2016-2017年陕西省汉中市汉台区高一上学期数学期末试卷和解析

合集下载

陕西省汉中市高一上学期期末数学试卷

陕西省汉中市高一上学期期末数学试卷

陕西省汉中市高一上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题: (共12题;共24分)1. (2分)若经过原点的直线l与直线y= x+1的夹角为30°,则直线l的倾斜角是()A . 0°B . 60°C . 0°或60°D . 60°或90°2. (2分) (2015高二上·广州期末) 某几何体的三视图如图所示(均为直角边长为2的等腰直角三角形),则该几何体的表面积为()A . 4+4B . 4+4C . 6+2D . 83. (2分)如果直线l沿x轴负方向平移3个单位再沿y轴正方向平移1个单位后,又回到原来的位置,那么直线l的斜率是()A .B . -3C .D . 34. (2分)在空间四边形ABCD中,CD=2, AB=2,EF=1,E、F分别是BC、AD的中点,则EF、AB所成的角()A .B .C .D . 或5. (2分)(2017·镇海模拟) 对于两条不同的直线m,n和两个不同的平面α,β,以下结论正确的是()A . 若m⊂α,n∥β,m,n是异面直线,则α,β相交B . 若m⊥α,m⊥β,n∥α,则n∥βC . 若m⊂α,n∥α,m,n共面于β,则m∥nD . 若m⊥α,n⊥β,α,β不平行,则m,n为异面直线6. (2分)若直线2x+my=2m﹣4与直线mx+2y=m﹣2平行,则m的值为()A . m=﹣2B . m=±2C . m=0D . m=27. (2分) (2017高一上·福州期末) 如图是水平放置的平面图形的斜二测直观图,其原来平面图形面积是()A . 2B . 4C . 6D . 88. (2分)若圆关于直线对称,则由点向圆所作的切线长的最小值是()A . 2B . 3C . 4D .9. (2分) (2018·湖北模拟) 已知正三棱锥的顶点均在球的球面上,过侧棱及球心的平面截三棱锥及球面所得截面如图所示,已知三棱锥的体积为,则球的表面积为()A .B .C .D .10. (2分) (2017高三上·蕉岭开学考) 已知直线l:x﹣y=1与圆Γ:x2+y2﹣2x+2y﹣1=0相交于A,C两点,点B,D分别在圆Γ上运动,且位于直线l的两侧,则四边形ABCD面积的最大值为()A .B .C .D .11. (2分) (2016高二上·黑龙江期中) 一圆形纸片的圆心为O,点Q是圆内异于O点的一个定点,点A是圆周上一动点,把纸片折叠使得点A与点Q重合,然后抹平纸片,折痕CD与OA交于点P,当点A运动时,点P的轨迹为()A . 椭圆B . 双曲线C . 抛物线D . 圆12. (2分)已知圆O:x2+y2=4上到直线l:x+y=a的距离等于1的点至少有2个,则a的取值范围为()A . (﹣3, 3)B . (﹣∞,﹣3)∪(3,+∞)C . (﹣2, 2)D . [﹣3, 3]二、填空题: (共4题;共4分)13. (1分) (2016高二上·绵阳期中) 空间直角坐标系中,z轴上到点(1,0,2)和(1,﹣3,1)距离相等的点的坐标是________.14. (1分)一扇形的圆心角为2弧度,记此扇形的周长为c,面积为S,则的最大值为________15. (1分) (2018高二上·西宁月考) 已知直线l∥平面α,l⊂平面β,α∩β=m,则直线l,m的位置关系是________.16. (1分)直线l与圆x2+y2=1相切,并且在两坐标轴上的截距之和等于,则直线l与两坐标轴围成的三角形的面积等于________.三、解答题: (共6题;共65分)17. (10分)(2017·长春模拟) 如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,PA⊥底面ABCD,AD=AP,E为棱PD中点.(1)求证:PD⊥平面ABE;(2)若F为AB中点,,试确定λ的值,使二面角P﹣FM﹣B的余弦值为- .18. (10分)综合题。

陕西省汉中市实验中学高一数学文上学期期末试题含解析

陕西省汉中市实验中学高一数学文上学期期末试题含解析

陕西省汉中市实验中学高一数学文上学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知集合,,则 ( )A. B. C. D.参考答案:D略2. △ABC的内角A,B,C的对边分别为a,b,c,若,bcosA+acosB=2,则△ABC的外接圆的面积为()A.4πB.8πC.9πD.36π参考答案:C【考点】HR:余弦定理;HP:正弦定理.【分析】由余弦定理化简已知等式可求c的值,利用同角三角函数基本关系式可求sinC的值,进而利用正弦定理可求三角形的外接圆的半径R的值,利用圆的面积公式即可计算得解.【解答】解:∵bcosA+acosB=2,∴由余弦定理可得:b×+a×=2,整理解得:c=2,又∵,可得:sinC==,∴设三角形的外接圆的半径为R,则2R===6,可得:R=3,∴△ABC的外接圆的面积S=πR2=9π.故选:C.【点评】本题主要考查了余弦定理,同角三角函数基本关系式,正弦定理,圆的面积公式在解三角形中的应用,考查了计算能力和转化思想,属于基础题.3. 若0<α<<β<π,且cosβ=-,sin(α+β)=,则sinα 的值是().A. B. C. D.参考答案:C略4. 若a,b是异面直线,直线c∥a,则c与b的位置关系是()A.相交B.异面C.平行D.异面或相交参考答案:D【考点】LO:空间中直线与直线之间的位置关系.【分析】若a,b是异面直线,直线c∥a,所以c与b可能异面,可能相交.【解答】解:由a、b是异面直线,直线c∥a知c与b的位置关系是异面或相交,故选D.5. (5分)集合P={x|0≤x<3},M={x|x2≤9},则P∩M=()A.{x|0<x<3} B.{x|0≤x<3} C.{x|0<x≤3}D.{x|0≤x≤3}参考答案:B考点:交集及其运算.专题:集合.分析:根据集合的基本运算进行求解.解答:M={x|x2≤9}={x|﹣3≤x≤3},则P∩M={x|0≤x<3},故选:B.点评:本题主要考查集合的基本运算,要求熟练掌握集合的交并补运算,比较基础.6. 在长方体中,B-1C、C--1D与底面所成角分别为60度和45度,则异面直线B1C与C1D所成角的余弦值为A BC D参考答案:D7. 若不等式在内恒成立,则的取值范围()A. B. C. D.参考答案:D略8. 一个球的体积是,这个球的半径等于()A. B. 1 C. 2 D. 参考答案:C略9. 函数的图象是()参考答案:C10. 等比数列中,,则此数列前9项的积为 ()A. B. C. D.参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11. 设f(x)=9x﹣2.3x,则f﹣1(0)= .参考答案:log32【考点】函数的值.【分析】由f(x)=9x﹣2.3x=0,能求出f﹣1(0)的值.【解答】解:∵f(x)=9x﹣2.3x,∴当f(x)=0,即9x﹣2.3x=0时,9x=2?3x,解得x=log32,∴f﹣1(0)=log32.故答案为:log32.【点评】本题考查函数值的求法,是基础题,解题时要认真审题,注意反函数性质的合理运用.12. 若函数,则方程f(x)=2所有的实数根的和为__________.参考答案:(1), (2),13. (5分)圆x 2+y 2﹣4=0与圆x 2+y 2﹣4x+4y ﹣12=0的公共弦的长为 .参考答案:2考点: 相交弦所在直线的方程. 专题: 计算题;直线与圆.分析: 两圆方程相减求出公共弦所在直线的解析式,求出第一个圆心到直线的距离,再由第一个圆的半径,利用勾股定理及垂径定理即可求出公共弦长.解答: 圆x 2+y 2﹣4=0与圆x 2+y 2﹣4x+4y ﹣12=0的方程相减得:x ﹣y+2=0, 由圆x 2+y 2﹣4=0的圆心(0,0),半径r 为2,且圆心(0,0)到直线x ﹣y+2=0的距离d==,则公共弦长为2=2=2.故答案为:2.点评: 此题考查了直线与圆相交的性质,求出公共弦所在的直线方程是解本题的关键.14. 已知函数f (x )=,则f[f (0)]= .参考答案:【考点】对数的运算性质.【分析】由函数的解析式求得f (0)的值,进而求得f[f (0)]的值.【解答】解:∵函数,则f (0)=30=1,∴f[f(0)]=f (1)=log 21=0, 故答案为 0.【点评】本题主要考查利用分段函数求函数的值,属于基础题. 15. 不等式的解集是_______参考答案:【分析】把二次项系数化为正数,然后因式分解得出相应二次方程的两根,写出不等式的解集.【详解】由得,即,∴.即不等式的解集为.故答案为:.【点睛】本题考查解一元二次不等式,属于基础题.解不含参数的一元二次不等式,一般先化二次项系数为正,然后结合二次方程的根和二次函数的图象直接写出不等式的解集.16. 已知函数,则f (f (1))= .参考答案:﹣1【考点】分段函数的应用;函数的值.【专题】计算题;函数思想;综合法;函数的性质及应用.【分析】直接利用分段函数,逐步求解函数值即可.【解答】解:函数,则f(f(1))=f(3﹣4)=f(﹣1)=﹣1.故答案为:﹣1.【点评】本题考查导函数的应用,函数值的求法,考查计算能力.17. 已知i是虚数单位,复数对应的点在第▲象限.参考答案:四三、解答题:本大题共5小题,共72分。

2016-2017学年陕西省高一上学期期末考试数学试题word版含答案

2016-2017学年陕西省高一上学期期末考试数学试题word版含答案

2016-2017学年陕西省高一上学期期末考试数学试题一、选择题1.如图,为正方体,下面结论错误的是()A. 平面B.C. 平面D. 异面直线与所成的角为60°【答案】D【解析】在正方体中与平行,因此有与平面平行,A正确;在平面内的射影垂直于,因此有,B正确;与B同理有与垂直,从而平面,C正确;由知与所成角为45°,D错.故选D.2.已知函数,为自然对数的底数,则()A. 0B. 1C. 2D.【答案】C【解析】由题意,∴,故选C.【点睛】对于分段函数求值问题,一般根据自变量的不同范围选取相应的解析式进行计算.如果已知分段函数值要求自变量的值,应根据函数的每一段的解析式分别求解,但应注意检验该值是否在相应的自变量的取值范围内.3.直线和互相垂直,则()A. 1B. -3C.D. -3或1【答案】D【解析】由题意,解得或.故选D.4.设是两条不同的直线,是三个不同的平面,给出下列四个命题,其中正确命题的序号是()①若,则;②若,则;③若,则;④若,则.A. ①②B. ②③C. ③④D. ①④【答案】A【解析】①可以作为线面垂直的性质定理,①正确;②在时,有,又得,②正确;③在时,可能相交,可能异面,也可能平行,③错误;④把门绕轴旋转,它在每一个位置都与地面垂直,但门所在的各个位置并不垂直,④错误,故选A.5.已知点,直线过点,且与线段相交,则直线的斜率的取值范围是()A. 或B. 或C.D.【答案】A【解析】由题意,,又线段上点的横坐标满足,因此直线的斜率满足或.故选A.【点睛】直线与线段相交问题,可从两个方面解决:(1)从形着手,连接定点与线段两端点的直线是动直线的分界线,求出这两条直线的斜率,当直线在这两条直线间旋转时,如果不可能与轴垂直,则所求斜率范围是刚求得的两斜率之间;如果有与轴垂直的直线,则所求斜率范围是刚求得的两斜率之外.(2)可设直线方程为,记,则由可得的范围.6.如图所示,在空间直角坐标系中,是坐标原点,有一棱长为的正方体,和分别是体对角线和棱上的动点,则的最小值为()A. B. C. D.【答案】B【解析】题图所示的空间直角坐标系中,易得,,,,则,设,则,设,于是,显然当时,,故选B.7.A. B.C. D.【答案】A【解析】试题分析:几何体是一个立方体挖掉一个倒置的圆锥的图形,所以其体积就为:。

陕西省汉中市高一上学期期末数学试卷

陕西省汉中市高一上学期期末数学试卷

陕西省汉中市高一上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2016高二下·漯河期末) 设集合A={a,b},集合B={3,log2(a+3)},若A∩B={0},则A∪B 等于()A . {﹣1,0,3}B . {﹣2,0,3}C . {0,3,4}D . {1,0,3}2. (2分)函数y=的定义域为()A . (﹣∞,)B . (﹣∞,1]C . (, 1]D . (, 1)3. (2分)将边长为1的正方形以其一边所在的直线为旋转轴旋转一周,所得几何体的侧面积是()A . 8πB . 6πC . 4πD . 2π4. (2分)函数f(x)=的单调递增区间是()A . (1,+∞)B . (2,+∞)C . (﹣∞,1)D . (﹣∞,0)5. (2分)用二分法求方程x3﹣2x﹣5=0在区间[2,3]上的实根,取区间中点x0=2.5,则下一个有根区间是()A . [2,2.5]B . [2.5,3]C .D . 以上都不对6. (2分)已知a= , b=log2, c=,则()A . a>b>cB . a>c>bC . c>a>bD . c>b>a7. (2分)(2014·广东理) 若空间中四条两两不同的直线l1 , l2 , l3 , l4 ,满足l1⊥l2 ,l2⊥l3 ,l3⊥l4 ,则下列结论一定正确的是()A . l1⊥l4B . l1∥l4C . l1与l4既不垂直也不平行D . l1与l4的位置关系不确定8. (2分) (2016高一下·武汉期末) 若直线l1:y=k(x﹣4)与直线l2关于点(2,1)对称,则直线l2恒过定点()A . (0,4)B . (0,2)C . (﹣2,4)D . (4,﹣2)9. (2分) (2018高二上·哈尔滨月考) 设表示三条不同的直线,表示三个不同的平面,给出下列四个命题:①若,则;②若,则;③若为异面直线,,,则;④若,则 .其中真命题的个数为()A . 1B . 2C . 3D . 410. (2分)圆C1:(x+2)2+(y﹣2)2=1与圆C2:(x﹣2)2+(y﹣5)2=16的位置关系是()A . 外离B . 相交C . 内切D . 外切11. (2分)半径为2的球面上有A,B,C,D四点,且AB,AC,AD两两垂直,则三个三角形面积之和的最大值为()A . 4B . 8C . 16D . 3212. (2分) (2017高一上·鸡西期末) 设函数,则f[f(﹣1)]=()A . π+1B . 0C . ﹣1D . π二、填空题 (共4题;共4分)13. (1分)(2012·浙江理) 已知某三棱锥的三视图(单位:cm)如图所示,则该三棱锥的体积等于________ cm3 .14. (1分)(2017·桂林模拟) 已知函数f(x)=|lnx|,若f(m)=f(n)(m>n>0),则 + =________.15. (1分)已知点P1(x1 , y1)是直线l:f(x,y)=0上的一点,P2(x2 , y2)是直线l外的一点,则f(x,y)﹣f(x1 , y1)﹣f(x2 , y2)=0方程表示的直线l的位置关系是________.16. (1分)(2018·北京) 在极坐标系中,直线 =a 与圆 =2 相切,则a=________三、解答题 (共6题;共60分)17. (5分)已知函数f(x)=x2+ax+3,g(x)=(6+a)•2x﹣1 .(Ⅰ)若f(1)=f(3),求实数a的值;(Ⅱ)在(Ⅰ)的条件下,判断函数F(x)=的单调性,并用定义给出证明;(Ⅲ)当x∈[﹣2,2]时,f(x)≥a(a∈(﹣∞,﹣4)∪[4,+∞))恒成立,求实数a的最小值.18. (5分)已知点P(2,2),圆C:x2+y2﹣8y=0,过点P的动直线l与圆C交于A,B两点,线段AB的中点为M,O为坐标原点.(1)求M的轨迹方程;(2)当|OP|=|OM|时,求l的方程及△POM的面积.19. (10分)如图,在四边形ABCD中,AD⊥DC,AD∥BC,AD=3,CD=2,,∠DAB=45°,四边形绕着直线AD旋转一周,(1)求所形成的封闭几何体的表面积;(2)求所形成的封闭几何体的体积.20. (15分)(2017·黄石模拟) 如图,在梯形ABCD中,AB∥C,AD=DC=CB=1,∠ABC═60°,四边形ACFE 为矩形,平面A CFE⊥平面ABCD,CF=1.(1)求证:BC⊥平面ACFE;(2)求二面角A﹣BF﹣C的平面角的余弦值;(3)若点M在线段EF上运动,设平MAB与平FCB所成二面角的平面角为θ(θ≤90°),试求cosθ的取值范围.21. (10分) (2017高一下·张家口期末) 已知点H(x0 , y0)在圆C:x2+y2+Dx+Ey+F=0(其中点C为圆心,D2+E2﹣4F>0)外,由点H向圆C引切线,其中一个切点为M.求证:|HM|= ;(1)已知点H(x0,y0)在圆C:x2+y2+Dx+Ey+F=0(其中点C为圆心,D2+E2﹣4F>0)外,由点H向圆C引切线,其中一个切点为M.求证:|HM|= ;(2)如图,P是直线x=4上一动点,以P为圆心的圆P经定点B(1,0),直线l是圆P在点B处的切线,过A(﹣1,0)作圆P的两条切线分别与l交于E,F两点.求证:|EA|+|EB|为定值.22. (15分) (2019高一上·汤原月考) 已知函数是奇函数.(1)求实数的值;(2)用定义证明函数在上的单调性;(3)若对于任意的不等式恒成立,求实数的取值范围.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共6题;共60分)17-1、18-1、19-1、19-2、20-1、20-2、21-1、21-2、22-1、22-2、22-3、。

2016-2017学年陕西省高一上学期期末调研考试数学试题word版含答案

2016-2017学年陕西省高一上学期期末调研考试数学试题word版含答案

2016-2017学年陕西省高一上学期期末调研考试数学试题(必修①、必修②)说明:本卷满分150分.考试用时120分钟.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.请把正确答案的代号填入下面的表格内.1.设集合}0,4,3,2,1{----=U ,集合}0,2,1{--=A ,集合}0,4,3{--=B 则(∁A U )=BA .}4,3{--B .}2,1{--C .}0{D .∅2.直线330x y ++=的斜率是 A .3- B .13 C .13- D .3 3.用一个平面去截一个几何体,得到的截面是四边形,这个几何体可能是A .圆锥B .圆柱C .球D .以上都有可能4.已知函数21,1()2,1x x f x x x⎧+≤⎪=⎨>⎪⎩,则((2))f f =A .1B .2C .3D .45.在同一直角坐标系下,表示直线ax y =和a x y +=正确的是A. B. C. D. 6.经过点)4,1(-A 且在x 轴上的截距为3的直线方程是A .03=++y xB .05=+-y xC .03=-+y xD .05=-+y x 7.有一个几何体的三视图如图所示,这个几何体应是一个A .棱台B .棱锥C .棱柱D .正四面体 8.已知399.0=a ,6.0log 2=b ,π3log =c ,则A .b a c <<B .a c b <<C .c b a <<D .c a b << 9.若R y x ∈,,且)()()(y f x f y x f +=+,则函数)(x fA .0)0(=f 且)(x f 为偶函数B .0)0(=f 且)(x f 为奇函数C .)(x f 为增函数且为奇函数D .)(x f 为增函数且为偶函数 10.设m 、n 是两条不同的直线,α、β是两个不同的平面,下列命题正确的是A .若α⊥m ,β⊥n ,且βα⊥,则n m ⊥B .若α//m ,β//n ,且βα//,则n m //C .若α⊥m ,β⊂n ,且n m ⊥,则βα⊥D .若α⊂m ,α⊂n ,且β//m ,β//n ,则βα//11.已知函数xy )21(=的图象与函数x y a log =(0>a ,1≠a )的图象交于点),(00y x P ,如果20≥x ,那么a 的取值范围是A .),2[∞+B .),4[∞+C .),8[∞+D .),16[∞+12.如图,周长为1的圆的圆心C 在y 轴上,一动点M 从圆上的点)1,0(A 开始按逆时针方向绕圆运动一周,记走过的弧长为x ,直线AM 与x 轴交于点)0,(t N ,则函数)(x f t =的图像大致为513.空间两点)4,5,2(A 、)5,3,2(-B 之间的距离等于_________.14.已知1182)1(2+-=-x x x f ,则函数=)(x f .主视图俯视图左视图N x x x x15.已知函数1||)(2-+-=a x x x f 有四个零点,则a 的取值范围是 .16. 已知点),(y x P 是直线04=++y kx (0>k )上一动点,PA 、PB 是圆C :0222=-+y y x 的两条切线,A 、B 是切点,若四边形PACB 的最小面积是2,则=k ______.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)计算:327log 4lg 25lg )5.0()49()5.7(4325.00-++-+--.18.(本小题满分12分)已知直线l 的方程为012=+-y x .(Ⅰ)求过点)23(,A ,且与l 垂直的直线的方程; (Ⅱ)求与l 平行,且到点)03(,P 的距离为5的直线的方程.19.(本小题满分12分)光线通过一块玻璃,其强度要损失10%,把几块这样的玻璃重叠起来,设光线原来的强度为k ,通过x 块玻璃以后强度为y .(Ⅰ)写出y 关于x 的函数关系式;(Ⅱ)通过多少块玻璃以后,光线强度减弱到原来的13以下.(lg3≈0.4771).20.(本小题满分12分)如图,在四棱锥A CDFE -中,底面CDFE 是直角梯形,DF CE //,EC EF ⊥, DF CE 21=,AF ⊥平面CDFE ,P 为AD 中点.(Ⅰ)证明://CP 平面AEF ;(Ⅱ)设2=EF ,3=AF ,4=FD ,求点F 到平面ACD 的距离.A PDF21.(本小题满分12分)已知()()1,011log ≠>-+=a a xxx f a且. (Ⅰ)求函数()x f 的定义域; (Ⅱ)证明函数()x f 为奇函数;(Ⅲ)求使()x f >0成立的x 的取值范围.22.(本小题满分12分)已知圆C 的方程为04222=-+-+m y x y x .(I )若点)2,(-m P 在圆C 的外部,求m 的取值范围;(II )当4=m 时,是否存在斜率为1的直线l ,使以l 被圆C 截得的弦AB 为直径所作的圆过原点?若存在,求出l 的方程;若不存在,说明理由.2016-2017学年陕西省高一上学期期末调研考试数学试题参考答案与评分标准一、选择题:本大题共12小题,每小题5分,共60分.二、填空题:本大题共4小题,每小题5分,共20分. 13.21 14.5422+-x x 15.)45,1( 16.2 三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)解:327log 4lg 25lg )5.0()49()5.7(4325.00-++-+--)143(24231--+-+=. 43=. …………………………………………………………………………………………………………10分 18.(本小题满分12分) 解:(Ⅰ)∵直线l 的斜率为2, ∴所求直线斜率为21-. ………………………………………………………………………………2分又∵过点)23(,A , ∴所求直线方程为)3(212--=-x y . 即:072=-+y x . (6)分(Ⅱ)依题意设所求直线方程为02=+-c y x , …………………………………………………………8分∵点)03(,P 到该直线的距离为5, ∴5)1(2|6|22=-++c .………………………………………………………………………………10分解之得1-=c 或11-.∴所求直线方程为012=--y x 或0112=--y x . ………………………………………………12分19.(本小题满分12分)解:(Ⅰ)光线经过1块玻璃后强度为(1-10%)k =0.9k ;………………………………………………1分光线经过2块玻璃后强度为(1-10%)·0.9k =0.92k光线经过3块玻璃后强度为(1-10%)·0.92k =0.93k (3)光线经过x 块玻璃后强度为0.9xk .∴y =y =0.9xk (x ∈N *). (5)分(Ⅱ)由题意:0.9xk <3k ,∴0.9x<31,………………………………………………………………7分两边取对数,x lg0.9<lg 31.…………………………………………………………………………8分∵lg0.9<0,∴x >9.0lg 31lg……………………………………………………………………………10分∵9.0lg 31lg≈10.4,∴x min =11. 答:通过11块玻璃以后,光线强度减弱到原来的31以下.………………………………………12分 20.(本小题满分12分)证明:(I )作AF 中点G ,连结PG 、EG ,∴DF PG //且DF PG 21=.∵DF CE //且DF CE 21=, ∴EC PG //,EC PG =.∴四边形PCEG 是平行四边形.………………………………………………………………………2分∴EG CP //.∵⊄CP 平面AEF ,⊂EG 平面AEF ,∴//CP 平面AEF . (4)分(II )作FD 的中点Q ,连结CQ 、FC . ∵4=FD , ∴2==FQ EC .APCDFEG APDFQ又∵FQ EC //,∴四边形ECQF 是正方形. ∴2222=+=EC EF CF .∴CQD Rt ∆中,2222=+=QD CQ CD .∵4=DF ,1622=+CD CF .∴CF CD ⊥.∵AF ⊥平面CDEF ,⊂CD 平面CDEF , ∴CD AF ⊥,F FC AF = . ∴⊥CD 平面ACF .∴AC CD ⊥.…………………………………………………………………………………………8分设点F 到平面ACD 的距离为h , ∴ACF D ACD F V V --=. ∴ACF ACD S CD S h ⋅⋅=⋅⋅3131. ∴173461726223212122==+⋅=⋅⋅⋅⋅⋅=FC AF AC CD FCAF CD h .……………………………………12分21.(本小题满分12分) (Ⅰ)解:101x x +>-,∴ ()()10,110.1x x x x +<+-<-即 解得11x -<<. ∴函数)(x f 的定义域为()1,1-. ……………………………………………………………………2分(Ⅱ)证明:()1log 1axf x x+=- ,且定义域为(-1,1)关于原点对称 ∴ ()()1111log log log 111a a a x x x f x f x x x x --++⎛⎫-===-=- ⎪+--⎝⎭. ∴ 函数()f x 为奇函数.…………………………………………………………………………………6分(Ⅲ)解:当a >1时, 由()x f >0,得111>-+x x ,则012,0111<-<+-+x xx x ,()012<-∴x x ,10<<∴x . (8)分10<<a 当时, ()1110,0<-+<>x x x f 则.即101111xxx x+⎧>⎪⎪-⎨+⎪<⎪-⎩,解得1101x x x -<<⎧⎨<>⎩或, ∴01<<-x .综上可知,10<<a 当时, 使()0>x f 的x 的取值范围为(-1,0);当a >1时,使()0>x f 的x 的取值范围为(0,1).………………………………………………12分22.(本小题满分12分)解:(I )∵04222=-+-+m y x y x ,∴整理得:5)2()1(22+=++-m y x .由05>+m 得:5->m . (2)分∵点)2,(-m P 在该圆的外部, ∴5)22()1(22+>+-+-m m .∴0432>--m m . ∴4>m 或1-<m . 又∵5->m ,∴m 的取值范围是),4()1,5(∞+-- . (4)分(II )当4=m 时,圆C 的方程为9)2()1(22=++-y x .…………………………………………………5分如图:依题意假设直线l 存在,其方程为0=+-p y x ,N 是弦AB 的中点.………………………6分∴CN 的方程为)1(2--=+x y . 联立l 的方程可解得N 的坐标为)21,21(-+-p p . (7)∵原点O 在以AB 为直径的圆上,∴||||AN ON =.∴22222)2|3|(9||3)021()021(p CN p p +-=-=--+-+-. 化简得:0432=-+p p ,解得:4-=p 或1.………………………………………………………11分∴l 的方程为04=--y x 或01=+-y x .……………………………………………………………12分。

2016届陕西省汉中市高三(上)期末数学试卷(文科) 解析版

2016届陕西省汉中市高三(上)期末数学试卷(文科) 解析版

2015-2016学年陕西省汉中市高三(上)期末数学试卷(文科)一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z 1=1+i ,z 2=3﹣2i ,则复数在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限2.已知命题p :0<a <4,命题q :a (a ﹣4)≤0; 则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件3.在等比数列{a n }中,已知a 1=1,a 3=2a 2,则该数列前6项和S 6=( ) A .31 B .63 C .127 D .1764.两向量,则在方向上的投影为( )A .(﹣1,﹣15)B .(﹣20,36)C .D .5.函数y=的图象可能是( )A .B .C .D .6.在区间[﹣5,5]内随机地取出一个数a ,使得1∈{x|2x 2+ax ﹣a 2>0}的概率为( )A .B .C .D .7.若椭圆和双曲线C :2x 2﹣2y 2=1有相同的焦点,且该椭圆经过点,则椭圆的方程为( )A .B .C .D .8.函数f (x )=Asin (ωx+φ)(其中)的图象如图所示,为了得到g (x )=sin2x 的图象,则只需将f (x )的图象( )A .向右平移个长度单位B .向右平移个长度单位C .向左平移个长度单位D .向左平移个长度单位9.某三棱锥的侧视图,俯视图如图所示,则该三棱锥正视图的面积是( )A .2B .3C .D .10.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验,收x 与加工时间y 这两个变量,下列判断正确的是( )A .成正相关,其回归直线经过点(30,75)B .成正相关,其回归直线经过点(30,76)C .成负相关,其回归直线经过点(30,76)D .成负相关,其回归直线经过点(30,75)11.设顶点都在一个球面上的三棱柱的侧棱垂直于底面,所有棱的长都为2,则该球的表面积为( )A .9πB .8πC .D .12.已知函数f (x )对定义域R 内的任意x 都有f (x )=f (4﹣x ),且当x ≠2时其导函数f ′(x )满足xf ′(x )>2f ′(x ),若2<a <4则( ) A .f (2a )<f (3)<f (log 2a ) B .f (3)<f (log 2a )<f (2a ) C .f (log 2a )<f (3)<f (2a ) D .f (log 2a )<f (2a )<f (3)二、填空题:本大题共4小题,每小题5分.13.若变量 x ,y 满足约束条件,则z=3x+y 的最小值为 .14.已知圆C 的半径为2,圆心在x 轴的正半轴上,直线3x+4y+4=0与圆C 相切,则圆C 的方程为 .15.已知等差数列{a n }的公差d ≠0,首项a 1=4,且a 1,a 5,a 13依次成等比数列,则该数列的通项公式a n = .16.在测量某物理量的过程中,因仪器和观察的误差,使得n 次测量分别得到a 1,a 2,…,a n ,共n 个数据.我们规定所测量的“最佳近似值”a 是这样一个量:与其他近似值比较,a 与各数据的差的平方和最小.依此规定,从a 1,a 2,…,a n 推出的a= .三.解答题:解答应写出文字说明,证明过程或演算步骤.17.已知函数f(x)=2cosxsin(x+).(I)求f(x)的最小正周期;(Ⅱ)在△ABC中,角A,B,C所对的边分别为a,b,c,若f(C)=1,sinB=2sinA,且△ABC的面积为2,求c的值.18.如图,在三棱柱ABC﹣A1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E、F分别为A1C1、BC的中点.(1)求证:平面ABE⊥平面B1BCC1;(2)求证:C1F∥平面ABE;(3)求三棱锥E﹣ABC的体积.19.从某学校的1600名男生中随机抽取50名测量身高,被测学生身高全部介于155cm和195cm之间,将测量结果按照如下方式分成八组:第一组[155,160),第二组[160,165),…,第八组[190,195],如图是按照上述分组方法得到的频率分布直方图的一部分,第六组的人数为4人.(1)求第七组的频率;(2)试估计该学校1600名男生中身高在180cm(含180cm)以上的人数;(3)若从身高属于第六组和第八组的所有男生中随机抽两名男生,设他们的身高分别为x,y,记事件E={(x,y)|(x﹣y)2≤25},求事件E的概率.20.已知椭圆G:=1(a>b>0)的离心率为,右焦点为(2,0),斜率为1的直线l与椭圆G交与A、B两点,以AB为底边作等腰三角形,顶点为P(﹣3,2).(Ⅰ)求椭圆G的方程;(Ⅱ)求△PAB的面积.21.已知函数f(x)=ax3+2x﹣a,(1)求函数f(x)的单调递增区间;(2)若a=n,且n∈N*,设x n是函数的零点,证明:当n≥2时存在唯一x n,且.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.答时用2B铅笔在答题卡上把所选题目的题号涂黑.[选修4-1:几何证明选讲]22.在△ABC中,AB=AC,过点A的直线与其外接圆交于点P,交BC延长线于点D.(1)求证:;(2)若AC=3,求APAD的值.[选修4-4:坐标系与参数方程]23.在平面直角坐标系xOy中,已知曲线C1:x2+y2=1,以平面直角坐标系xOy的原点O 为极点,x轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线l:ρ(2cosθ﹣sinθ)=6.(1)将曲线C1上的所有点的横坐标、纵坐标分别伸长为原来的、2倍后得到曲线C2,试写出直线l的直角坐标方程和曲线C2的参数方程;(2)在曲线C2上求一点P,使点P到直线l的距离最大,并求出此最大值.[选修4-5:不等式选讲]24.已知函数f(x)=|x+a|+|x﹣2|(1)当a=﹣3时,求不等式f(x)≥3的解集;(2)若f(x)≤|x﹣4|的解集包含[1,2],求a的取值范围.2015-2016学年陕西省汉中市高三(上)期末数学试卷(文科)参考答案与试题解析一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z1=1+i,z2=3﹣2i,则复数在复平面内对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】复数的代数表示法及其几何意义.【分析】直接利用复数代数形式的除法运算化简,得到复数对应的点,则答案可求.【解答】解:∵z1=1+i,z2=3﹣2i,∴===﹣i.∴在复平面内对应的点为(,﹣),∴在复平面内对应的点位于第四象限.故选:D.【点评】本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.2.已知命题p:0<a<4,命题q:a(a﹣4)≤0;则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】由命题q:a(a﹣4)≤0,解得0≤a≤4,即可判断出.【解答】解:由命题q:a(a﹣4)≤0,解得0≤a≤4,∴p是q的充分不必要条件,故选:A.【点评】本题考查了不等式的解法、充要条件的判定方法,考查了推理能力与计算能力,属于基础题.3.在等比数列{a n}中,已知a1=1,a3=2a2,则该数列前6项和S6=()A.31 B.63 C.127 D.176【考点】等比数列的前n项和.【分析】由等比数列通项公式先求出公比,由此能求出该数列前6项和S6.【解答】解:∵在等比数列{a n}中,a1=1,a3=2a2,∴q 2=2q ,解得q=2,或q=0(舍),∴该数列前6项和S 6==63.故选:B .【点评】本题考查等比数列的前6项和的求法,是基础题,解题时要认真审题,注意等比数列的性质的合理运用.4.两向量,则在方向上的投影为( )A .(﹣1,﹣15)B .(﹣20,36)C .D .【考点】平面向量数量积的运算.【分析】利用平面向量的数量积、向量的投影定义即可得出.【解答】解:∵,∴=4×(﹣5)+(﹣3)×(﹣12)=16,==13,∴在方向上的投影为=,故选:C .【点评】本题考查了平面向量的数量积、向量的投影,属于基础题. 5.函数y=的图象可能是( )A .B .C .D .【考点】函数的图象.【分析】当x >0时,,当x <0时,,作出函数图象为B .【解答】解:函数y=的定义域为(﹣∞,0)∪(0,+∞)关于原点对称.当x >0时,,当x <0时,,此时函数图象与当x >0时函数的图象关于原点对称.故选B【点评】本题考查了函数奇偶性的概念、判断及性质,考查了分段函数的图象及图象变换的能力.6.在区间[﹣5,5]内随机地取出一个数a,使得1∈{x|2x2+ax﹣a2>0}的概率为()A.B.C.D.【考点】几何概型.【分析】由1∈{x|2x2+ax﹣a2>0}代入得出关于参数a的不等式,解之求得a的范围,再由几何的概率模型的知识求出其概率.【解答】解:由题意1∈{x|2x2+ax﹣a2>0},故有2+a﹣a2>0,解得﹣1<a<2由几何概率模型的知识知,总的测度,区间[﹣5,5]的长度为10,随机地取出一个数a,使得1∈{x|2x2+ax﹣a2>0}这个事件的测度为3故区间[﹣5,5]内随机地取出一个数a,使得1∈{x|2x2+ax﹣a2>0}的概率为.故选:A.【点评】本题考查几何概率模型,求解本题的关键是正确理解1∈{x|2x2+ax﹣a2>0}的意义,即得到参数a所满足的不等式,从中解出事件所对应的测度.7.若椭圆和双曲线C:2x2﹣2y2=1有相同的焦点,且该椭圆经过点,则椭圆的方程为()A.B.C.D.【考点】椭圆的简单性质.【分析】求得双曲线的焦点坐标,可得椭圆的c=1,再由椭圆的定义,运用两点的距离公式计算可得a=2,由a,b,c的关系,可得b,进而得到椭圆方程.【解答】解:双曲线C:2x2﹣2y2=1的焦点为(﹣1,0),(1,0),即有椭圆的c=1,由椭圆的定义可得2a=+=4,解得a=2,b==,即有椭圆的方程为+=1.故选:B.【点评】本题考查椭圆的方程的求法,注意运用双曲线的焦点,以及椭圆的定义,考查运算能力,属于基础题.8.函数f(x)=Asin(ωx+φ)(其中)的图象如图所示,为了得到g(x)=sin2x的图象,则只需将f(x)的图象()A.向右平移个长度单位B.向右平移个长度单位C.向左平移个长度单位D.向左平移个长度单位【考点】由y=Asin(ωx+φ)的部分图象确定其解析式.【分析】由已知中函数f(x)=Asin(ωx+φ)的图象,我们易分析出函数的周期、最值,进而求出函数f(x)=Asin(ωx+φ)的解析式,设出平移量a后,根据平移法则,我们可以构造一个关于平移量a的方程,解方程即可得到结论.【解答】解:由已知中函数f(x)=Asin(ωx+φ)(其中)的图象,过(,0)点,()点,易得:A=1,T=4()=π,即ω=2即f(x)=sin(2x+φ),将()点代入得:+φ=+2kπ,k∈Z又由∴φ=∴f(x)=sin(2x+),设将函数f(x)的图象向左平移a个单位得到函数g(x)=sin2x的图象,则2(x+a)+=2x解得a=﹣故将函数f(x)的图象向右平移个长度单位得到函数g(x)=sin2x的图象,故选A【点评】本题考查的知识点是由函数f(x)=Asin(ωx+φ)的图象确定其中解析式,函数f (x)=Asin(ωx+φ)的图象变换,其中根据已知中函数f(x)=Asin(ωx+φ)的图象,求出函数f(x)=Asin(ωx+φ)的解析式,是解答本题的关键.9.某三棱锥的侧视图,俯视图如图所示,则该三棱锥正视图的面积是()A.2 B.3 C.D.【考点】由三视图求面积、体积.【分析】根据几何体三视图的特征,得出该几何体正视图三角形的底边长与底边上的高,即可求出它的面积.【解答】解:根据几何体三视图的特征,得;该几何体的正视图是三角形,且三角形的底边长为俯视图中的长,是=;底边上的高为侧视图中的高,是=;∴正视图的面积为××=.故选:C.【点评】本题考查了空间几何体三视图的应用问题,解题的关键是根据三视图之间的关系得出正视图的形状特征,是基础题.10.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验,收x与加工时间y这两个变量,下列判断正确的是()A.成正相关,其回归直线经过点(30,75)B.成正相关,其回归直线经过点(30,76)C.成负相关,其回归直线经过点(30,76)D.成负相关,其回归直线经过点(30,75)【考点】线性回归方程.【分析】根据表中所给的数据,得到两变量为正相关,求出横标和纵标的平均数,得到样本中心点,进而得到结论.【解答】解:由表格数据知,加工时间随加工零件的个数的增加而增加,故两变量为正相关,又由=30,=(64+69+75+82+90)=76,故回归直线过样本中心点(30,76),故选:B.【点评】本题考查线性相关及回归方程的应用,解题的关键是得到样本中心点,为基础题.11.设顶点都在一个球面上的三棱柱的侧棱垂直于底面,所有棱的长都为2,则该球的表面积为()A.9πB.8πC.D.【考点】球的体积和表面积.【分析】由题意可知上下底面中心连线的中点就是球心,求出球的半径,即可求出球的表面积.【解答】解:根据题意条件可知三棱柱是棱长都为2的正三棱柱,设上下底面中心连线EF的中点O,则O就是球心,其外接球的半径为OA1,又设D为A1C1中点,在直角三角形EDA1中,EA1==在直角三角形OEA1中,OE=1,由勾股定理得OA1==∴球的表面积为S=4π=π,故选:D.【点评】本题考查空间几何体中位置关系、球和正棱柱的性质以及相应的运算能力和空间形象能力.12.已知函数f(x)对定义域R内的任意x都有f(x)=f(4﹣x),且当x≠2时其导函数f′(x)满足xf′(x)>2f′(x),若2<a<4则()A.f(2a)<f(3)<f(log2a)B.f(3)<f(log2a)<f(2a)C.f(log2a)<f(3)<f(2a)D.f(log2a)<f(2a)<f(3)【考点】抽象函数及其应用;导数的运算.【分析】由f(x)=f(4﹣x),可知函数f(x)关于直线x=2对称,由xf′(x)>2f′(x),可知f(x)在(﹣∞,2)与(2,+∞)上的单调性,从而可得答案.【解答】解:∵函数f(x)对定义域R内的任意x都有f(x)=f(4﹣x),∴f(x)关于直线x=2对称;又当x≠2时其导函数f′(x)满足xf′(x)>2f′(x)⇔f′(x)(x﹣2)>0,∴当x>2时,f′(x)>0,f(x)在(2,+∞)上的单调递增;同理可得,当x<2时,f(x)在(﹣∞,2)单调递减;∵2<a<4,∴1<log2a<2,∴2<4﹣log2a<3,又4<2a<16,f(log2a)=f(4﹣log2a),f(x)在(2,+∞)上的单调递增;∴f(log2a)<f(3)<f(2a).故选C.【点评】本题考查抽象函数及其应用,考查导数的性质,判断f(x)在(﹣∞,2)与(2,+∞)上的单调性是关键,属于中档题.二、填空题:本大题共4小题,每小题5分.13.若变量x,y满足约束条件,则z=3x+y的最小值为1.【考点】简单线性规划.【分析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最小值.【解答】解:作出不等式对应的平面区域如图,由z=3x+y,得y=﹣3x+z,平移直线y=﹣3x+z,由图象可知当直线y=﹣3x+z,经过点A(0,1)时,直线y=﹣3x+z 的截距最小,此时z最小.此时z的最小值为z=0×3+1=1,故答案为:1【点评】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.14.已知圆C的半径为2,圆心在x轴的正半轴上,直线3x+4y+4=0与圆C相切,则圆C 的方程为(x﹣2)2+y2=4.【考点】圆的标准方程.【分析】直线与圆相切,设圆心坐标为(a,0),则圆方程为(x﹣a)2+y2=4,由已知得d=R=2=,由此能求出圆C的方程.【解答】解:直线与圆相切,设圆心坐标为(a,0),则圆方程为:(x﹣a)2+y2=4,∵圆心与切点连线必垂直于切线,根据点与直线距离公式,得d=R=2=,解得a=2或a=﹣,(因圆心在正半轴,不符合舍去)∴a=2,∴圆C的方程为:(x﹣2)2+y2=4.故答案为:(x﹣2)2+y2=4.【点评】本题考查圆的方程的求法,解题时要认真审题,注意圆的方程的性质的合理运用.15.已知等差数列{a n}的公差d≠0,首项a1=4,且a1,a5,a13依次成等比数列,则该数列的通项公式a n=n+3.【考点】等差数列的通项公式.【分析】利用等差数列与等比数列的通项公式即可得出.【解答】解:∵a1,a5,a13依次成等比数列,∴=a1a13,∴(4+4d)2=4(4+12d),解得d=1.∴a n=4+(n﹣1)=n+3.故答案为:n+3.【点评】本题考查了等差数列与等比数列的通项公式,考查了推理能力与计算能力,属于中档题.16.在测量某物理量的过程中,因仪器和观察的误差,使得n次测量分别得到a1,a2,…,a n,共n个数据.我们规定所测量的“最佳近似值”a是这样一个量:与其他近似值比较,a与各数据的差的平方和最小.依此规定,从a1,a2,…,a n推出的a=.【考点】众数、中位数、平均数.【分析】由题意知所测量的“最佳近似值”a是与其他近似值比较,a与各数据的差的平方和最小.根据均值不等式求平方和的最小值知这些数的底数要尽可能的接近,知a是所有数字的平均数.【解答】解:∵所测量的“最佳近似值”a是与其他近似值比较,a与各数据的差的平方和最小.根据均值不等式求平方和的最小值知这些数的底数要尽可能的接近,∴a是所有数字的平均数,∴a=,故答案为:【点评】本题考查一组数据的方差,考查一组数据的平均数,考查平均数的平方和最小时要满足的条件,是一个基础题,没有运算,只有理论说明.三.解答题:解答应写出文字说明,证明过程或演算步骤.17.已知函数f(x)=2cosxsin(x+).(I)求f(x)的最小正周期;(Ⅱ)在△ABC中,角A,B,C所对的边分别为a,b,c,若f(C)=1,sinB=2sinA,且△ABC的面积为2,求c的值.【考点】余弦定理;三角函数的周期性及其求法.【分析】(I)f(x)解析式利用两角和与差的正弦函数公式化简,整理为一个角的正弦函数,找出ω的值,即可确定出f(x)的最小正周期;(Ⅱ)由f(C)=1确定出C的度数,sinB=2sinA利用正弦定理化简得到b=2a,利用三角形面积公式列出关系式,把sinC与已知面积代入求出ab的值,联立求出a与b的值,利用余弦定理求出c的值即可.【解答】解:(I)f(x)=2cosx(sinx+cosx)=sin2x+cos2x+=sin(2x+)+,∵ω=2,∴f(x)的最小正周期为π;(Ⅱ)∵f(C)=sin(2C+)+=1,∴sin(2C+)=,∵<2C+<,∴2C+=,即C=,∵sinB=2sinA,∴b=2a①,∵△ABC面积为2,∴absin=2,即ab=8②,联立①②,得:a=2,b=4,由余弦定理得:c2=a2+b2﹣2abcosC=12,即c=2.【点评】此题考查了正弦、余弦定理,三角形面积公式,以及三角函数的周期性,熟练掌握定理及公式是解本题的关键.18.如图,在三棱柱ABC﹣A1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E、F分别为A1C1、BC的中点.(1)求证:平面ABE⊥平面B1BCC1;(2)求证:C1F∥平面ABE;(3)求三棱锥E﹣ABC的体积.【考点】棱柱、棱锥、棱台的体积;平面与平面垂直的判定.【分析】(1)证明AB⊥B1BCC1,可得平面ABE⊥B1BCC1;(2)证明C1F∥平面ABE,只需证明四边形FGEC1为平行四边形,可得C1F∥EG;=S△ABCAA1,可求三棱锥E﹣ABC的体积.(3)利用V E﹣ABC【解答】解:(1)证明:∵三棱柱ABC﹣A1B1C1中,侧棱垂直于底面,∴BB1⊥AB,∵AB⊥BC,BB1∩BC=B,BB1,BC⊂平面B1BCC1,∴AB⊥平面B1BCC1,∵AB⊂平面ABE,∴平面ABE⊥平面B1BCC1;(Ⅱ)证明:取AB中点G,连接EG,FG,则∵F是BC的中点,∴FG∥AC,FG=AC,∵E是A1C1的中点,∴FG∥EC1,FG=EC1,∴四边形FGEC1为平行四边形,∴C1F∥EG,∵C1F⊄平面ABE,EG⊂平面ABE,∴C1F∥平面ABE;(3)解:∵AA1=AC=2,BC=1,AB⊥BC,∴AB=,=S△ABC AA1=×(××1)×2=.∴V E﹣ABC【点评】本题考查线面平行、垂直的证明,考查三棱锥E﹣ABC的体积的计算,正确运用线面平行、垂直的判定定理是关键.19.从某学校的1600名男生中随机抽取50名测量身高,被测学生身高全部介于155cm和195cm之间,将测量结果按照如下方式分成八组:第一组[155,160),第二组[160,165),…,第八组[190,195],如图是按照上述分组方法得到的频率分布直方图的一部分,第六组的人数为4人.(1)求第七组的频率;(2)试估计该学校1600名男生中身高在180cm(含180cm)以上的人数;(3)若从身高属于第六组和第八组的所有男生中随机抽两名男生,设他们的身高分别为x,y,记事件E={(x,y)|(x﹣y)2≤25},求事件E的概率.【考点】列举法计算基本事件数及事件发生的概率;频率分布直方图.【分析】(1)先求出第六组的频率,再由频率分布直方图中频率之和为1,求出第七组的频率.(2)由直方图得到后三组的频率,由此能估计该校1600名男生中身高在180cm以上(含180cm)的人数.(3)第六组[180,185)的人数为4人,第八组[190,195)的人数为2人,由此利用列举法能求出事件E的概率.【解答】解:(1)∵从某学校的1600名男生中随机抽取50名测量身高,第六组的人数为4人,∴第六组的频率为,∴第七组的频率为:1﹣0.08﹣5×(0.008×2+0.016+0.04×2+0.06)=0.06.…(4分)(2)由直方图得到后三组的频率为0.06+0.08+0.008×5=0.18,∴估计该校1600名男生中身高在180cm以上(含180cm)的人数为0.18×1600=288人.…(8分)(3)第六组[180,185)的人数为4人,设为a,b,c,d,第八组[190,195)的人数为2人,设为A,B,则有ab,ac,ad,bc,bd,cd,aA,bA,cA,dA,aB,bB,cB,dB,AB,共15种情况.∵事件E={(x,y)|(x﹣y)2≤25}发生当且仅当随机抽取的两名男生在同一组,∴事件E包含的基本事件为ab,ac,ad,bc,bd,cd,AB共7种情况,故.…(12分)【点评】本题考查概率的求法,是基础题,解题时要认真审题,注意频率分布直方图的性质和列举法的合理运用.20.已知椭圆G:=1(a>b>0)的离心率为,右焦点为(2,0),斜率为1的直线l与椭圆G交与A、B两点,以AB为底边作等腰三角形,顶点为P(﹣3,2).(Ⅰ)求椭圆G的方程;(Ⅱ)求△PAB的面积.【考点】直线与圆锥曲线的综合问题;椭圆的标准方程.【分析】(Ⅰ)根据椭圆离心率为,右焦点为(,0),可知c=,可求出a的值,再根据b2=a2﹣c2求出b的值,即可求出椭圆G的方程;(Ⅱ)设出直线l的方程和点A,B的坐标,联立方程,消去y,根据等腰△PAB,求出直线l方程和点A,B的坐标,从而求出|AB|和点到直线的距离,求出三角形的高,进一步可求出△PAB的面积.【解答】解:(Ⅰ)由已知得,c=,,解得a=,又b2=a2﹣c2=4,所以椭圆G的方程为.(Ⅱ)设直线l的方程为y=x+m,由得4x2+6mx+3m2﹣12=0.①设A,B的坐标分别为(x1,y1),(x2,y2)(x1<x2),AB的中点为E(x0,y0),则x0==﹣,y0=x0+m=,因为AB是等腰△PAB的底边,所以PE⊥AB,所以PE的斜率k=,解得m=2.此时方程①为4x2+12x=0.解得x1=﹣3,x2=0,所以y1=﹣1,y2=2,所以|AB|=3,此时,点P(﹣3,2).到直线AB:y=x+2距离d=,所以△PAB的面积s=|AB|d=.【点评】此题是个中档题.考查待定系数法求椭圆的方程和椭圆简单的几何性质,以及直线与椭圆的位置关系,同时也考查了学生观察、推理以及创造性地分析问题、解决问题的能力.21.已知函数f(x)=ax3+2x﹣a,(1)求函数f(x)的单调递增区间;(2)若a=n,且n∈N*,设x n是函数的零点,证明:当n≥2时存在唯一x n,且.【考点】利用导数研究函数的单调性;函数零点的判定定理.【分析】(1)对f(x)求导得到单调区间;(2)由(1)得,f n(x)=nx3+2x﹣n在R上单调递增,证明f n()=﹣()3()即可.【解答】解:(1)f′(x)=3ax2+2,若a≥0,则f′(x)>0,函数f(x)在R上单调递增;若a<0,令f'(x)>0,∴x>或x<﹣,函数f(x)的单调递增区间为(﹣∞,)和(,+∞);(2)证明:由(1)得,f n(x)=nx3+2x﹣n在R上单调递增,又f n(1)=n+2﹣n=2>0,f n(2)=n23+2×2﹣n=8n+4﹣n=7n+4>0,f n()=n()3+2()﹣n=﹣()3(),当n≥2时,g(n)=n2﹣n﹣1>0,fn()<0,n≥2时存在唯一x n且xn∈(,1).【点评】本题主要考查了导数的求单调区间的方法以及函数的零点问题,是一道中档题.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.答时用2B铅笔在答题卡上把所选题目的题号涂黑.[选修4-1:几何证明选讲]22.在△ABC中,AB=AC,过点A的直线与其外接圆交于点P,交BC延长线于点D.(1)求证:;(2)若AC=3,求APAD的值.【考点】相似三角形的性质;相似三角形的判定.【分析】(1)先由角相等∠CPD=∠ABC,∠D=∠D,证得三角形相似,再结合线段相等即得所证比例式;(2)由于∠ACD=∠APC,∠CAP=∠CAP,从而得出两个三角形相似:“△APC~△ACD”结合相似三角形的对应边成比例即得APAD的值.【解答】解:(1)∵∠CPD=∠ABC,∠D=∠D,∴△DPC~△DBA,∴又∵AB=AC,∴(5分)(2)∵∠ACD=∠APC,∠CAP=∠CAP,∴△APC~△ACD∴,∴AC2=APAD=9(5分)【点评】本小题属于基础题.此题主要考查的是相似三角形的性质、相似三角形的判定,正确的判断出相似三角形的对应边和对应角是解答此题的关键.[选修4-4:坐标系与参数方程]23.在平面直角坐标系xOy中,已知曲线C1:x2+y2=1,以平面直角坐标系xOy的原点O 为极点,x轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线l:ρ(2cosθ﹣sinθ)=6.(1)将曲线C1上的所有点的横坐标、纵坐标分别伸长为原来的、2倍后得到曲线C2,试写出直线l的直角坐标方程和曲线C2的参数方程;(2)在曲线C2上求一点P,使点P到直线l的距离最大,并求出此最大值.【考点】直线与圆锥曲线的综合问题;点到直线的距离公式;简单曲线的极坐标方程.【分析】(1)直接写出直线l的直角坐标方程,将曲线C1上的所有点的横坐标、纵坐标分别伸长为原来的、2倍后得到曲线C2的方程,然后写出曲线C2的参数方程;(2)设出曲线C2上一点P的坐标,利用点P到直线l的距离公式,求出距离表达式,利用三角变换求出最大值.【解答】解:(1)由题意可知:直线l的直角坐标方程为:2x﹣y﹣6=0,因为曲线C2的直角坐标方程为:.∴曲线C2的参数方程为:(θ为参数).(2)设P的坐标(),则点P到直线l的距离为:=,∴当sin(60°﹣θ)=﹣1时,点P(),此时.【点评】本题是中档题,考查直线的参数方程,直线与圆锥曲线的位置关系,点到直线的距离的应用,考查计算能力,转化思想.[选修4-5:不等式选讲]24.已知函数f(x)=|x+a|+|x﹣2|(1)当a=﹣3时,求不等式f(x)≥3的解集;(2)若f(x)≤|x﹣4|的解集包含[1,2],求a的取值范围.【考点】绝对值不等式的解法;带绝对值的函数.【分析】(1)不等式等价于,或,或,求出每个不等式组的解集,再取并集即得所求.(2)原命题等价于﹣2﹣x≤a≤2﹣x在[1,2]上恒成立,由此求得求a的取值范围.【解答】解:(1)当a=﹣3时,f(x)≥3 即|x﹣3|+|x﹣2|≥3,即①,或②,或③.解①可得x≤1,解②可得x∈∅,解③可得x≥4.把①、②、③的解集取并集可得不等式的解集为{x|x≤1或x≥4}.(2)原命题即f(x)≤|x﹣4|在[1,2]上恒成立,等价于|x+a|+2﹣x≤4﹣x在[1,2]上恒成立,等价于|x+a|≤2,等价于﹣2≤x+a≤2,﹣2﹣x≤a≤2﹣x在[1,2]上恒成立.故当1≤x≤2时,﹣2﹣x的最大值为﹣2﹣1=﹣3,2﹣x的最小值为0。

陕西省汉中市高一上学期数学期末考试试卷

陕西省汉中市高一上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)己知cos31°=a,则sin239°•tan149°的值是()A .B .C .D . ﹣2. (2分) (2018高二下·衡阳期末) 设集合,,,则的取值范围为()A . 或B .C .D . 或3. (2分)函数,,则()A . 5B . 4C . 3D . 24. (2分)已知函数,将函数图象上所有点的横坐标缩短为原来的倍(纵坐不变),得到函数的图象,则关于有下列命题,其中真命题的个数是()①函数是奇函数;②函数不是周期函数;③函数的图像关于点(π,0)中心对称;④函数的最大值为.A . 1B . 2C . 3D . 45. (2分)已知a=2 ,b=log3 ,c=log ,则()A . a>b>cB . a>c>bC . c>a>bD . c>b>a6. (2分)在中,若,则必是()A . 等边三角形B . 直角三角形C . 锐角三角形D . 钝角三角形7. (2分)设函数,,,记Ik=|fk(a2)﹣fk(a1)|+|fk(a3)﹣fk(a2)|+…+|fk(a2015)﹣fk(a2014)|,k=1,2,则()A . I1<I2B . I1=I2C . I2<I1D . 无法确定8. (2分)已知函数f(x)=sin(ωx+ )(ω>0),f(x)在区间(0,2]上只有一个最大值1和一个最小值﹣1,则实数ω的取值范围为()A . [ ,)B . [ ,π)C . [ ,)D . [ , ]9. (2分)把函数y=sin(2x﹣)的图象向右平移个单位得到的函数解析式为()A . y=sin(2x﹣)B . y=sin(2x+)C . y=cos2xD . y=﹣sin2x10. (2分) (2018高一上·佛山期末) 已知偶函数在单调递减,则使得成立的的取值范围是()A .B .C .D .11. (2分) (2016高一下·郑州期中) 已知函数f(x)=asin(πx+α)+bcos(πx+β),且f(2 009)=3,则f(2 011)的值是()A . ﹣1B . ﹣2C . 3D . 112. (2分)已知x>1,y>1 且xy=16,则log2x log2y=()A . 有最大值2B . 有最大值4C . 有最小值3D . 等于4二、填空题 (共4题;共4分)13. (1分) (2018高三上·连云港期中) 求 log21+ log42 = =________14. (1分) (2017高一上·福州期末) 若圆锥的侧面展开图是圆心角为90°的扇形,则这个圆锥的侧面积与底面积的比是________.15. (1分)计算:cos150°+cos(﹣150°)=________.16. (1分)设[x]表示不超过实数x的最大整数,又g(x)= (a>0,a≠1),那么函数f(x)=[g(x)﹣ ]+[g(﹣x)﹣ ]的值域是________.三、解答题 (共6题;共40分)17. (10分) (2016高一上·浦东期中) 函数y= 的定义域为集合A,集合B={x||x+2|+|x﹣2|>8}.(1)求集合A,B;(2)求B∩∁∪A.18. (5分)已知角α的终边过点P(4,﹣3),求2sinα+cosα的值.19. (5分) (2016高一上·邹平期中) 设二次函数y=f(x)的最小值为4,且f(0)=f(2)=6,求f(x)的解析式.20. (10分)已知a>0,函数,且﹣5≤f(x)≤3.(1)求常数a,b的值;(2)设且lgg(x)>0,求g(x)的单调递增区间.21. (5分)直线y=1分别与函数f(x)=log2(x+2),g(x)=logax的图象交于A,B两点,且AB=2.(1)求a的值;(2)解关于x的方程,f(x)+g(x)=3.22. (5分)(2017·上高模拟) 已知不等式|x+3|﹣2x﹣1<0的解集为(x0 ,+∞)(Ⅰ)求x0的值;(Ⅱ)若函数f(x)=|x﹣m|+|x+ |﹣x0(m>0)有零点,求实数m的值.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共6题;共40分)17-1、17-2、18-1、19-1、20-1、20-2、21-1、22-1、。

2017-2018学年陕西省汉中市汉台中学、西乡中学联考高一(上)期末数学试卷(解析版)

2017-2018学年陕西省汉中市汉台中学、西乡中学联考高一(上)期末数学试卷一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的).1.(5分)设集合A={1,2,4},B={x|x2﹣4x+m=0}.若A∩B={1},则B=()A.{1,﹣3}B.{1,0}C.{1,3}D.{1,5}2.(5分)圆x2+y2﹣2x+4y+3=0的圆心到直线x﹣y=1的距离为:()A.2B.C.1D.3.(5分)函数f(x)=2x+x3﹣2在区间(0,1)内的零点个数是()A.0B.1C.2D.34.(5分)一条直线与两条平行线中的一条成为异面直线,则它与另一条()A.相交B.异面C.相交或异面D.平行5.(5分)已知某几何体的三视图如图所示,则该几何体的体积为()A.B.3πC.D.6π6.(5分)函数y=a x﹣2+1(a>0且a≠1)的图象必经过点()A.(0,1)B.(1,1)C.(2,0)D.(2,2)7.(5分)图中的图象所表示的函数的解析式为()A.y=|x﹣1|(0≤x≤2)B.y=﹣|x﹣1|(0≤x≤2)C.y=﹣|x﹣1|(0≤x≤2)D.y=1﹣|x﹣1|(0≤x≤2)8.(5分)已知圆C与直线x﹣y=0及x﹣y﹣4=0都相切,圆心在直线x+y=0上,则圆C 的方程为()A.(x+1)2+(y﹣1)2=2B.(x﹣1)2+(y+1)2=2C.(x﹣1)2+(y﹣1)2=2D.(x+1)2+(y+1)2=29.(5分)如图,在正方体ABCD﹣A1B1C1D1中,则AA1与B1D所成角的余弦值是()A.B.C.D.10.(5分)已知函数f(x)=3x﹣()x,则f(x)()A.是奇函数,且在R上是增函数B.是偶函数,且在R上是增函数C.是奇函数,且在R上是减函数D.是偶函数,且在R上是减函数11.(5分)在空间四边形ABCD中,若AB=BC,AD=CD,E为对角线AC的中点,下列判断正确的是()A.平面ABD⊥平面BDC B.平面ABC⊥平面ABDC.平面ABC⊥平面ADC D.平面ABC⊥平面BED12.(5分)已知f(x)为R上的奇函数,g(x)=xf(x),g(x)在(﹣∞,0)为减函数.若a=g(﹣log25.1),b=g(20.8),c=g(3),则a,b,c的大小关系为()A.a<b<c B.c<b<a C.b<a<c D.b<c<a二、填空题:(本大题共4小题,每小题5分,共20分.把答案填写在答题卡相应位置上).13.(5分)求过(2,3)点,且与(x﹣3)2+y2=1相切的直线方程为.14.(5分)若,则f(x)的定义域为.15.(5分)某市生产总值连续两年持续增加,第一年的增长率为p,第二年的增长率为q,则该市这两年生产总值的年平均增长率为.16.(5分)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为.三、解答题:(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤).17.(10分)已知函数的定义域为A,g(x)=x2+1的值域为B.(1)求A,B;(2)设全集U=R,求A∩(∁U B)18.(12分)在直三棱柱ABC﹣A1B1C1中,AC=3,BC=4,AB=5,AA1=4,点D是AB 的中点,(Ⅰ)求证:A1C1⊥BC1;(Ⅱ)求证:AC1∥平面CDB1.19.(12分)已知平行四边形ABCD的三个顶点的坐标为A(﹣1,4),B(﹣2,﹣1),C (2,3).(Ⅰ)在△ABC中,求边AC中线所在直线方程(Ⅱ)求△ABC的面积.20.(12分)已知函数f(x)=log a(1+x)﹣log a(1﹣x)(a>0,且a≠1).(1)写出函数f(x)的定义域,判断f(x)奇偶性,并证明;(2)解不等式f(x)>0.21.(12分)已知四棱锥P﹣ABCD的底面ABCD是菱形,∠BAD=60°,又PD⊥平面ABCD,点E是棱AD的中点,F在棱PC上(1)证明:平面BEF⊥平面P AD(2)试探究F在棱PC何处时使得P A∥平面BEF.22.(12分)已知圆M过A(2,2),B(6,0),且圆心在直线x﹣y﹣4=0上.(Ⅰ)求此圆的方程.(Ⅱ)求与直线3x﹣y+5=0垂直且与圆相切的直线方程.(Ⅲ)若点P为圆M上任意点,求△ABP的面积的最大值.2017-2018学年陕西省汉中市汉台中学、西乡中学联考高一(上)期末数学试卷参考答案与试题解析一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的).1.【解答】解:集合A={1,2,4},B={x|x2﹣4x+m=0}.若A∩B={1},则1∈A且1∈B,可得1﹣4+m=0,解得m=3,即有B={x|x2﹣4x+3=0}={1,3}.故选:C.2.【解答】解:圆x2+y2﹣2x+4y+3=0的圆心(1,﹣2),它到直线x﹣y=1的距离:故选:D.3.【解答】解:由于函数f(x)=2x+x3﹣2在区间(0,1)内单调递增,又f(0)=﹣1<0,f(1)=1>0,所以f(0)f(1)<0,故函数f(x)=2x+x3﹣2在区间(0,1)内有唯一的零点,故选:B.4.【解答】解:举例说明:给出正方体模型,如右图①直线AB与直线A1B1平行,且直线BC与直线A1B1异面此时,直线BC与直线AB相交;②直线AB与直线A1B1平行,且直线CC1与直线A1B1异面此时,直线BC与直线AB异面;综上所述,一条直线与两条平行线中的一条异面,则它与另一条可能相交,也可能异面.故选:C.5.【解答】解:由三视图可知几何体是圆柱底面半径为1高为6的圆柱,被截的一部分,如图所求几何体的体积为:=3π.故选:B.6.【解答】解:∵当X=2时y=a x﹣2+1=2恒成立故函数y=a x﹣2+1(a>0且a≠1)的图象必经过点(2,2)故选:D.7.【解答】解:由已知函数图象易得:点(0,0)、(1、)在函数图象上将点(0,0)代入可排除A、C将(1、)代入可排除D故选:B.8.【解答】解:圆心在x+y=0上,圆心的纵横坐标值相反,显然能排除C、D;验证:A中圆心(﹣1,1)到两直线x﹣y=0的距离是;圆心(﹣1,1)到直线x﹣y﹣4=0的距离是.故A错误.故选:B.9.【解答】解:∵BB1∥AA1,∴∠DB1B是AA1与B1D所成角,设正方体ABCD﹣A1B1C1D1中棱长为a,则DB1=,BD=a,BB1=a,∴AA1与B1D所成角的余弦值为:cos∠DB1B===.故选:A.10.【解答】解:f(x)=3x﹣()x=3x﹣3﹣x,∴f(﹣x)=3﹣x﹣3x=﹣f(x),即函数f(x)为奇函数,又由函数y=3x为增函数,y=()x为减函数,故函数f(x)=3x﹣()x为增函数,故选:A.11.【解答】解:连接DE,BE.因为E为对角线AC的中点,且AB=BC,AD=CD,所以DE⊥AC,BE⊥AC.因为DE∩BE=E,所以AC⊥面BDE.AC⊂面ABC,所以平面ABC⊥平面BED,故选:D.12.【解答】解:根据题意,g(x)=xf(x),又由f(x)为R上的奇函数,则g(﹣x)=(﹣x)f(﹣x)=xf(x)=g(x),则函数g(x)为偶函数,又由g(x)在(﹣∞,0)为减函数,则g(x)在(0,+∞)上为增函数,又由20.8<2<|﹣log25.1|=|log25.1|<3,则有b<a<c;故选:C.二、填空题:(本大题共4小题,每小题5分,共20分.把答案填写在答题卡相应位置上).13.【解答】解:根据题意,(x﹣3)2+y2=1的圆心为(3,0),半径为1;设切线为直线l,分2种情况讨论:①,直线l的斜率不存在,则直线l的方程为x=2,与圆(x﹣3)2+y2=1相切,符合题意;②,直线l的斜率存在,设直线的方程为y﹣3=k(x﹣2),即kx﹣y﹣2k+3=0,若直线l与圆相切,则有=1,解可得k=﹣,此时切线的方程为4x+3y﹣17=0;综合可得切线的方程为:x=2或4x+3y﹣17=0;故答案为:x=2或4x+3y﹣17=0.14.【解答】解:的定义域为:,即,解得x>﹣,且x≠0.故答案为:.15.【解答】解:设该市这两年生产总值的年平均增长率为x,由题意(1+x)2=(1+p)(1+q),所以x=﹣1;故答案为:﹣1.16.【解答】解:∵圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,∴该圆柱底面圆周半径r==,∴该圆柱的体积:V=Sh=π()2×1=.故答案为:.三、解答题:(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤).17.【解答】解:(1)∵函数的定义域为A,∴A={x|}={x|﹣1≤x<2},∵g(x)=x2+1的值域为B.∴B={y|y=x2+1}={y|y≥1}.(2)∵A={x|﹣1≤x<2},B={y|y≥1}.∴∁U B={y|y<1},A∩(∁U B)={x|﹣1≤x<1}.18.【解答】解:(Ⅰ)易知A1C1⊥BC,A1C1⊥CC1,且BC1∩CC1=C1,可得A1C1⊥面BCC1B1,故AC⊥BC1;又A1C1∥AC,∴A1C1⊥BC1;(Ⅱ)设CB1与C1B交于E,连接DE,由于E、D分别是BC1和AB的中点,可得DE∥AC1,而AC1⊄平面CDB1,故AC1∥平面CDB1.19.【解答】解:(Ⅰ)设AC边中点为M,则M点坐标为(,.∴直线.∴直线BM方程为:y﹣(﹣1)=(x+2),整理得:9x﹣5y+13=0.∴AC边中线所在直线的方程为:9x﹣5y+13=0.(Ⅱ)由于:B(﹣2,﹣1),C(2,3).则:|BC|=,由B(﹣2,﹣1),C(2,3).得直线BC的方程为:x﹣y+1=0.所以点A到直线BC的距离d=,所以:.20.【解答】解:(1)根据题意,函数f(x)=log a(1+x)﹣log a(1﹣x),则有,解可得﹣1<x<1,即函数f(x)的定义域为(﹣1,1),又由f(﹣x)=log a(1﹣x)﹣log a(1+x)=﹣f(x),则函数f(x)为奇函数;(2)若f(x)=log a(1+x)﹣log a(1﹣x)>0,即log a(1+x)>log a(1﹣x),当0<a<1时,有0<1+x<1﹣x,解可得:﹣1<x<0,此时不等式的解集为(﹣1,0);当a>1时,有0<1﹣x<1+x,解可得:0<x<1,此时不等式的解集为(0,1);综合可得:当0<a<1时,此时不等式的解集为(﹣1,0);当a>1时,不等式的解集为(0,1).21.【解答】(1)证明:∵底面ABCD是菱形,∠BAD=60°,∴△ABD是等边三角形,∵E是AD的中点,∴BE⊥AD.∵PD⊥平面ABCD,BE⊂平面ABCD,∴PD⊥BE.又AD∩PD=D,AD⊂平面P AD,PD⊂平面P AD,∴BE⊥平面P AD,又BE⊂平面BEF,∴平面BEF⊥平面P AD.(2)解:连结AC交BE于M,连结FM.∵P A∥平面BEF,P A⊂平面P AC,平面P AC∩平面BEF=FM,∴P A∥FM.∴,又△AME∽△CMB,∴.∴.∴F在棱PC靠近P的三等分点时,P A∥平面BEF.22.【解答】解(Ⅰ)易知AB中点为(4,1),k AB==﹣,∴AB的垂直平分线方程为y﹣1=2(x﹣4),即2x﹣y﹣7=0,联立,解得.则r==,∴圆M的方程为(x﹣3)2+(y+1)2=10.(Ⅱ)易知该直线斜率为﹣,不妨设该直线方程为x+3y+m=0,由题意有=,解得m=±10.∴该直线方程为x+3y+10=0或x+3y﹣10=0.(Ⅲ)l AB:y=﹣(x﹣6),即x+2y﹣6=0,圆心M到AB的距离d==.∵△ABP面积的最大值即P点到直线AB距离最大时取得,求出圆心M到直线AB的距离d,最大距离为r+d,∴S△ABP=|AB||d+r|=•|+|=5+5.所以△ABP的面积的最大值为5+5.。

陕西省汉中市第一中学高一数学理期末试题含解析

陕西省汉中市第一中学高一数学理期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知函数,则().A. B. C. D.参考答案:B略2. 同时掷两个骰子,向上的点数之和是6的概率是()A. B. C. D.参考答案:C【分析】分别计算出所有可能的结果和点数之和为6的所有结果,根据古典概型概率公式求得结果.【详解】同时掷两个骰子,共有种结果其中点数之和是6的共有:,共5种结果点数之和是6的概率为:本题正确选项:C【点睛】本题考查古典概型问题中的概率的计算,关键是能够准确计算出总体基本事件个数和符合题意的基本事件个数,属于基础题.3. 半径为R的球的内接正方体的表面积是 ( )A. B. C.D.参考答案:D 4. 若是定义在上的奇函数,且在上单调递减,若则的取值范围是()A. B. C. D.参考答案:B略5. 一个几何体的三视图如图所示,则这个几何体是()A.B.C.D.参考答案:D【考点】由三视图求面积、体积.【分析】分析给定四个答案中的几何体三视图的形状,可得结论.【解答】解:A中几何体的正视图中应该画矩形的另一条对角线,且是虚线,故A错误;(B)中几何体的正视图中的对角线应该是虚线,故B错误;C中几何体的正视图中的对角线应该是另一条,故C错误.故选:D6. 当a>0且a≠1时,函数y=a x﹣1+3的图象一定经过点()A.(4,1)B.(1,4)C.(1,3)D.(﹣1,3)参考答案:B【考点】指数函数的图象与性质.【专题】函数的性质及应用.【分析】利用指数型函数的性质,令x﹣1=0即可求得点的坐标.【解答】解:∵y=a x﹣1+3(a>0且a≠1),∴当x﹣1=0,即x=1时,y=4,∴函数y=a x﹣1+3(a>0且a≠1)的图象过定点(1,4).故选B.【点评】本题考查指数型函数的性质,令x﹣1=0是关键,属于基础题7. 已知函数 y=f(x+1)+1 的图象经过点P(m,n),则函数y=f(x-1)-1的反函数图象必过点()A.(n+2,m- 2) B.(n-2,m+2) C.(n,m) D.(n,m+2)参考答案:B8. ① 当a < 0时,;② ;③ 函数的定义域为;④ 若以上四个结论中,正确的个数为A 0B 1C 2D 3参考答案:B9. 下列说法中,正确的是()A.任何一个集合必有两个子集B.若则中至少有一个为C.任何集合必有一个真子集D. 若为全集,且则参考答案:D略10. 设函数f(x)=(x-1)2+n,(x∈[-1,3],n∈N*)的最小值为an,最大值为bn,则cn=b-anbn是()A.公差不为零的等差数列B.公比不为1的等比数列C.常数列D.既不是等差也不是等比数列参考答案:A∵f(x)=(x-1)2+n,x∈[-1,3],n∈N*,∴an=f(1)=n,bn=f(-1)=f(3)=n+4.∴cn=b-anbn=bn(bn-an)=4(n+4).∴cn+1-cn=4.∴{cn}是公差不为零的等差数列.二、填空题:本大题共7小题,每小题4分,共28分11. 若实数满足,则称是函数的一个次不动点.记函数与函数(其中为自然对数的底数)的所有的次不动点之和为,则.参考答案:12. 函数的定义域为______________.参考答案:13. 已知函数在R上是减函数,是其图象上的两点,那么不等式的解集为____参考答案:(-3,0)14. 设函数,.若存在,使得与同时成立,则实数的取值范围是________.参考答案:a>715. 与的等比中项为______________.参考答案:±1根据等比中项定义,,所以,故填.16. 若曲线与直线有两交点,则实数的取值范围是____.参考答案:17. 已知f (x )是R上的奇函数,当x ≥0时,f (x )=x 2﹣5x ,则f (x ﹣1)>f (x)的解集为_____.参考答案:【分析】根据函数f(x)是R上的奇函数和已知条件得出函数和的解析式,在同一坐标系中做出和的图像,求出交点的坐标,根据不等式的解集可以理解为将的图象向右平移一个单位长度后所得函数的图象在函数的图象上方部分的点对应的横坐标取值的集合,由图示可得出解集.【详解】当时,,所以,又f(x)是R上的奇函数,所以,所以,所以,即,做出和的图像如下图所示,不等式的解集可以理解为将的图象向右平移一个单位长度后所得函数的图象在函数的图象上方部分的点对应的横坐标取值的集合,由得所以,由得,所以,所以不等式的解集为.故答案为:.【点睛】本题考查根据函数的奇偶性求得对称区间上的解析式,图像的平移,以及运用数形结合的思想求解不等式,关键在于综合熟练地运用函数的奇偶性,解析式的求法,图像的平移,以及如何在图像上求出不等式的解集等一些基本能力,属于中档题.三、解答题:本大题共5小题,共72分。

2016-2017学年高一上学期期末数学试卷 Word版含解析

2016-2017学年高一上学期期末数学试卷一.选择题(本大题共12小题,每小题5分,共60分)1.如果集合A={x|ax 2﹣2x ﹣1=0}只有一个元素则a 的值是( ) A .0B .0或1C .﹣1D .0或﹣12.sin36°cos6°﹣sin54°cos84°等于( )A .B .C .D .3.若tan α=2,tan β=3,且α,β∈(0,),则α+β的值为( )A .B .C .D .4.已知sin α+cos α=(0<α<π),则tan α=( )A .B .C .D .或5.设a=sin ,b=cos,c=tan,则( )A .b <a <cB .b <c <aC .a <b <cD .a <c <b6.已知x ∈[0,1],则函数的值域是( )A .B .C .D .7.若,则=( )A .B .C .﹣D .8.若函数图象的两条相邻的对称轴之间的距离为,且该函数图象关于点(x 0,0)成中心对称,,则x 0=( )A .B .C .D .9.已知函数f (x )=的值域为R ,则实数a 的范围是( )A .[﹣1,1]B .(﹣1,1]C .(﹣1,+∞)D .(﹣∞,﹣1)10.将函数y=3sin (2x+)的图象向右平移个单位长度,所得图象对应的函数( )A .在区间(,)上单调递减 B .在区间(,)上单调递增C.在区间(﹣,)上单调递减D.在区间(﹣,)上单调递增11.函数f(x)=|sinx|+2|cosx|的值域为()A.[1,2] B.[,3] C.[2,] D.[1,]12.设f(x)是定义在R上的偶函数,对x∈R,都有f(x﹣2)=f(x+2),且当x∈[﹣2,0]时,f(x)=()x﹣1,若在区间(﹣2,6]内关于x的方程f(x)﹣loga(x+2)=0(a>1)恰有3个不同的实数根,则a的取值范围是()A.(2,3)B.C.D.二.填空题(本大题共4小题,每小题5分,共20分,请将答案填在答题纸上)13.已知则= .14. = .15.已知,试求y=[f(x)]2+f(x2)的值域.16.设f(x)=asin 2x+bcos 2x,其中a,b∈R,ab≠0.若f(x)≤|f()|对一切x∈R 恒成立,则以下结论正确的是(写出所有正确结论的编号).①;②|≥|;③f(x)的单调递增区间是(kπ+,kπ+)(k∈Z);④f(x)既不是奇函数也不是偶函数.二、解答题17.若,,,则= .18.已知函数f(x)=ax﹣(a,b∈N*),f(1)=且f(2)<2.(Ⅰ)求a,b的值;(Ⅱ)判断并证明函数y=f (x )在区间(﹣1,+∞)上的单调性.19.已知函数f (x )=2﹣3(ω>0)(1)若是最小正周期为π的偶函数,求ω和θ的值;(2)若g (x )=f (3x )在上是增函数,求ω的最大值.20.已知函数f (x )=2x 2﹣3x+1,,(A ≠0)(1)当0≤x ≤时,求y=f (sinx )的最大值;(2)若对任意的x 1∈[0,3],总存在x 2∈[0,3],使f (x 1)=g (x 2)成立,求实数A 的取值范围;(3)问a 取何值时,方程f (sinx )=a ﹣sinx 在[0,2π)上有两解?[附加题](共1小题,满分10分)21.已知函数f (x )=(1)求函数f (x )的零点;(2)若实数t 满足f (log 2t )+f (log 2)<2f (2),求f (t )的取值范围.2016-2017学年高一上学期期末数学试卷参考答案与试题解析一.选择题(本大题共12小题,每小题5分,共60分)1.如果集合A={x|ax2﹣2x﹣1=0}只有一个元素则a的值是()A.0 B.0或1 C.﹣1 D.0或﹣1【考点】元素与集合关系的判断.【分析】根据集合A={x|ax2﹣2x﹣1=0}只有一个元素,可得方程ax2﹣2x﹣1=0只有一个根,然后分a=0和a≠0两种情况讨论,求出a的值即可.【解答】解:根据集合A={x|ax2﹣2x﹣1=0}只有一个元素,可得方程ax2﹣2x﹣1=0只有一个根,①a=0,,满足题意;②a≠0时,则应满足△=0,即22﹣4a×(﹣1)=4a+4=0解得a=﹣1.所以a=0或a=﹣1.故选:D.2.sin36°cos6°﹣sin54°cos84°等于()A.B.C.D.【考点】两角和与差的正弦函数.【分析】利用诱导公式与两角差的正弦即可求得答案.【解答】解:∵36°+54°=90°,6°+84°=90°,∴sin36°cos6°﹣sin54°cos84°=sin36°cos6°﹣cos36°sin6°=sin(36°﹣6°)=sin30°=,故选A.3.若tanα=2,tanβ=3,且α,β∈(0,),则α+β的值为()A.B.C.D.【考点】两角和与差的正切函数.【分析】由条件求得α+β的范围,再结合tan(α+β)=的值,可得α+β的值.【解答】解:∵tanα=2,tanβ=3,且α,β∈(0,),则α+β∈(0,π),再根据tan(α+β)===﹣1,∴α+β=.故选:C.4.已知sinα+cosα=(0<α<π),则tanα=()A.B.C.D.或【考点】同角三角函数间的基本关系.【分析】已知等式两边平方,利用同角三角函数间的基本关系化简,求出2sinαcosα的值小于0,得到sinα>0,cosα<0,再利用完全平方公式及同角三角函数间的基本关系求出sinα与cosα的值,即可求出tanα的值.【解答】解:将已知等式sinα+cosα=①两边平方得:(sinα+cosα)2=sin2α+2sinαcosα+cos2α=1+2sinαcosα=,∴2sinαcosα=﹣<0,∵0<α<π,∴sinα>0,cosα<0,即sinα﹣cosα>0,∴(sinα﹣cosα)2=1﹣2sinαcosα=,∴sinα﹣cosα=②,联立①②,解得:sinα=,cosα=﹣,则tanα=﹣.故选B5.设a=sin,b=cos,c=tan,则()A.b<a<c B.b<c<a C.a<b<c D.a<c<b【考点】三角函数线.【分析】利用三角函数的诱导公式,结合三角函数的单调性进行比较即可.【解答】解:sin=cos(﹣)=cos(﹣)=cos,而函数y=cosx在(0,π)上为减函数,则1>cos>cos>0,即0<b<a<1,tan>tan=1,即b<a<c,故选:A6.已知x∈[0,1],则函数的值域是()A.B.C.D.【考点】函数单调性的性质;函数的值域.【分析】根据幂函数和复合函数的单调性的判定方法可知该函数是增函数,根据函数的单调性可以求得函数的值域.【解答】解:∵函数y=在[0,1]单调递增(幂函数的单调性),y=﹣在[0,1]单调递增,(复合函数单调性,同增异减)∴函数y=﹣在[0,1]单调递增,∴≤y≤,函数的值域为[,].故选C.7.若,则=()A.B.C.﹣D.【考点】三角函数的化简求值.【分析】利用诱导公式、二倍角的余弦公式,求得要求式子的值.【解答】解:∵=cos(﹣α),则=2﹣1=2×﹣1=﹣,故选:C.8.若函数图象的两条相邻的对称轴之间的距离为,且该函数图象关于点(x,0)成中心对称,,则x=()A.B.C.D.【考点】函数y=Asin(ωx+φ)的图象变换.【分析】利用函数y=Asin(ωx+φ)的图象的对称性,得出结论.【解答】解:∵函数图象的两条相邻的对称轴之间的距离为==,∴ω=2,∴f(x)=sin(2x+).令2x+=kπ,k∈Z,求得x=kπ﹣,故该函数的图象的对称中心为(kπ﹣,0 ),k∈Z.根据该函数图象关于点(x,0)成中心对称,结合,则x=,故选:B.9.已知函数f(x)=的值域为R,则实数a的范围是()A.[﹣1,1] B.(﹣1,1] C.(﹣1,+∞)D.(﹣∞,﹣1)【考点】分段函数的应用.【分析】利用函数的单调性,函数的值域列出不等式组求解即可.【解答】解:函数f(x)=,当x≥3时,函数是增函数,所以x<3时,函数也是增函数,可得:,解得a>﹣1.故选:C.10.将函数y=3sin(2x+)的图象向右平移个单位长度,所得图象对应的函数()A.在区间(,)上单调递减B.在区间(,)上单调递增C.在区间(﹣,)上单调递减D.在区间(﹣,)上单调递增【考点】函数y=Asin(ωx+φ)的图象变换.【分析】根据左加右减上加下减的原则,即可直接求出将函数y=3sin(2x+)的图象向右平移个单位长度,所得图象对应的函数的解析式,进而利用正弦函数的单调性即可求解.【解答】解:将函数y=3sin(2x+)的图象向右平移个单位长度,所得函数的解析式:y=3sin[2(x﹣)+]=3sin(2x﹣).令2kπ﹣<2x﹣<2kπ+,k∈Z,可得:kπ+<x<kπ+,k∈Z,可得:当k=0时,对应的函数y=3sin(2x﹣)的单调递增区间为:(,).故选:B.11.函数f(x)=|sinx|+2|cosx|的值域为()A.[1,2] B.[,3] C.[2,] D.[1,]【考点】三角函数值的符号;函数的值域.【分析】先将函数y=|sinx|+2|cosx|的值域⇔当x∈[0,]时,y=sinx+2cosx的值域,利用两角和与差的正弦函数化简,由正弦函数的性质求出函数的值域.【解答】解:∵函数y=|sinx|+2|cosx|的值域⇔当x∈[0,]时,y=sinx+2cosx的值域,∴y=sinx+2cosx=(其中θ是锐角,、),由x∈[0,]得,x+θ∈[θ, +θ],所以cosθ≤sin(x+θ)≤1,即≤sin(x+θ)≤1,所以,则函数y=|sinx|+2|cosx|的值域是[1,],故选:D.12.设f(x)是定义在R上的偶函数,对x∈R,都有f(x﹣2)=f(x+2),且当x∈[﹣2,0](x+2)=0(a>1)时,f(x)=()x﹣1,若在区间(﹣2,6]内关于x的方程f(x)﹣loga恰有3个不同的实数根,则a的取值范围是()A.(2,3)B.C.D.【考点】函数奇偶性的性质;根的存在性及根的个数判断.【分析】根据题意f(x﹣2)=f(x+2),可得f(x+4)=f(x),周期T=4,且是偶函数,当x(x+2)∈[﹣2,0]时,f(x)=()x﹣1,可以做出在区间(﹣2,6]的图象,方程f(x)﹣loga(x+2)的图象恰有3个不同的=0(a>1)恰有3个不同的实数根,即f(x)的图象与y=loga交点.可得答案.【解答】解:由题意f(x﹣2)=f(x+2),可得f(x+4)=f(x),周期T=4,当x∈[﹣2,0]时,f(x)=()x﹣1,∴可得(﹣2,6]的图象如下:从图可看出,要使f(x)的图象与y=log(x+2)的图象恰有3个不同的交点,a则需满足,解得:.故选C.二.填空题(本大题共4小题,每小题5分,共20分,请将答案填在答题纸上)13.已知则= 0 .【考点】分段函数的解析式求法及其图象的作法;函数的值.【分析】因为,所以可以直接求出:,对于,用表达式的定义得,从而得出要求的答案.【解答】解:∵∴而=∴故答案为:014. = ﹣4.【考点】三角函数的化简求值.【分析】切化弦后通分,利用二倍角的正弦与两角差的正弦即可化简求值.【解答】解:原式====﹣4.故答案为:﹣4.15.已知,试求y=[f(x)]2+f(x2)的值域[1,13] .【考点】函数的值域.【分析】根据,求出y=[f(x)]2+f(x2)的定义域,利用换元法求解值域.【解答】解:由题意,,则f(x2)的定义域为[,2],故得函数y=[f(x)]2+f(x2)的定义域为[,2].∴y=(2+log2x)2+2+2log2x.令log2x=t,(﹣1≤t≤1).则y=(2+t)2+2t+2=t2+6t+6.开口向上,对称轴t=﹣3.∴当t=﹣1时,y取得最小值为1.当t=1时,y取得最大值为13,故得函数y的值域为[1,13].故答案为[1,13].16.设f(x)=asin 2x+bcos 2x,其中a,b∈R,ab≠0.若f(x)≤|f()|对一切x∈R 恒成立,则以下结论正确的是①②④(写出所有正确结论的编号).①;②|≥|;③f(x)的单调递增区间是(kπ+,kπ+)(k∈Z);④f(x)既不是奇函数也不是偶函数.【考点】三角函数中的恒等变换应用;正弦函数的图象.【分析】利用辅助角公式化简f(x),根据f(x)≤|f()|可得,a,b的值.然后对个结论依次判断即可.【解答】解:由f(x)=asin 2x+bcos 2x=sin(2x+φ).∵f(x)≤|f()|对一切x∈R恒成立∴当x=时,函数取得最大值,即2×+φ=,解得:φ=.故得f(x)=sin(2x+).则f()=sin(2×+)=0,∴①对.②f()=sin(2×+)=f()=sin(2×+)=,∴|≥|,∴②对.由2x+,(k∈Z)解得: +kπ≤x≤+kπ,(k∈Z)∴f(x)的单调递增区间是(kπ,kπ+)(k∈Z);∴③不对f(x)的对称轴2x+=+kπ,(k∈Z);∴③解得:x=kπ+,不是偶函数,当x=0时,f(0)=,不关于(0,0)对称,∴f(x)既不是奇函数也不是偶函数.故答案为①②④.二、解答题17.若,,,则=.【考点】角的变换、收缩变换;同角三角函数间的基本关系;两角和与差的余弦函数.【分析】根据条件确定角的范围,利用平方关系求出相应角的正弦,根据=,可求的值.【解答】解:∵∴∵,∴,∴===故答案为:18.已知函数f(x)=ax﹣(a,b∈N*),f(1)=且f(2)<2.(Ⅰ)求a,b的值;(Ⅱ)判断并证明函数y=f(x)在区间(﹣1,+∞)上的单调性.【考点】利用导数研究函数的单调性.【分析】(Ⅰ)由,,,从而求出b=1,a=1;(Ⅱ)由(1)得,得函数在(﹣1,+∞)单调递增.从而有f(x1)﹣f(x2)=,进而,故函数在(﹣1,+∞)上单调递增.【解答】解:(Ⅰ)∵,,由,∴,又∵a,b∈N*,∴b=1,a=1;(Ⅱ)由(1)得,函数在(﹣1,+∞)单调递增.证明:任取x1,x2且﹣1<x1<x2,=,∵﹣1<x1<x2,∴,∴,即f(x1)<f(x2),故函数在(﹣1,+∞)上单调递增.19.已知函数f(x)=2﹣3(ω>0)(1)若是最小正周期为π的偶函数,求ω和θ的值;(2)若g(x)=f(3x)在上是增函数,求ω的最大值.【考点】三角函数中的恒等变换应用;正弦函数的图象.【分析】(1)利用二倍角和辅助角公式基本公式将函数化为y=Asin(ωx+φ)的形式,利用周期公式ω,根据偶函数的性质,求θ的值.(2)根据g(x)=f(3x)求出g(x)的解析式,g(x)在上是增函数,可得,即可求解ω的最大值.【解答】解:(1)由=2(ω>0)∵又∵y=f(x+θ)是最小正周期为π的偶函数,∴,即ω=2,且,解得:∵,∴当l=0时,.故得为所求;(2)g(x)=f(3x),即g(x)=2(ω>0)∵g(x)在上是增函数,∴,∵ω>0,∴,故得,于是k=0,∴,即ω的最大值为,此时.故得ω的最大值为.20.已知函数f(x)=2x2﹣3x+1,,(A≠0)(1)当0≤x≤时,求y=f(sinx)的最大值;(2)若对任意的x1∈[0,3],总存在x2∈[0,3],使f(x1)=g(x2)成立,求实数A的取值范围;(3)问a取何值时,方程f(sinx)=a﹣sinx在[0,2π)上有两解?【考点】三角函数的最值;二次函数的性质;正弦函数的图象.【分析】(1)由已知可得,y=f(sinx)=2sin2x﹣3sinx+1设t=sinx,由x可得0≤t≤1,从而可得关于 t的函数,结合二次函数的性质可求(2)依据题意有f(x1)的值域是g(x2)值域的子集,要求 A的取值范围,可先求f(x1)值域,然后分①当A>0时,g(x2)值域②当A<0时,g(x2)值域,建立关于 A的不等式可求A的范围.(3)2sin2x﹣3sinx+1=a﹣sinx化为2sin2x﹣2sinx+1=a在[0,2π]上有两解令t=sinx则2t2﹣2t+1=a在[﹣1,1]上解的情况可结合两函数图象的交点情况讨论.【解答】解:(1)y=f(sinx)=2sin2x﹣3sinx+1设t=sinx,x,则0≤t≤1∴∴当t=0时,y max =1(2)当x 1∈[0,3]∴f (x 1)值域为当x 2∈[0,3]时,则有①当A >0时,g (x 2)值域为②当A <0时,g (x 2)值域为而依据题意有f (x 1)的值域是g (x 2)值域的子集则或∴A ≥10或A ≤﹣20(3)2sin 2x ﹣3sinx+1=a ﹣sinx 化为2sin 2x ﹣2sinx+1=a 在[0,2π]上有两解 换t=sinx 则2t 2﹣2t+1=a 在[﹣1,1]上解的情况如下:①当在(﹣1,1)上只有一个解或相等解,x 有两解(5﹣a )(1﹣a )≤0或△=0∴a ∈[1,5]或②当t=﹣1时,x 有惟一解③当t=1时,x 有惟一解故a ∈(1,5)∪{}.[附加题](共1小题,满分10分)21.已知函数f (x )=(1)求函数f (x )的零点;(2)若实数t 满足f (log 2t )+f (log 2)<2f (2),求f (t )的取值范围.【考点】分段函数的应用;函数零点的判定定理.【分析】(1)分类讨论,函数对应方程根的个数,综合讨论结果,可得答案.(2)分析函数的奇偶性和单调性,进而可将不等式化为|log 2t|<2,解得f (t )的取值范围.【解答】解:(1)当x <0时,解得:x=ln =﹣ln3,当x ≥0时,解得:x=ln3,故函数f (x )的零点为±ln3; (2)当x >0时,﹣x <0,此时f (﹣x )﹣f (x )===0,故函数f (x )为偶函数,又∵x ≥0时,f (x )=为增函数,∴f (log 2t )+f (log 2)<2f (2)时,2f (log 2t )<2f (2), 即|log 2t|<2, ﹣2<log 2t <2,∴t ∈(,4)故f (t )∈(,)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016-2017学年陕西省汉中市汉台区高一(上)期末数学试卷一、选择题(共12小题,每小题4分,计48分.在每小题给出的四个选项只有一个符合题意.)1.(4.00分)设集合A={4,5,6},B={2,3,4},则A∪B中有()个元素.A.1 B.4 C.5 D.62.(4.00分)已知全集U=R,集合A={x|x+1<0},B={x|x﹣3<0},那么集合(∁A)∩B=()UA.{x|﹣1≤x<3}B.{x|﹣1<x<3}C.{x|x<﹣1}D.{x|x>3}3.(4.00分)已知f(x﹣1)=x2+4x﹣5,则f(x)的表达式是()A.f(x)=x2+6x B.f(x)=x2+8x+7 C.f(x)=x2+2x﹣3 D.f(x)=x2+6x﹣104.(4.00分)已知a=30.4,b=0.43,c=log0.43,则()A.b<a<c B.c<a<b C.c<b<a D.a<c<b5.(4.00分)已知x>0时,f(x)=x﹣2013,且知f(x)在定义域上是奇函数,则当x<0时,f(x)的解析式是()A.f(x)=x+2013 B.f(x)=﹣x+2013 C.f(x)=﹣x﹣2013 D.f(x)=x﹣20136.(4.00分)如图是某个四面体的三视图,该四面体的体积为()A.72 B.36 C.24 D.127.(4.00分)已知正方体外接球的体积是,那么正方体的棱长等于()A.B.C.D.8.(4.00分)已知直线l⊥平面α,直线m⊂平面β,有下面四个命题,其中正确命题是①α∥β⇒l⊥m②α⊥β⇒l∥m③l∥m⇒α⊥β④l⊥m⇒α∥βA.①与②B.①与③C.②与④D.③与④9.(4.00分)原点O(0,0)与点A(﹣4,2)关于直线l对称,则直线l的方程是()A.x+2y=0 B.2x﹣y+5=0 C.2x+y+3=0 D.x﹣2y+4=010.(4.00分)已知直线l1:x+2ay﹣1=0,与l2:(2a﹣1)x﹣ay﹣1=0平行,则a 的值是()A.0或1 B.1或C.0或D.11.(4.00分)圆(x+2)2+y2=4与圆(x﹣2)2+(y﹣1)2=9的位置关系为()A.内切B.外切C.相交D.外离12.(4.00分)直线x﹣y=0被圆x2+y2=1截得的弦长为()A.B.1 C.4 D.2二、填空题(每空4分,共16分)13.(4.00分)已知幂函数y=f(x)的图象过点=.14.(4.00分)函数f(x)=x2﹣4x+5,x∈[1,5],则该函数值域为.15.(4.00分)已知函数f(x)=,则f[f()]=.16.(4.00分)P为圆x2+y2=1的动点,则点P到直线3x﹣4y﹣10=0的距离的最大值为.三、解答题(共5小题,计56分.解答应写出文字说明、证明过程或演算步骤)17.(10.00分)已知集合A={x|1≤x<5},B={x|﹣a<x≤a+3}(1)若a=1,U=R,求∁U A∩B;(2)若B∩A=B,求实数a的取值范围.18.(10.00分)如图,在直三棱柱ABC﹣A1B1C1中,A1B1=A1C1,D,E分别是棱BC,CC1上的点(点D 不同于点C),且AD⊥DE,F为B1C1的中点.求证:(1)平面ADE⊥平面BCC1B1;(2)直线A1F∥平面ADE.19.(12.00分)已知直线l经过两条直线2x+3y﹣14=0和x+2y﹣8=0的交点,且与直线2x﹣2y﹣5=0平行.(Ⅰ)求直线l的方程;(Ⅱ)求点P(2,2)到直线l的距离.20.(12.00分)已知函数f(x)=lg(3+x)+lg(3﹣x).(1)求函数f(x)的定义域;(2)判断函数f(x)的奇偶性,并说明理由.21.(12.00分)已知点A(0,5),圆C:x2+y2+4x﹣12y+24=0(1)若直线l过A(0,5)且被圆C截得的弦长为4,求直线l的方程;(2)点M(﹣1,0),N(0,1),点Q是圆C上的任一点,求△QMN面积的最小值.2016-2017学年陕西省汉中市汉台区高一(上)期末数学试卷参考答案与试题解析一、选择题(共12小题,每小题4分,计48分.在每小题给出的四个选项只有一个符合题意.)1.(4.00分)设集合A={4,5,6},B={2,3,4},则A∪B中有()个元素.A.1 B.4 C.5 D.6【解答】解:∵集合A={4,5,6},B={2,3,4],则A∪B={2,3,4,5,6},有5个元素,故选:C.2.(4.00分)已知全集U=R,集合A={x|x+1<0},B={x|x﹣3<0},那么集合(∁A)∩B=()UA.{x|﹣1≤x<3}B.{x|﹣1<x<3}C.{x|x<﹣1}D.{x|x>3}【解答】解:A={x|x+1<0}=(﹣∞,﹣1),B={x|x﹣3<0}=(﹣∞,3),∴C U A=[﹣1,+∞)∴(C U A)∩B=[﹣1,3)故选:A.3.(4.00分)已知f(x﹣1)=x2+4x﹣5,则f(x)的表达式是()A.f(x)=x2+6x B.f(x)=x2+8x+7 C.f(x)=x2+2x﹣3 D.f(x)=x2+6x﹣10【解答】解:【方法﹣】设t=x﹣1,则x=t+1,∵f(x﹣1)=x2+4x﹣5,∴f(t)=(t+1)2+4(t+1)﹣5=t2+6t,f(x)的表达式是f(x)=x2+6x;【方法二】∵f(x﹣1)=x2+4x﹣5=(x﹣1)2+6(x﹣1),∴f(x)=x2+6x;∴f(x)的表达式是f(x)=x2+6x;故选:A.4.(4.00分)已知a=30.4,b=0.43,c=log0.43,则()A.b<a<c B.c<a<b C.c<b<a D.a<c<b【解答】解:∵a=30.4>30=1,b=0.43=0.064,c=log0.43<log0.41=0,∴c<b<a.故选:C.5.(4.00分)已知x>0时,f(x)=x﹣2013,且知f(x)在定义域上是奇函数,则当x<0时,f(x)的解析式是()A.f(x)=x+2013 B.f(x)=﹣x+2013 C.f(x)=﹣x﹣2013 D.f(x)=x﹣2013【解答】解:当x<0时,﹣x>0,因为x>0时,f(x)=x﹣2013,所以f(﹣x)=﹣x﹣2013,因为函数是奇函数,所以f(﹣x)=﹣x﹣2013=﹣f(x),所以f(x)=x+2013,故选:A.6.(4.00分)如图是某个四面体的三视图,该四面体的体积为()A.72 B.36 C.24 D.12【解答】解:由题意可知,几何体是三棱锥,底面三角形的一边长为6,底面三角形的高为:4,棱锥的一条侧棱垂直底面的三角形的一个顶点,棱锥的高为:3.所以几何体的体积:=12.故选:D.7.(4.00分)已知正方体外接球的体积是,那么正方体的棱长等于()A.B.C.D.【解答】解:正方体外接球的体积是,则外接球的半径R=2,正方体的对角线的长为4,棱长等于,故选:D.8.(4.00分)已知直线l⊥平面α,直线m⊂平面β,有下面四个命题,其中正确命题是①α∥β⇒l⊥m②α⊥β⇒l∥m③l∥m⇒α⊥β④l⊥m⇒α∥βA.①与②B.①与③C.②与④D.③与④【解答】解:对于①l⊥α,α∥β,m⊂β⇒l⊥m正确;对于②l⊥α,m⊂β,α⊥β⇒l∥m;l与m也可能相交或者异面;对于③l∥m,l⊥α⇒m⊥α,又因为m⊂β则α⊥β正确;对于④l⊥m,l⊥α则m可能在平面α内,也可能不在平面α内,所以不能得出α∥β;综上所述①③正确,故选:B.9.(4.00分)原点O(0,0)与点A(﹣4,2)关于直线l对称,则直线l的方程是()A.x+2y=0 B.2x﹣y+5=0 C.2x+y+3=0 D.x﹣2y+4=0【解答】解:∵已知O(0,0)关于直线l的对称点为A(﹣4,2),故直线l为线段OA的中垂线.求得OA的中点为(﹣2,1),OA的斜率为=﹣,故直线l的斜率为2,故直线l的方程为y﹣1=2(x+2 ),化简可得:2x﹣y+5=0.故选:B.10.(4.00分)已知直线l1:x+2ay﹣1=0,与l2:(2a﹣1)x﹣ay﹣1=0平行,则a 的值是()A.0或1 B.1或C.0或D.【解答】解:当a=0时,两直线的斜率都不存在,它们的方程分别是x=1,x=﹣1,显然两直线是平行的.当a≠0时,两直线的斜率都存在,故它们的斜率相等,由≠,解得:a=.综上,a=0或,故选:C.11.(4.00分)圆(x+2)2+y2=4与圆(x﹣2)2+(y﹣1)2=9的位置关系为()A.内切B.外切C.相交D.外离【解答】解:圆C(x+2)2+y2=4的圆心C(﹣2,0),半径r=2;圆M(x﹣2)2+(y﹣1)2=9的圆心M(2,1),半径R=3.∴|CM|==,R﹣r=3﹣2=1,R+r=3+2=5.∴R﹣r<<R+r.∴两圆相交.故选:C.12.(4.00分)直线x﹣y=0被圆x2+y2=1截得的弦长为()A.B.1 C.4 D.2【解答】解:圆x2+y2=1的圆心O(0,0),半径等于1,圆心在直线x﹣y=0上,故直线x﹣y=0被圆x2+y2=1截得的弦长为2,故选:D.二、填空题(每空4分,共16分)13.(4.00分)已知幂函数y=f(x)的图象过点=3.【解答】解:设幂函数f(x)=xα(α为常数),∵幂函数y=f(x)的图象过点,∴,解得.∴.∴.故答案为3.14.(4.00分)函数f(x)=x2﹣4x+5,x∈[1,5],则该函数值域为[1,10] .【解答】解:由于函数f(x)=x2﹣4x+5=(x﹣2)2+1,x∈[1,5],则当x=2时,函数取得最小值为1,当x=5时,函数取得最大值为10,故该函数值域为[1,10],故答案为[1,10].15.(4.00分)已知函数f(x)=,则f[f()]=.【解答】解:由函数表达式得f()=log4=log44﹣2=﹣2,f(﹣2)=3﹣2=,故f[f()]=f(﹣2)=,故答案为:16.(4.00分)P为圆x2+y2=1的动点,则点P到直线3x﹣4y﹣10=0的距离的最大值为3.【解答】解:圆x2+y2=1的圆心(0,0)到直线3x﹣4y﹣10=0的距离等于=2,故圆x2+y2=1上的动点P到直线3x﹣4y﹣10=0的距离的最大值为2+1=3,故答案为:3.三、解答题(共5小题,计56分.解答应写出文字说明、证明过程或演算步骤)17.(10.00分)已知集合A={x|1≤x<5},B={x|﹣a<x≤a+3}(1)若a=1,U=R,求∁U A∩B;(2)若B∩A=B,求实数a的取值范围.【解答】解:(1)由集合A={x|1≤x<5},B={x|﹣1<x<4},C U A={x|x<1或x>5},∴(C U A)∩B={x|﹣1<x<1};(2)∵B∩A=B,∴B⊆A①当B=∅时,满足B⊆A,此时﹣a≥a+3,得a≤﹣②当B≠∅时,要使B⊆A则,解得﹣<a≤﹣1.综上所述:a≤﹣1.18.(10.00分)如图,在直三棱柱ABC﹣A1B1C1中,A1B1=A1C1,D,E分别是棱BC,CC1上的点(点D 不同于点C),且AD⊥DE,F为B1C1的中点.求证:(1)平面ADE⊥平面BCC1B1;(2)直线A1F∥平面ADE.【解答】解:(1)∵三棱柱ABC﹣A1B1C1是直三棱柱,∴CC1⊥平面ABC,∵AD⊂平面ABC,∴AD⊥CC1又∵AD⊥DE,DE、CC1是平面BCC1B1内的相交直线∴AD⊥平面BCC1B1,∵AD⊂平面ADE∴平面ADE⊥平面BCC1B1;(2)∵△A1B1C1中,A1B1=A1C1,F为B1C1的中点∴A1F⊥B1C1,∵CC1⊥平面A1B1C1,A1F⊂平面A1B1C1,∴A1F⊥CC1又∵B1C1、CC1是平面BCC1B1内的相交直线∴A1F⊥平面BCC1B1又∵AD⊥平面BCC1B1,∴A1F∥AD∵A1F⊄平面ADE,AD⊂平面ADE,∴直线A1F∥平面ADE.19.(12.00分)已知直线l经过两条直线2x+3y﹣14=0和x+2y﹣8=0的交点,且与直线2x﹣2y﹣5=0平行.(Ⅰ)求直线l的方程;(Ⅱ)求点P(2,2)到直线l的距离.【解答】解:(Ⅰ)联立,解得其交点坐标为(4,2).…(2分)因为直线l与直线2x﹣2y﹣5=0平行,所以直线l的斜率为1.…(4分)所以直线l的方程为y﹣2=1×(x﹣4),即x﹣y﹣2=0.…(6分)(Ⅱ)点P(2,2)到直线l的距离为.…(10分)20.(12.00分)已知函数f(x)=lg(3+x)+lg(3﹣x).(1)求函数f(x)的定义域;(2)判断函数f(x)的奇偶性,并说明理由.【解答】解:(1)要使函数有意义,则,解得﹣3<x<3,所以函数的定义域是(﹣3,3);(2)函数f(x)是偶函数,由(1)知函数的定义域关于原点对称,因为f(﹣x)=lg(3﹣x)+lg(3+x)=f(x),所以函数f(x)是偶函数.21.(12.00分)已知点A(0,5),圆C:x2+y2+4x﹣12y+24=0(1)若直线l过A(0,5)且被圆C截得的弦长为4,求直线l的方程;(2)点M(﹣1,0),N(0,1),点Q是圆C上的任一点,求△QMN面积的最小值.【解答】解:(1)圆C:x2+y2+4x﹣12y+24=0,其圆心坐标为(﹣2,6),半径为r=4,点P(0,5),当直线斜率不存在时,直线方程为:x=0,当x=0时,y 2﹣12y +24=0,解得y=6±2,可得弦长为6+2﹣(6﹣2)=4成立;当直线斜率存在时,设过P 的直线方程为:y=kx +5,化为一般方程:kx ﹣y +5=0, 圆心到直线的距离d==.又(2)2+d 2=r 2=16,解得:k=, 所以3x ﹣4y +20=0,综上可得直线l :x=0或3x ﹣4y +20=0;(2)直线MN 的方程为﹣x +y=1,即x ﹣y +1=0.圆C :x 2+y 2+4x ﹣12y +24=0,其圆心坐标为(﹣2,6),半径为r=4, 可得圆心(﹣2,6)到直线MN 的距离为d==,圆上的点到直线距离的最小值为﹣4.由|MN |=,可得△ABC 的面积最小值是××(﹣4)=﹣2.赠送初中数学几何模型【模型二】半角型:图形特征:AB正方形ABCD 中,∠EAF =45° ∠1=12∠BAD 推导说明:1.1在正方形ABCD 中,点E 、F 分别在BC 、CD 上,且∠FAE =45°,求证:EF =BE +DFE-a1.2在正方形ABCD 中,点E 、F 分别在BC 、CD 上,且EF =BE +DF ,求证:∠FAE =45°DEa +b-aa45°ABE挖掘图形特征:x-aa-a运用举例:1.正方形ABCD 的边长为3,E 、F 分别是AB 、BC 边上的点,且∠EDF =45°.将△DAE 绕点D 逆时针旋转90°,得到△DCM . (1)求证:EF =FM(2)当AE =1时,求EF 的长.E3.如图,梯形ABCD中,AD∥BC,∠C=90°,BC=CD=2AD=4,E为线段CD上一点,∠ABE=45°.(1)求线段AB的长;(2)动点P从B出发,沿射线..BE运动,速度为1单位/秒,设运动时间为t,则t为何值时,△ABP为等腰三角形;(3)求AE-CE的值.变式及结论:4.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图1),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图2),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图3),请你直接写出线段EF,BE,DF之间的数量关系.F。

相关文档
最新文档