要求.理由如下: S △ABD =12AD ·BD sin D , S △ABC =12AC ·BC sin C ,因为AD ·BD >AC ·BC ,所以S △ABD >S △ABC .故选择△ABC 建造环境标志费用较低.因为AD =BD =AB =7,所以△ABD 是等边三角形,∠D =60°, 故S △ABC =12AC ·BC sin C =103,所以,总造价为:5 000×103=50 000 3.答:小李的设计使建造费最低,最低造价为50 0003元.18.解 (1)由题设图象知,周期T =2⎝ ⎛⎭⎪⎫11π12-5π12=π,所以ω=2πT =2.因为点⎝ ⎛⎭⎪⎫5π12,0在函数图象上,所以A sin ⎝ ⎛⎭⎪⎫2×5π12+φ=0,即sin ⎝ ⎛⎭⎪⎫5π6+φ=0.又因为0<φ<π2,所以5π6<5π6+φ<4π3. 从而5π6+φ=π,即φ=π6.又点(0,1)在函数图象上,所以A sin π6=1,解得A =2. 故函数f (x )的解析式为f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π6.(2)g (x )=2sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x -π12+π6-2sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π12+π6 =2sin 2x -2sin ⎝ ⎛⎭⎪⎫2x +π3=2sin 2x -2⎝ ⎛⎭⎪⎫12sin 2x +32cos 2x=sin 2x -3cos 2x =2sin ⎝ ⎛⎭⎪⎫2x -π3.由2k π-π2≤2x -π3≤2k π+π2(k ∈Z ),得k π-π12≤x ≤k π+5π12,k ∈Z . 所以函数g (x )的单调递增区间是⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12,k ∈Z .19.解 (1)由题意得:f (x )=sin 2x -3sin x cos x =1-cos 2x 2-32sin 2x =12-sin2x+π6,所以g (x )=-12-sin2x -π6.因为x ∈-π4,π6,所以2x -π6∈-2π3,π6. 所以当2x -π6=-π2即x =-π6时, 函数g (x )在区间-π4,π6上的最大值为12.(2)由f(A)-g(A)=32得:1-sin2A+π6+sin2A-π6=32,化简得:cos 2A=-1 2,又因为0<A<π2,所以A=π3,由题意知:S△ABC=12bc sin A=23,解得bc=8,又b+c=7,所以a2=b2+c2-2bc cos A =(b+c)2-2bc(1+cos A)=49-2×8×(1+12)=25.故所求边a的长为5.。