同步奥数培优六年级上 第一讲长方体和正方体(巧算长方体和正方体的表面积)

合集下载

长方体和正方体的表面积计算公式

长方体和正方体的表面积计算公式

长方体和正方体的表面积计算公式长方体和正方体是我们日常生活中常见的几何体。

它们有着不同的形状和特点。

在数学中,我们可以通过特定的公式来计算它们的表面积。

本文将介绍长方体和正方体的表面积计算公式,帮助读者更好地理解和应用这些公式。

1. 长方体的表面积计算公式长方体是一种具有六个面的立体,每个面都是矩形。

它的表面积计算公式为:表面积 = 2 × (长 ×宽 + 长 ×高 + 宽 ×高)例如,如果一个长方体的长为5cm,宽为3cm,高为4cm,那么它的表面积可以通过以下计算得到:表面积 = 2 × (5 × 3 + 5 × 4 + 3 × 4) = 94cm²2. 正方体的表面积计算公式正方体是一种特殊的长方体,它的六个面都是正方形。

它的表面积计算公式为:表面积 = 6 × (边长 ×边长)例如,如果一个正方体的边长为6cm,那么它的表面积可以通过以下计算得到:表面积 = 6 × (6 × 6) = 216cm²长方体和正方体的表面积计算公式是基于它们的几何特征推导出来的,因此可以被广泛应用于实际问题中。

通过计算表面积,我们可以更好地了解物体的外部特征和性质。

在实际应用中,我们可以将这些表面积计算公式应用于不同的领域,如建筑、工程等。

例如,在设计建筑物时,我们需要计算墙面的表面积来确定所需的材料数量。

在包装设计中,我们需要计算盒子的表面积来评估所需的纸箱面积。

这些都是利用表面积计算公式的实际应用案例。

总结起来,长方体和正方体的表面积可以通过特定的公式来计算。

长方体的表面积计算公式是2 × (长 ×宽 + 长 ×高 + 宽 ×高),正方体的表面积计算公式是6 × (边长 ×边长)。

这些公式可以帮助我们计算几何体的外部特征,广泛应用于建筑、工程等领域。

长方体和正方体表面积计算公式

长方体和正方体表面积计算公式

长方体和正方体表面积计算公式长方体和正方体是我们生活中常见的几何体,无论是在建筑、设计、制造还是日常生活中,都有广泛的应用。

在计算长方体和正方体的表面积时,我们需要根据其特定的公式进行计算。

本文将介绍长方体和正方体的表面积计算公式及其应用。

一、长方体表面积计算公式长方体是一种具有六个矩形面的立体几何体,其表面积的计算公式为:长方体表面积 = 2(长×宽 + 长×高 + 宽×高)其中,长、宽、高分别代表长方体的三个边长。

上述公式中,2表示长方体的前后两个面、左右两个面、上下两个面,共六个面,每个面的面积都是长乘宽,因此需要将其相加。

例如,如果一个长方体的长、宽、高分别为3厘米、4厘米、5厘米,则其表面积为:长方体表面积 = 2(3 × 4 + 3 × 5 + 4 × 5) = 2(12 + 15 +20) = 94平方厘米二、正方体表面积计算公式正方体是一种具有六个正方形面的立体几何体,其表面积的计算公式为:正方体表面积 = 6 ×边长其中,边长代表正方体的边长。

上述公式中,6表示正方体有六个面,每个面的面积都是边长的平方,因此需要将其相加。

例如,如果一个正方体的边长为3厘米,则其表面积为:正方体表面积 = 6 × 3 = 6 × 9 = 54平方厘米三、长方体和正方体表面积的应用长方体和正方体的表面积计算公式在实际生活中有广泛的应用。

以下是一些例子:1. 在建筑设计中,建筑师需要计算建筑物的表面积,以确定需要使用的建筑材料的数量和成本。

例如,一个长方体的房间的墙壁和天花板的表面积可以用长方体表面积的公式来计算。

2. 在制造业中,工程师需要计算机器和设备的表面积,以确定需要使用的材料的数量和成本。

例如,一个正方体的箱子的表面积可以用正方体表面积的公式来计算。

3. 在日常生活中,我们可以用长方体和正方体表面积的公式来计算一些日常用品的表面积。

苏教版六年级数学上册 第1讲 长方体和正方体(巧算表面积)

苏教版六年级数学上册   第1讲  长方体和正方体(巧算表面积)

苏教版六年级数学上册知识概述同学们,我们已经知道长方体(或正方体)6个面的总面积,叫做它的表面积。

在实际生产和生活中,有时不需要计算6个面的总面积,只需要计算某几个面的总面积,解题时需要根据具体情况思考要求哪几个面的面积和,再进行计算。

解答这类问题,不仅需要我们具备较扎实的基础知识和观察能力、作图能力和空间想象能力,还要掌握一些解题的方法和技巧。

例1、有一种无盖的玻璃鱼缸,长25厘米,宽20厘米,高15厘米,做这样一个鱼缸需要多少平方厘米的玻璃?练习:1、一个无盖的长方体木箱长30厘米、宽20厘米、高10厘米。

做这个木箱至少要用多少平方分米铁皮?2、一个正方体食品盒,棱长4分米,在它的四周贴一圈商标纸(上、下面不贴),这张商标纸的面积至少是多少平方分米?3、学校新建一个儿童游泳池,这个泳池长50米,宽25米,深1.6米,现在要用水泥抹四壁和底面,抹水泥部分是多少平方米?例2、两个棱长是2厘米的小正方体可以拼成一个长方体,这个长方体的表面积是多少?练习:1、把两个棱长是3厘米的小正方体拼成一个长方体,这个长方体的表面积是多少?2、把底面积是36平方厘米的两个正方体木块拼成一个长方体,长方体的表面积是多少?3、把两个棱长都是3厘米的正方体拼成一个长方体,表面积减少了多少平方厘米?例3、把两个长5厘米、宽4厘米、高3厘米的长方体拼成一个表面积最小的长方体,这个长方体的表面积是多少平方厘米?练习:1、把两个长3厘米、宽2厘米、高1厘米的长方体拼成一个表面积最小的长方体,这个长方体的表面积是多少平方厘米?2、把两个长5厘米、宽2厘米、高1厘米的长方体拼成一个表面积最大的长方体,这个长方体的表面积是多少平方厘米?3、把两个长6厘米,宽4厘米、高3厘米的长方体拼成一个大长方体,这个大长方体表面积的最大值与最小值相差多少?例4、求出下面立体图形的表面积。

(单位:厘米)练习:1、在一个棱长为5分米的正方体上放一个棱长为4分米的小正方体(如下图),求这个立体图形的表面积。

六年级上册数学试题-第一讲长方体和正方体巧算长方体和正方体的表面积苏教版

六年级上册数学试题-第一讲长方体和正方体巧算长方体和正方体的表面积苏教版

第一讲长方体和正方体(巧算长方体和正方体的表面积)【知识概述】同学们,我们已经知道长方体(或正方体)6个面的总面积,叫做它的表面积。

在实际生产和生活中,有时不需要计算6个面的总面积,只需要计算某几个面的总面积,解题时需要根据具体情况思考要求哪几个面的面积和,再进行计算。

解答这类问题,不仅需要我们具备较扎实的基础知识和观察能力、作图能力和空间想象能力,还要掌握一些解题的方法和技巧。

例题精学例1有一种无盖的玻璃鱼缸,长25厘米,宽20厘米,高15厘米,做这样一个鱼缸需要多少平方厘米的玻璃?【思路点拨】这道题“做这样一个鱼缸需要多少平方厘米的玻璃”和求面积有关,解题时要看清楚这是一个“无盖的玻璃鱼缸”,没有上面,只要求下面、前面、后面、左面、右面5个面的面积。

同步精练1.一个无盖的长方体木箱长30厘米、宽20厘米、高10厘米。

做这个木箱至少要用多少平方分米铁皮?2.一个正方体食品盒,棱长4分米,在它的四周贴一圈商标纸(上、下面不贴),这张商标纸的面积至少是多少平方分米?3.学校新建一个儿童游冰池,这个泳池长50米,宽25米,深1.6米,现在要用水泥抹四壁和底面,抹水泥部分是多少平方米?例2 两个棱长是2厘米的小正方体可以排成一个长方体,这个长方体的表面积是多少? 【思路点拨】先根据题意画图:从图上可以清楚地看出:两个正方体原先各有6个正方形的面,当把它们拼起来时就少了2个正方形的面。

这时,求长方体的表面积相当于求10个正方形的面积;还可以这样想;当两个正方体拼成一个长方体时,求长方体的表面积,我们可以先分别求出这个长方体的长、宽、高,再求出它的表面积。

同步精练1.把两个棱长是3厘米的小正方体拼成一个长方体,这个长方体的表面积是多少?2.把底面积是36平方厘米的两个正方体木块拼成一个长方体,长方体的表面积是多少?3.把两个棱长都是3厘米的正方体拼成一个长方体,表面积减少了多少平方厘米?例3 把两个长5厘米、宽4厘米、高3厘米的长方体拼成一个表面积最小的长方体,这个长方体的表面积是多少平方厘米?【思路点拨】用两个相同的小长方体可以拼成三种不同的大长方体,当然得到的表面积就不同,我们可以把三种不同的长方体的表面积都计算出来,再进行比较,找出最小的,这样做要花很多时间。

六年级上册数学试题-第一讲长方体和正方体巧算长方体和正方体的表面积苏教版

六年级上册数学试题-第一讲长方体和正方体巧算长方体和正方体的表面积苏教版

第一讲长方体和正方体(巧算长方体和正方体的表面积)【知识概述】同学们,我们已经知道长方体(或正方体)6个面的总面积,叫做它的表面积。

在实际生产和生活中,有时不需要计算6个面的总面积,只需要计算某几个面的总面积,解题时需要根据具体情况思考要求哪几个面的面积和,再进行计算。

解答这类问题,不仅需要我们具备较扎实的基础知识和观察能力、作图能力和空间想象能力,还要掌握一些解题的方法和技巧。

例题精学例1有一种无盖的玻璃鱼缸,长25厘米,宽20厘米,高15厘米,做这样一个鱼缸需要多少平方厘米的玻璃?【思路点拨】这道题“做这样一个鱼缸需要多少平方厘米的玻璃”和求面积有关,解题时要看清楚这是一个“无盖的玻璃鱼缸”,没有上面,只要求下面、前面、后面、左面、右面5个面的面积。

同步精练1.一个无盖的长方体木箱长30厘米、宽20厘米、高10厘米。

做这个木箱至少要用多少平方分米铁皮?2.一个正方体食品盒,棱长4分米,在它的四周贴一圈商标纸(上、下面不贴),这张商标纸的面积至少是多少平方分米?3.学校新建一个儿童游冰池,这个泳池长50米,宽25米,深1.6米,现在要用水泥抹四壁和底面,抹水泥部分是多少平方米?例2 两个棱长是2厘米的小正方体可以排成一个长方体,这个长方体的表面积是多少? 【思路点拨】先根据题意画图:从图上可以清楚地看出:两个正方体原先各有6个正方形的面,当把它们拼起来时就少了2个正方形的面。

这时,求长方体的表面积相当于求10个正方形的面积;还可以这样想;当两个正方体拼成一个长方体时,求长方体的表面积,我们可以先分别求出这个长方体的长、宽、高,再求出它的表面积。

同步精练1.把两个棱长是3厘米的小正方体拼成一个长方体,这个长方体的表面积是多少?2.把底面积是36平方厘米的两个正方体木块拼成一个长方体,长方体的表面积是多少?3.把两个棱长都是3厘米的正方体拼成一个长方体,表面积减少了多少平方厘米?例3 把两个长5厘米、宽4厘米、高3厘米的长方体拼成一个表面积最小的长方体,这个长方体的表面积是多少平方厘米?【思路点拨】用两个相同的小长方体可以拼成三种不同的大长方体,当然得到的表面积就不同,我们可以把三种不同的长方体的表面积都计算出来,再进行比较,找出最小的,这样做要花很多时间。

小学奥数模块教程长方体和正方体表面积

小学奥数模块教程长方体和正方体表面积

1、 长方体和正方体的认识和掌握长方体与正方体的特征。

2、 掌握表面积的算法和组合图形的表面积的计算。

长方体正方体的认识:长方体正方体的表面积和体积: 形体 相同点 不同点联系 面 棱 顶点 面的形状 面的面积 棱长长方体 6 个面 12条棱 8个顶点 6个面都是长方形,有时有两个相对的面是正方形相对的两个面面积相等 相对的棱长度相等 正方体是一种特殊的长方体 正方体 6 个面 12条棱 8个顶点 6个面都是完全相同的正方形 6个面的面积都相等 12条棱的长度都相等形体 表面积体积(容积) 定义 计算公式 常用单位 定义 计算公式 常用单位 长方体 长方体或正方体6个面的面积之和,叫做它们的表面积 S=(ab+ah+bh) ×2 平方厘米 平方分米 平方米 物体所占空间的大小叫做物体的体积。

容器所能容纳物体的体积,通常叫做它们的容积V=abh V=sh 立方厘米(升毫) 立方分米(升) 立方米 正方体 S=6a²V =a³ V=sh 重难点知识框架长方体与正方体(一):表面积例题精讲【例1】观察长方体与正方体,并回答下列问题:(1)长方体有()个面;正方体有()个面。

(2)长方体每个面是()形;正方体每个面是()形。

(3)长方体有()条棱,哪些棱一样长?()正方体有条()棱,哪些棱一样长?()(4)长方体有()个顶点;正方体有()个顶点。

【巩固】【例2】工人叔叔要把下图中的盒子四周镶上银边(即每条棱上贴上银丝),那么需要多少厘米的银丝?(尺寸如图所示,单位:厘米)【巩固】一个长方体的长是1.5分米,宽是1.2分米,高是1分米,它的棱长和是()分米。

【巩固】一个长方体的棱长总和是 80厘米,其中长是 10厘米,宽是 7厘米,高是()厘米。

【例2】下面中有四个立方体,只有一个三用右边的片折成的,请指出是哪一个()。

【巩固】【巩固】在下面形状的硬纸片中,沿线对折能围成一个正方体的是()A .B .C .知识框架你知道正方体和长方体的表面积怎么计算吗?你还记得面积单位间的进率及单位换算吗?1.下面的面积单位中,最大的面积单位是(),最小的是()A.平方千米B.平方米C.公顷D.平方分米表面积计算常用公式:立体图形示例表面积公式相关要素长方体S= 2(ab+bc+ac) 三要素:a、b、c 正方体S = 6a2 一要素:a易错点:1.长方体被截后表面积增加的面警示:长方体被截一次,要新增加两个相等的面。

小学奥数讲义:长方体与正方体

小学奥数讲义:长方体与正方体

小学奥数讲义:长方体与正方体长方体与正方体【知识要点】1、正方体棱长和=棱长×12 长方体棱长和=(长+宽+高)×42、长方体和正方体的表面积,就是长方体和正方体6个面的总面积。

长方体的表面积=(长×宽+长×高+宽×高)×2 正方体的表面积=棱长×棱长×6表面积在计算时的特殊情况:(1)一般情况需要计算6个面的面积;(2)有时只要计算5个面的面积:如计算游泳池粉刷,游泳池贴瓷砖,浴缸,教室、房间的粉刷面积,无盖的盒子……(3)有时只要计算4个面的面积:如计算饮料的包装纸,通风管……(4)有时只要计算1个面的面积:如游泳池的占地面积,冰箱、洗衣机的占地面积……3、正方体体积=棱长×棱长×棱长长方体体积=长×宽×高通用体积公式:体积=底面积×高【精选例题】1、一个长方体,长12厘米,宽8厘米,高6厘米。

(1)如果从这个长方体上切下一个最大的正方体,这个正方体的体积应该是多少?(2)如果将这个长方体切成若干个大小一样的正方体(不许有剩余),最少能切多少块?(3)如果用若干个这样相同的长方体拼成一个更大的正方体,至少需要多少个长方体?2、把一个长16厘米,宽6厘米,高8厘米的大长方体切成两个小长方体,这两个小长方体的表面积的和最大是多少平方厘米?最小是多少平方厘米?3、一个长方体,如果长减少2厘米,就成为一个正方体,这时,正方体的表面积是96平方厘米,原来长方体的体积是多少?4、一个长方体纸盒,长8厘米,宽是长的43,高是宽的一半。

这个长方体的棱长总和是多少厘米?5、一个体积为160立方厘米的长方体中两个侧面的面积分别为20厘米,32厘米,如图,求这个长方体底面的面积(即图中阴影部分的面积)。

6、一个底面长为25厘米,宽为20厘米的长方体容器,里面盛有水。

当把一个正方体木块放入水中时,木块的12部分没入水中,此时水面升高了1厘米。

苏教版六年级上册数学 第1招 长方体、正方体表面积的解题技巧 知识点梳理重点题型练习课件

苏教版六年级上册数学 第1招 长方体、正方体表面积的解题技巧 知识点梳理重点题型练习课件

例 在一个棱长为4 cm的正方体的上面正中间挖去一
ቤተ መጻሕፍቲ ባይዱ
个棱长为1 cm的小正方体(如图所示)。求所得立
体图形的表面积。
比原正方体增加 了小正方体四周 的4个面
只有上面面积有变化, 将小正方体的底面补 到原来正方体的上面, 那么上面也没有变化
规范解答:4×4×6+1×1×4=100(cm2) 答:所得立体图形的表面积是100 cm2。
2.下图所示的立体图形是由9个棱长为1 cm的正方体
搭成的,这个立体图形的表面积是多少平方厘米?
上(下)面、前(后)面均由5个边长1 cm正方形面 组成,左(右)面由6个边长1 cm正方形面组成
(5+5+6)×2=32(个)
1×1×32=32(cm2)
答:这个立体图形的表面积是32 cm2。
技 巧 2 用“割补法”求组合图形的表面积
体木块,在它的左上角和右上角各切掉一块棱长
为2 cm的小正方体木块,剩下
部分的表面积是多少?
只有前(后)面变为
[10×(7-2)+(10-2-2)×2]× 长10 cm、宽(7-
2+10×2×2+2×7×2=192(cm2)
2 )cm的长方形和 长(10-2-2 )cm、
答:剩下部分的表面积是192 cm2。宽上2下c、m左的右长面方不形变,
第一单元 整理与复习 第1招 长方体、正方体表
面积的解题技巧
计算被挖去一个小的正方体或长方体后的长方 体、正方体的表面积时,可以根据增加或减少的表 面积进行推算;计算由长方体、正方体组合而成的 立体图形的表面积,可以采用观察法,从上下、左 右和前后六个方向(有时只考虑上、左、前三个方向) 去观察,再求出所观察到的平面图形面积的总和。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一讲长方体和正方体
(巧算长方体和正方体的表面积)
【知识概述】
同学们,我们已经知道长方体(或正方体)6个面的总面积,叫做它的表面积。

在实际生产和生活中,有时不需要计算6个面的总面积,只需要计算某几个面的总面积,解题时需要根据具体情况思考要求哪几个面的面积和,再进行计算。

解答这类问题,不仅需要我们具备较扎实的基础知识和观察能力、作图能力和空间想象能力,还要
例题精学
例1?

同步精练
1.?
2.
平方分米
3.
例2
同步精练
1.把两个棱长是3厘米的小正方体拼成一个长方体,这个长方体的表面积是多少?
2.把底面积是36平方厘米的两个正方体木块拼成一个长方体,长方体的表面积是多少?
3.把两个棱长都是3厘米的正方体拼成一个长方体,表面积减少了多少平方厘米?
例3把两个长5厘米、宽4厘米、高3厘米的长方体拼成一个表面积最小的长方体,这个长方体的表面积是多少平方厘米?
【思路点拨】用两个相同的小长方体可以拼成三种不同的大长方体,当然得到的表面积就不同,我们可以把三种不同的长方体的表面积都计算出来,再进行比较,找出最小的,这样做要花很多时间。

我们可以思考一下,当两个相同的长方体拼在一起时,表面积减少两个拼在一起的面。

这道题求拼成的长方体表面积的最小值,我们可以这样计算,先求出两个单个的小长方体的表面积,再减去拼在一起的两个最大的面的面积。

同步精练
1.把两个长3厘米、宽2厘米、高1厘米的长方体拼成一个表面积最小的长方体,这个长方体的表面积是多少平方厘米?
2.把两个长5厘米、宽2厘米、高1厘米的长方体拼成一个表面积最大的长方体,这个长方体的表面积是多少平方厘米?
3.把两个长6厘米、宽4厘米、高3厘米的长方体排成一个大长方体,这个大长方体表面积的最大值与最小值相差多少?
例4求出下面立体图形的表面积。

(单位;厘米)
【思路点拨】从图上可以看出,这个图形是由一个长方体和一个正方体组
成的,求它的表面积时,可以把长方体的侧面平移到正方体上,这个图形的表面积就可以用一个正
方体的表面积,加上一个
长方体的上、下两个面和前、后两个面的面积。

同步精炼
1.在一个棱长为5分米的正方体上放一个棱长为4分米的小正方体(如下图),求
这个立体图形的表面积。

2.18个棱长为2厘米的小正方体堆成如下图的形状,求它的表面
积。

3.下图是由16块棱长为2厘米的小正方体堆成的,
它的表面积是多少平方厘米?
练习一
一、填空。

1.长方体的底面积是12平方厘米,宽2厘米,高和宽相等,表面积是(),底面周长是()。

2.一个长方体的长是25厘米,宽是15厘米,高是10厘米,最大的面的长是()厘米,宽是()厘米,一个这样的面的面积是()平方厘米;最小的面的长是()厘米,宽是()厘米,一个这样的面的面积是()平方厘米。

4 10
10 4
第2题 第3题
3.一个正方体的底面积是25平方分米,它的表面积是()平方分米。

4.一个正方体的棱长总和是48厘米,它的一个面是边长()厘米的正方形,它的表面积是()平方厘米。

5.两个完全相同的长方体,长8厘米,宽6厘米,高5厘米。

拼成一个表面积最大的长方体后,表面积比原来减少了()平方厘米,现在是()平方厘米。

6.一个表面积为54平方分米的正方体,切成两个完全相等的长方体后,表面积总和是()。

7.把三个楼长都是5厘米的正方体拼成一个长方体,表面积减少了()平方厘米。

8.
9.
10.
平方米。

1.
2.
3.
4.
5.
1.用棱长
A.8
B.4
C.2
2.长方体中有四个面的面积相等,其余的两个面是()。

A.长方形
B.正方形
C.不能确定
3.一个棱长为1米的正方体,如从一顶点处去掉一个1立方分米的小正方体后,表面积和原来比()。

A.减少了
B.增加了
C.没有变
4.把一个棱长是5厘米的正方体木块分器成两个长方体木块,再在表面涂上油漆,这两个长方体本块涂漆的总面积是()平方厘米。

A.150
B.200
C.300
四、解决问题。

1.一个长方体,宽是4米,长是宽的2倍,高是宽的一半,这个长方体的表面积是多少?
2.一间会议室,长25米,宽10米,高3米,现在要粉刷四周墙壁和顶部,门窗的面积是28平方米。

要粉刷的面积是多少平方米?
3.学校礼堂有4根长方体立柱,高5米,底面为边长3分米的正方形,要油漆这些立柱,按每平方米用25元的油漆算,一共要多少元?
4.一个无盖的长方体铁皮盒,长2.5分米,宽1.2分米,高0.8分米。

做一对这样的铁皮盒至少要多少平方分米铁皮?
5.一种烟囱管,长2.5米,它的横截面是边长2分米的正方形。

做10个这样的烟囱管至少需要多少平方米铁皮?
6.一个长方体,底面积是42平方厘米,底面周长是26厘米,高是5厘米。

求这个长方体的表面积。

7.把一根长2.4米、宽0.8米、高0.4米的木料锯成体积相等的2份,它的表面积最少增加多少平方米?
8.将两本长25厘米、宽20厘米、厚5厘米的书包成一包,怎样才能节约包装纸?请画图表示,并求出需要多少包装纸?
9.下图中的每个小正方体的棱长为1厘米,它的表面积是多少平方厘米?
10.有一个棱长是3厘米的正方体,先从它的每个顶点处挖去一个楼长是1厘米的小正方体,再在它每个面的中央粘上一个棱长是1厘米的小正方体。

所得物体的表面积是多少平方厘米? 第9题。

相关文档
最新文档